Two ways to reduce probability:
1) small Rnwell & R_{psub}
2) reduce Vdd
 - reduce performance of circuit

1) nwell
 - surround all PMOS
 - typ. connected to Vdd
2) nwc - nwell contact

3) pwell
 - surround all NMOS
 - typ. connected to Gnd
4) pwc - pwell contact
Our magic file:

"=" see now well; see no well
"+" see no labels
"\" see "call"

Transfer Characteristics - Inverter

Ideal digital inverter
- \(\infty \) gain
- switching threshold \(\frac{V_{DD}}{2} \)

VTC - Voltage Transfer Characteristics

\[\frac{V_{DD}}{2} \]
"Outside" slope = -1 \ points: change in \(V_{in} \) \(\rightarrow \) smaller change in \(V_{out} \) (noise suppressed)

"inside" \(\rightarrow \) larger \(\rightarrow \) larger \(\rightarrow \) noise amplified

Stable 0 Input: \(V_{0L} \leftrightarrow V_{IL} \)
Stable 1 Input: \(V_{1H} \leftrightarrow V_{OH} \)

One definition of noise margin:

\[
N.M._L = V_{IL} - V_{OL}
\]

\[
N.M._H = V_{OH} - V_{1H}
\]

Room between the normal input voltage and the slope = -1 point

- Want to tolerate as much noise as possible
- Keep a 0 a 0, keep a 1 a 1
- Total noise \(\leq N.M. \) for proper operation

\(\approx \) supply noise + cross talk + interference + ...
1) Process variation
 - Fast/slow transistors
2) Voltage variation (Vdd)
3) Temp variation
4) Noise
 a) Generated external to chip
 - Vdd
 - Cosmic radiation
 b) Generated internal to chip
 - Inductive coupling
 - Capacitive coupling
 - Power/grid noise
 - Cycle-by-cycle noise
- longer period noise

<table>
<thead>
<tr>
<th>CPU0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\text{Vin} \rightarrow \text{Vout} \]

Regenerative VTO

\[\text{Vin} \rightarrow \text{Vout} \]

Non-regenerative

\[\text{Regenerative} \]

\[\text{Non-regenerative} \]
Fanout: # of load gates connected to a gate's output

![Fanout diagram]

Higher fanout \Rightarrow Slower gate delay
Move "work" done

Famin: # of inputs to a gate

![Famin diagram]

Higher fanin \Rightarrow more complex gate
\Rightarrow slower
\Rightarrow more "work" done
\Rightarrow generally more noise immunity, problems
For inverter

- Scales across:
 - PVT
 - fab. technologies
 - circuits: inv

Functional units \((+, -, \times, \div) \)

Processors