In magic,

\[\text{padm} 12 \text{c} \]
\[\text{padm} 12 \text{c} \]
\[\text{ndm} 12 \text{c} \]
\[\text{pm} 12 \text{c} \]
\[\text{m} 123 \text{c} \]
\[\text{m} 234 \text{c} \]
\[\text{m} 345 \text{c} \]
\[\text{m} 456 \text{c} \]

4) Reduce Area

a) share, overlap (Ex: Vdd, Gnd)
Ex. 2 inverters

b) Abutment

Avoid bases of wires that turn corners, if possible

i)

ii)
* (ii)

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

"pitch matching"

d) Consider shape of the overall structure

(i)

(ii)

*
For an arbitrary block, a square block will give the shortest total wire length.

e) Transistor folding (for large transistors)

+ large source cap

- large drain cap.

- may not fit SM cell

+ more source cap

+ less drain cap.
(6) Reducing max delay

\[t_p = K \cdot R_{\text{mos}} \cdot C_{\text{load}} \]

- reduce \(R_{\text{mos}} \)
 - In layout, wider transistors
 - but this increases \(C_{\text{load}} \) for its driving gate
 - diminishing returns

- reduce \(C_{\text{load}} \)
 - shorter wires (lower \(L \))
 - reduce MOS width
 - smaller area
 - use higher-level metals if possible

(11) Reduce energy/operation

\[P = C_L \cdot V^2 \cdot f \]
\[E = C_L \cdot V^2 \]

* reduce \(C_L \)
 - \(Vdd \) and freq are generally set by other requirements
Latchup occurs when unintended parasitic bipolar transistors enter a state that shorts Vdd to Gnd.

Result:
- Positive feedback between NPN and PNP
- Locks up until power is turned off
- Device could overheat and melt
Avoid by:
- Small \(R_{\text{pwell}} + R_{\text{psub}} \)

\[\rightarrow \text{keep well/sub contacts close to circuits} \]

\[\rightarrow \text{116 rule:} \]

one nwell/psub contact every 3 "squares" of nwell or pwell