An Overview of Standard Cell Based Digital VLSI Design

With examples taken from the implementation of the 36-core AsAP1 chip and the 1000-core KiloCore chip

Zhiyi Yu, Tinoosh Mohsenin, Aaron Stillmaker, Bevan Baas
VCL Laboratory, UC Davis
Outline

• **Overview of standard cell-based design**

• Design of the AsAP1 and KiloCore chips including CAD Tool Flow
Standard cell vs. Full-custom IC design

- Standard-cell based IC design
 - Design using standard cells
 - Standard cells come from library provider
 - Many different choices for cell size, delay, leakage power
 - Many EDA tools to automate this flow
 - Shorter design time

- Custom IC design (e.g., magic)
 - Design all by yourself
 - Higher performance
 - Lower energy per workload (lower power)
 - Smaller chip area
Standard cell based VLSI design flow

“Front end”
- System specification and architecture
- HDL (verilog or VHDL) coding
 - Behavioral simulations using RTL (HDL)
- Synthesis
- Gate-level simulations

“Back end”
- Floorplanning, Power grid design
- Standard-cell Placement
- Interconnect routing
- DRC (Design Rule Check)
- LVS (Layout vs Schematic)
- Dynamic simulation and static timing analysis
Outline

• Overview of standard cell-based design

• *Design of the AsAP1 and KiloCore chips including CAD Tool Flow*
AsAP1 Block Diagram

- GALS array of identical processors
 - Each processor is a reduced complexity programmable DSP with small memories
 - Each processor can receive data from any two neighbors and send data to any of its four neighbors
KiloCore

- Developed by the VLSI Computation Laboratory at UC Davis, with a similar architecture to AsAP (Asynchronous Array of Processors)
- A processing chip containing multiple uniform simple processor elements
- Globally Asynchronous Locally Synchronous (GALS)
 - Each processor has its local clock generator
- Each processor can communicate with its neighbor processors using dual-clock FIFOs
KiloCore Design

- Contains 1,000 processors on one chip
- Fastest clock rate processor designed at a university
- 12 memories containing 64 KB each for 768 KB of shared memory

KiloCore Block Diagram

- Single Processor
- One 64 KB memory
Simple Diagram of the Front-End Design Flow

System Specification → RTL Coding → Synthesis → Gate level code

Example: \(c = \neg a \& b \) →

\begin{align*}
\text{INV} & (.in(a), .out(a_{\text{inv}})); \\
\text{AND} & (.in1 (a_{\text{inv}}), .in2 (b), .out(c));
\end{align*}
Simple diagram of the Back-end design flow

- Gate level Verilog from synthesis
- Place & Route
- Timing information
- Gate level Verilog
- Final layout (go for fabrication)
- Design rule check
- Layout vs. schematic
- DRC
- LVS
- Gate level dynamic and/or static analysis
Back-end design of AsAP1

- Technology: TSMC 0.18 μm CMOS
- Standard cell library: Artisan
- Tools
 - Synthesis: Synopsis Design compiler
 - Placement & Route: Cadence Encounter
 - DRC & LVS: Mentor Calibre
 - Static timing analysis: Primetime
Back-End Design of KiloCore

- Technology: IBM 32 nm PD-SOI CMOS
- Standard cell library: ARM-Artisan
- Tools
 - Synthesis: Synopsis Design compiler
 - Placement & Route: Cadence Encounter
 - DRC & LVS: Mentor Calibre
 - Static timing analysis: Primetime and UltraSim (Spice)
Flow of Placement and Routing

• Import needed files
• Floorplan
• Placement & in-place optimization
• Clock tree generation
• Routing
Import Needed Files

- Gate-level verilog (.v)
- Geometry information (.lef)
- Timing information (.lib)

INV (.in (a), .out (a_inv));
AND (.in1 (a_inv), .in2 (b), .out (c));

INV: 1um width AND: 2 um width

INV: 1ns delay; AND: 2 ns delay

Delay (a→c): 1ns + 2ns = 3ns
Floorplan

- Size of chip
- Location of Pins
- Location of main blocks
- Power supply: give enough power for each gate

Power supply (1.8 V)

- Gate 1
- Gate 2
- Gate 3
- Gate 4

Voltage drop equation: $V_2 = V_1 - I \times R$
Floorplan of a single processor
Floorplan of Single KiloCore Processor
Placement & In-Place Optimization

• Placement: place the gates (standard cells)
 – Utilizes a long series of very complex optimizations to meet all design goals as best as possible. Design goals include: maximum delay of all paths, minimize length of all wires (to increase probability of a successful route), etc.

• In-place optimization
 – Why: there will always be a timing difference between synthesis and layout (e.g., actual wire delay is different than predicted)
 – How: change gate size, insert buffers
 – May not change the circuit function!!
Placement of a single AsAP1 processor
Placement of Single KiloCore Processor
Placement of Single KiloCore Processor
Clock Tree Design

- Main parameters: skew, delay, transition time

Original Clock

Clock Delay = x

Clock Skew = x - y

Clock Delay = y
Clock tree of a single AsAP1 processor
Clock Tree of a Single KiloCore Processor

- Colors indicate clock phase which is the same as clock skew
Routing

• Routing is the second step in the “Standard Cell Place & Route” process and consists of the CAD P&R tool routing all necessary signal wires
 – Local power and ground connections to standard cells are made during an earlier power striping step and are made by a much simpler process of simply laying down horizontal power stripes

• Routing consists of two main steps
 – Connection of global signals (power)
 – Connect other signals
Layout of a Single AsAP1 Processor After Routing

Area:
0.8mm x 0.8mm
Layout of the first generation 6x6 AsAP1

Area: 30 mm2
in 180 nm CMOS
- 36 processors
- 114 PADs

One processor
Routing on a Single KiloCore Processor

- 239 μm x 231.3 μm
- 574,733 transistors
KiloCore Chip Layout

- KiloCore Chip
 - Entire chip takes up 8 mm x 8 mm or 64 mm2
 - LVDS pairs used for high speed data I/O
 - Drivers connected through C4 bump array

I/O Drivers
Single Processor
SRAM Memories
Verification after layout

- DRC (design rule check)
- LVS (layout vs. schematic)
 - GDS-II vs. (verilog + spice module)
- Gate level verilog dynamic simulation
 - Mainly check the function
 - Different with synthesis result
Useful tools

• Dynamic Simulation:
 – Modelsim (Mentor), NC-verilog (Cadence), Active-HDL

• Synthesis:
 – Design-compiler, design-analyzer (Synopsys)

• Placement & Routing
 – Encounter & Virtuoso (Cadence)
 – Astro (Synopsys)

• DRC & LVS
 – Calibre (Mentor)
 – Dracula (Cadence)

• Static Analysis
 – Primetime (Synopsys)
Chip Micrograph of the 36-Core AsAP1

Flow: Standard-cell based
Technology: TSMC 0.18 µm
Transistors:
- 1 Proc: 230,000
- Chip: 8.5 million
Max speed: 610 MHz @ 2.0 V
Area:
- 1 Proc: 0.66 mm²
- Chip: 32.1 mm²
Power (1 Proc @ 1.8V, 475 MHz):
- Typical application: 32 mW
- Typical 100% active: 84 mW
Power (1 Proc @ 0.9V, 116 MHz):
- Typical application: 2.4 mW

- ISSCC 2006
- HotChips 2006
- IEEE Micro 2007
- JSSC 2008
KiloCore Chip

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>32nm IBM PDSOI CMOS</td>
</tr>
<tr>
<td>Processors</td>
<td>1000 per chip</td>
</tr>
<tr>
<td></td>
<td>1.78 GHz @ 1.1 V</td>
</tr>
<tr>
<td></td>
<td>1.24 GHz, 18 mW</td>
</tr>
<tr>
<td></td>
<td>@ 0.90 V</td>
</tr>
<tr>
<td></td>
<td>115 MHz, 0.7 mW</td>
</tr>
<tr>
<td></td>
<td>@ 0.56 V</td>
</tr>
<tr>
<td>Indep. Memrs</td>
<td>12 per chip</td>
</tr>
<tr>
<td>Num. Oscs.</td>
<td>2012</td>
</tr>
<tr>
<td>Die Area</td>
<td>64 mm²</td>
</tr>
<tr>
<td>Array Area</td>
<td>60 mm²</td>
</tr>
<tr>
<td>Transistors</td>
<td>621 Million</td>
</tr>
<tr>
<td>C4 Bumps</td>
<td>564 (162 I/O)</td>
</tr>
<tr>
<td>Package</td>
<td>676 Pad Flip-Chip BGA</td>
</tr>
</tbody>
</table>

![KiloCore Chip Diagram](image)

8 mm x 7.82 mm x 7.67 mm

HotChips 2016
KiloCore Measurements

• A maximum of 1.78 trillion instructions per second
 – Assuming a custom package design

• Processors achieve their optimal energy times time of 11.1 (pJ x ns / instruction) at 0.9 V

• At minimum voltage, KiloCore can perform 115 billion instructions per second using 0.7 Watts—low enough to be powered by a single AA battery!

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>Max Clock Freq (MHz)</th>
<th>Total Chip Instructions / sec</th>
<th>Total Chip Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10 V</td>
<td>1782</td>
<td>1.78 Trillion</td>
<td>39 Watts</td>
</tr>
<tr>
<td>0.90 V</td>
<td>1237</td>
<td>1.24 Trillion</td>
<td>17 Watts</td>
</tr>
<tr>
<td>0.84 V</td>
<td>1000</td>
<td>1.00 Trillion</td>
<td>13 Watts</td>
</tr>
<tr>
<td>0.75 V</td>
<td>638</td>
<td>638 Billion</td>
<td>6.3 Watts</td>
</tr>
<tr>
<td>0.56 V</td>
<td>115</td>
<td>115 Billion</td>
<td>0.7 Watts</td>
</tr>
</tbody>
</table>