INTRODUCTION TO FULL-CUSTOM LAYOUT (Chapter 2)

AND THE MAGIC LAYOUT TOOL
3D Perspective

Polysilicon

Aluminum

Source: Digital Integrated Circuits, 2nd ©
CMOS Process

Source: Digital Integrated Circuits, 2nd ©
A Modern CMOS Process

Dual-Well Trench-Isolated CMOS Process

Source: Digital Integrated Circuits, 2nd ©
nwell and pwell

- The “bodies” of the transistors
ndiffusion and pdiffusion

- Source and Drain for each transistor
Polysilicon

- Gate of transistors and for short-distance wiring
- First level of interconnect
metal2

- Second layer of interconnect

Source: Omar Sattari
Building an Inverter: Starting with Well and Diffusion

- Place N-type and P-type diffusions
 - Convention is to place PMOS on top and NMOS on bottom
Transistors

- poly crossing diffusion produces a transistor!
- Common gate here
- PMOS shown on top
- NMOS shown on bottom

Source: Omar Sattari
• metal1 laid down but not yet connected
• Use metal for Vdd and Gnd
• Labels added
 – Extremely useful for testing
 – Documents design
 – Use “point” labels, not large area ones
 – Never use global labels that end in an “!”

Source: Omar Sattari
metal1 contacts

- Connections now made between metal1 and:
 - pdiff
 - ndiff
 - poly
 - nwell
 - pwell

- Each via/contact is a different layer in magic

Source: Omar Sattari
metal2

- Use metal2 for longer distance routing
- Routes over the “top” of other circuits shown
- metal2 contacts connect metal1 and metal2 only

Source: Omar Sattari