We want:

![NMOS Diagram]

Gate G — Bulk Body

Source

4-terminal device

![PMOS Diagram]

But both NMOS + PMOS must exist in the same substrate

"N-well process"
"Dual-well process"

- Layout in mask for PBC 110

"Triple-well process"

p-substrate

n-substrate
7 Primary Chip Ingredients

1) Silicon - crystalline
 - Near-perfect crystal
 - Semiconductor - conduction can be altered

2) SiO₂ - Silicon dioxide
 - silicon + oxygen
 - insulator

3) Silicon - polycrystalline, poly, polysilicon
 - small crystalline regions

4) n-type dopants
 - 5 outer electrons
 - "donors"
 - Ex: phosphorus, arsenic

5) p-type dopants
 - 3 outer electrons
 - "acceptors"
 - Ex: boron, gallium

6) Metal wires
 - In past, aluminum. New copper.
 - Conductors

7) "Vertical" connections - Contacts/Vias
 - Tungsten and aluminum
5 Primary Fab. - Materials and Fab. Processes

1) Photore sist
 - Positive photore sist - becomes soluble when exposed to UV light
 - Negative " " insutable " " " "
 - Applied ~ 1 mm thick to entire wafer

2) Etching processes
 - Selectivity - what is etch and what is not
 - Acid (wet etch)
 Ex: HF acid
 - Plasma (dry etch)

3) Masks - one per patterned shape

4) Laying down material
 A) Deposition
 Ex: CVD - chemical vapor deposition
 Ex: SiO₂, silicon
 B) Growth
 Ex: SiO₂ on silicon substrate (gate oxide)
 C) Implantation
 - Produce high-dopant concentration regions
- Diffusion implantation
 - Silicon exposed to dopant gas at high temp.
- Im implantation
 - Implanted at high speed with an accelerator
 - Cause lattice damage
 - Normally follow with annealing
 - Ex: source/drain
 - Channels
 - Well + substrate contacts
 - Poly silicon
- D) Sputtering - for metal

5) Planarization - extreme flattening of wafers' surface

CMP: Chemical Mechanical Planarization

- for reliability
- for uniform layer thickness
Basic Repeated Process

1) Deposit a material

2) Coat with photoresist (P.R.)

3) Expose P.R. to a pattern of UV light with a mask

4) Remove soluble P.R.

5) Remove material below P.R. w/ etch

6) Remove remaining P.R.