Layout Guidelines

1. Orientation of Vdd/Gnd lines in schematics

2. Orientation of transistors
 * Transistors "vertical"
 + Narrow pitch
 * Transistors "horizontal"
 - Limited room to stack transistors
 + Easier to make wide transistors

3. Stacking transistors

 Example:
 - Narrow pitch

 Much better to "shrink definition"!
 - Smaller area

B. Baas
4) Routing of Vdd/Gnd
 - (in metal) Poly probably never, drill only for short distances

* - metal 1
 + Very convenient
 + Most common

- metal 2
 + Signals can easily go under power/ground

- Use wider wires (6x7 for buse) + large (many) contacts

5) (see p. 31)

6) Cell placement

- Vdd/Gnd wires line up

7) Metal routing discipline

Suppose we want to route across this cell vertically

Key point: every wire blocks perpendicular wires from using that layer

B. Baa
Rows of diffusion in a cell

Two:
- preferable

Form:
- often has large empty spaces
- easier for more complex cells
- harder to use with sub-height cells
- generally avoid it if possible
a) Guideline: Try to use only m1 and m2 in small cells

b) Guideline: Use only one direction for each layer.

Ex: (bad)

c) Guideline: Alternate directions for each layer

Ex: min. m1 = m3, m5

Ex: m2 = m4, m6

2) Stack vias: to reduce area

In old days, this was not possible

Ex: m1 to m3

Now thanks to C4P, vias can be stacked

Remember m2 is blocked!

Most processes can stack arbitrariness high but in magic:

pam12 c
m123 c
pam12c (padiff, m1, m2)

m234 c
mdiff12c (ndiff, m1, m2)

m345 c
m456 c
9. Reduce area

a) Share, overlap (Ex: Vdd and Gnd)

 Ex: parallel wires
 Vdd vs. Gnd
 Vdd 3 x
 Gnd 6 x

 Ex: 2 inverters

b) Abut

b) Better:

 FA FA FA FA
 vs.
 FA FA FA FA

 Better:

 (c) Avoid wires that turn corners, if possible

 i) ii) ii)

 "pitch matching"
 pitch of A cells matched with
 pitch of B cells
d) Consider shape of overall structure
 Ex: 32-bit adder

 * For an arbitrary block, a square shape will give the shortest total wire length

e) Transistor folding (for large devices)

 Ex:

 - Large source & drain caps.
 - With very wide trans., will not fit inside the allotted cell height

 * Fold transistor

 - Source cap is larger (good)
 - Drain cap is reduced (good)
Reduce max. delay

\[t_p = 0.69 \times \frac{R_{\text{mos}}}{C_L} \]

- Reduce \(R_{\text{mos}} \)
 - In layout, means wider transistors
 - This increases load cap. for driving gate
 - Helps a lot for under-driven nets, diminishing returns eventually

- Reduce \(C_L \)

 - Shorter wires \(\rightarrow \) Smaller area \(\rightarrow \) Lower \(C_L \) \(\rightarrow \) Reduce fanout

 \(\rightarrow \) Smaller area ...

 * Use higher-level metals if possible
Reduce power

\[P = CV^2 f \]

* Reduce \(C \)

\(V \) and \(f \) generally set by other requirements

Other more complex techniques possible