Ch. 6 - Logic Gates

AND, OR, NOT

XOR

nand, ea

CMOS: NAND, NOR, NOT (INV)

I. Static Circuits

out comm. to Vdd/Gnd thru low resistance

Ex: 2-input NAND

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>high</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>M2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>M3 source to M4 to Gnd</td>
</tr>
</tbody>
</table>

Building complex gates:

1) Nmos "on" when input high v
PMOS "off" low v

2) PUN: active when OUT = 1
PDN: "off" = 0
3) PMOS's pull up well
 NMOS's "down"

4) OR: think parallel
 1 → A OR B

 AND: think series
 1 ← A & B

Ex: \(\text{out} = (A+B) \cdot (C+D+E) \)

\(\text{PDN (NMOS)} \): when is \(\text{out low} \)?
 \((A+B): (C+D+E) \) is high/true/active

\(\text{out} = (A+B) \cdot (C+D+E) \)
PUN (P Livingston): When is out high?

\[\text{out} = \overline{A} \cdot \overline{B} + (C \cdot D \cdot \overline{E}) \]

but we need the equation for out as a function of \(\overline{A}, \overline{B}, \overline{C}, \overline{D}, \overline{E} \)

\[\text{out} = (A + B) + \overline{(C + D + \overline{E})} \quad \text{[DeMorgan's]} \]

\[\text{out} = (\overline{A} \cdot \overline{B}) + (C \cdot \overline{D} \cdot \overline{E}) \]

\[a = 0 \rightarrow \overline{a} \]

\[a = 1 \rightarrow \overline{a} \]
Delays of gates

1) Gates more complex than inverter

 - Delay depends on inputs

 Ex: 3-input NOR

 * Hi → Low
 one input high

 \[t_p = 0.69 R_n C_L = t_p_0 \]

 * Two inputs high

 \[t_p = 0.69 R_n C_L \cdot \frac{1}{2} \]

 * 3 inputs high

 \[t_p = \frac{1}{3} t_p_0 \]

2) Need to increase widths to balance delay

Assume 2: \[R_{NMOS} = R_{PMOS} \]

\[\text{Llew} \]

* NMOS

\[W = 2 \text{mm} \]

\[W = 1.5 \text{mm} \]
* 3-input NOR

\[R_{\text{PUN}} = 3 \cdot R_{\text{PUNOS}} \]

\[R_{\text{PDN}} = R_{\text{NUNOS}} \text{ worst case} \]

So, to maintain \(t_P = t_P \) in the worst case,

\[W_{\text{PUNOS}} = 6 \cdot W_{\text{NUNOS}} \text{ inverter} \]

\[
\begin{cases}
 \text{eff.} \quad W_P = 1 \text{ mm} \\
 \text{eff.} \quad W_n = 1 \text{ mm}
\end{cases}
\]

\(\text{total 21 mm "width"} \)

* 3-input NAND

\[
\begin{cases}
 W_P = 2 \text{ mm} \\
 W_n = 3 \text{ mm}
\end{cases}
\]

\(\text{total 15 mm "width"} \)

3) Large fan-in gates

\[N \text{-input NAND} - N \text{ NUNOS in series} \rightarrow \text{each } \sim N \text{ larger} \]

\[\text{NOR} - \text{"PMOS"} \rightarrow \ldots \]
Solutions:

a) Increase transition sizes

b) Input reordering
 - place inputs to trans.
 - nearest Gnd/Vdd

c) Taper trans., stack
 - may be inefficient
 - in layout

d) Restructure
 - Ex: 5-input AND

\[\text{Diagram of circuit components} \]
II. Ratieed

Before CMOS, NMOS

NMOS load must be:

1) weak enough - PDN can overpower it

2) strong enough - reasonable tr