A) Inverter capacitance

1) gate-to-drain overlap
 - Miller capacitance

2) gate-to-source
 - does not affect driving of inverter a

3) drain to bulk

4) source to bulk - good cap. on end node

5) wire capacitance

6) load capacitance
 a) other gates
 b) other source/drain diffusions

B) Inverter driving resistance

\[\text{Req} = \text{equiv. resistance} \]
\[\text{Req}_W = 13 \, \text{k}\Omega \text{ when } W = L, \ 0.25 \, \text{um CMOS}, \ V = 2.5 \text{V} \]
\[\text{Req}_L = 31 \, \text{k}\Omega \]

\[\text{Req} = \frac{\text{Req}_W}{\left(\frac{W}{L} \right)} \]
Increasing Performance

1) Reduce load capacitance.
 - Layout
 - shorter lines
 - smaller loads
 - Algorithm
 Ex: $A'B + A'B' = A'$

2) Reduce Reg (increase drive current)
 - Decrease $\frac{W}{L}$ → wider transistors
 - Increase Vdd — maybe not possible
 - Max Vdd
 - Power budget

Diagram:

- Vertical axis labeled t_p
- Horizontal axis labeled Vdd
- Plot points and lines
- $t_p = 0.59$ Reg C_L
3) Adjust PMOS/NMOS ratio

\[
\beta = \frac{W/L_{PMOS}}{W/L_{NMOS}}
\]

\[
\beta = \frac{W_{PMOS}}{W_{NMOS}} \quad \text{with} \quad L_N = L_P
\]

If we neglect wire capacitance (large, close inverters)

Two identical inverters:

\[
\beta_{opt} = \sqrt{\frac{R_{eqP}}{R_{eqN}}} \quad \text{for lowest} \quad t_P \quad \text{p. 204}
\]

\[
t_P \quad 50\,\text{ps} \quad t_{PLH} \quad t_{PHL} \quad t_P
\]

\[
40\,\text{ps} \quad 154 \quad 1.9
\]

\[
30\,\text{ps} \quad 1 \quad 2 \quad 2.4 \quad 3 \quad 4 \quad 5 \quad \beta
\]
For $0.25 \mu m$, $2.5V$

- For $t_{\text{PHL}} = t_{\text{PLH}}$

$$
\beta = \frac{\text{Req} \ p}{\text{Req} \ n} = \frac{31 \ \text{kQ}}{13 \ \text{kQ}} = 2.4
$$

- For min. delay,

$$
\beta_{\text{opt}} = \left[\frac{\text{Req} \ p}{\text{Req} \ n} \right]^{1/2} = 1.54 - \text{theory}
$$

- From circuit simulation

\[\beta_{\text{opt}} \approx 1.9 \]

"Chain of inverter's problem"

First, some background:

- $C_g =$ input gate cap.
- $C_{\text{int}} =$ intrinsic output cap. (mostly diff. cap.)
- $C_{\text{ext}} =$ external cap. to inv. (wire + C_L)

Ex: - clock network
- I/O ports

\[\text{Huge } C_L \]
\[\text{fint} = \frac{\delta \cdot C_g}{\gamma} \]

\[\gamma = 1 \text{ for modern processes} \]

\[f = \text{effective fanout} = \frac{C_{\text{ext}}}{C_g} \]

\[t_p = t_{p_0} + t_{i_0} \frac{f}{\gamma} \]

- function of \(f \) only! Key point

\[\frac{f}{\gamma} = \frac{C_{\text{ext}}/C_g}{C_{\text{int}}/C_g} \]

\[\frac{f}{\gamma} = \frac{C_{\text{ext}}}{C_{\text{int}}} \]

```
 1 f f^2
```

N = number of stages

\[F = \text{overall effective fanout} = \frac{C_L}{C_{g_1}} \]

\[C_{g_1} = C_g \text{ of first inverter} \]

\[f = \sqrt[N]{F} \]

Choose \(N \) to minimize delay for a given \(F \)
1) Assume $y = 0$ - a Circuit simplification

$$N = \ln (F)$$

\[f = e^{-2.718} \]

2) $y = 1$ - realistic

Cannot solve in closed form

Solve numerically

\[f \approx 3.6 \]

- Too low f is very slow
- Lower f → more gates

Ex: $F = 50$, neglect inversions (odd or even N are ok)

First inv. $W_1 = 6\lambda$, $W_2 = 4\lambda$

- $N = 2$: $f = \frac{2}{\sqrt{50}} \approx 7$
- $N = 3$: $f = \frac{3}{\sqrt{50}} \approx 3.8$ (✓)
- $N = 4$: $f = \frac{4}{\sqrt{50}} \approx 2.8$
If oversims are not allowed, then we must choose an odd or even N, or...

a) Use a output

b) DFF input
c) absorb into logic

\[\text{Diagram showing logic gates and variables.} \]