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Processor Design Approaches

Full custom®** higher performance

lower energy (power)

Standard cell*

lower per-part cost

Gate array

FPGA

Programmable special-purpose

Programmable general-purpose
Reconfigurable/System-on-chip

lower design time

* Design domains of EEC 116 lower one-time cost



VLSI Design Technologies

e VLSI

— Originally meant “Very Large Scale Integration” meaning a large
number of transistors per chip

— Now generally means “semiconductor chip”
* Characterized by their minimum feature length (length of
transistor’s gate)
* Some typical state-of-the-art fabrication technologies in late 2019:
— 14 nm Mature production for logic chips

— 5nm “Industry-leading 5 nm CMOS technology features, for the first
time, full-fledged EUV, and high mobility channel finFETs, offering ~1.84x
logic density, 15% speed gain or 30% power reduction over 7 nm. This true
5 nm technology successfully passed qualification with high yield, and targets
for mass production in 1H 2020.” —IEDM, December 2019



Full Custom

e All transistors and

interconnect drawn by
hand

e Full control over sizing
and layout
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Full Custom

e Multiplier chip
— Multiplier
— I/O pads
— Clock generator

— Control logic
— Buffers
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Standard Cell

e Constant-height
cells

e Regular “pin”
locations

e Regular layout
allows CAD
tools to much
more easily
automatically
place and route
cells

© B. Baas [figure from S. Hauck] v



Standard Cell

e Channels for routing only in older technologies (not
necessary with modern processes with many levels of

interconnect)
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Standard Cell

Wireless LAN chip

Ten major standard cell
digital blocks. Plus one
analog block in the
upper right corner

Many embedded
memory arrays

Horizontal power grid
stripes

© B. Baas




Combination Standard Cell and
Full Custom

* Dense, regular full-
custom blocks

¢ Random logic
implemented with
standard cells and
automatic place and
route

[figure from S. Hauck]



Typical Standard Cell, Gate Array, or
FPGA Design Flow

HDL (Verilog) source code is synthesized to generate a gate
netlist made up of elements from the Standard Cell library

The same HDL design may be synthesized to various libraries;
for example:

— Standard cell (NAND, NOR, Flip-Flop, etc.)

— FPGA library (CLBs, LUTs, etc.)

Synthesizer

—_— CAD —_—
Tool {
T -

cell
libra
" ry
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Simplified diagram of Standard
Cell design flow after synthesis

Final Layout
§  (could be
fabricated)

© B. Baas



Layout synthesized from Verilog and a Standard
Cell library, and then "“Placed & Routed”

module multiplier (
input inl,
input in2,
output out
)i

out = inl * in2;
endmodule

Source: Digital Integrated Circuits, 2nd ©



Gate Array

e Polysilicon and

diffusion are the same p-type diffusion
for all designs

* Metal layers PMOS
customized for transistor

particular chips

polysilicon

n-type diffusion

NMOS
transistor

© B. Baas



Gate Array

e Polysilicon and diffusion the
same for all designs

¢ 0.125 um example

!
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Gate Array — Sea-of-gates

rows of Uncommited
q uncommitted I
~ cells Ce
nl In2 In3 Ind
routing
channel Committed
Cell

(4-input NOR)

Source: Digital Integrated Circuits, 2nd ©



Field Programmable
Gate Array (FPGA)

* Metal layers now
programmable with
SRAM instead of
hardwired during
manufacture as with a
gate array

* Cells contain general
programmable logic and
registers
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Field Programmable
Gate Array (FPGA)

¢ Chips now “designed” with software

e User pays for up-front chip design costs
— All: full-custom, standard cell

— Half: gate array
— Shared: FPGA

e User writes code (e.g., verilog), compiles it, and
downloads into the chip

* The flexibility comes at a great cost however; as a
very approximate comparison, FPGAs are over 10x
slower, less energy efficient, and greater area than
an equivalent Standard Cell design



Progrmmable Processor

e Intel 8086

e First released 1978
e 33 mm?
* 3.2 um
e 4-12 MHz

e 29,000 transistors

© B. Baas




4.80 GHz General-
Purpose Processor

e Intel i9 (formerly called Coffee Lake)
[19-8950HK]

* 14 nm CMOS

e 6 cores (12 threads)

e 2.90 GHz base frequency

e 4.60 GHz standard turbo frequency

e 480 GHz maximum turbo
frequency —possible only if the CPU
is below 53 °C

e 12 MB on-die cache

e 45 Watts TDP (Thermal Design
Power)

© B. Baas




Massive General-Purpose
Server Processor

e [tanium Poulson
e 32 nm
e 3.1 Billion Transistors

e 182 mm x29.9 mm = 544 mm?
e 8 multi-threaded cores

- R -
e 54 MB total on-die cache - | = . .,..=ﬂ=,..=.’

e 170 Watts TDP | -t L llll L[
e [ISSCC 2011]
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Programmable DSP Processor

o TIC64X

e 600 MHz, 0.13 um, 718
mW@ 1.2V

e 8-way VLIW core

¢ 2-level memory system
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e 64 million transistors
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Massive Special-
Purpose Processor

e Nvidia V100
e TSMC 12 nm FinFET

e 21.1 Billion Transistors

e 815 mm?

— Approximately 37.9 mm
x 21.5 mm

— At the reticle limit
e 1.45GHz
¢ 80 streaming multiprocessors
e 300 Watts TDP

* Memory interface to HBM2
1.75 GHz, 4096-bit bus, 900 GB/s

e [HotChips 2017]
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Graphcore

CaLOSSuUS GC2

The world's most complex processor chip with 23.6 billion transistors

10x IPU-LINKS™

320GB/s chip-to-chip bandwidth 1,216 independent IPU-CORES™

each with IN-PROCESSOR-MEMORY™ tile
> 100GFLOPS per IPU-CORE™
> 7,000 programs executing in parallel
300MB IN-PROCESSOR-MEMORY™ I

45TB/s memory bandwidth per chip

the whole model held inside the processor

. 8TB/s all to all IPU-EXCHANGE™

non-blocking, any communication pattern

PCle Gen4 x16 “~_
64GB/s bi-directional host
communication bandwidth




Heterogeneous Programmable Platforms
FPGA Fabric

Embedded memories

Hardwired multipliers

Xilinx Vertex-Il Pro

High-speed I/O

EEC 116, B. Baas 35
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Design at a crossroad

System-on-a-Chip

Multi-
Spectral
Imager

64 SIMD Processor
Array + SRAM

Image Conditioning
100 GOPS

EEC 116, B. Baas

Often used in embedded
applications where cost,
performance, and energy are
big issues!

DSP and control
Mixed-mode

Combines programmable and
application-specific modules

Software plays crucial role
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A System-on-a-Chip Example
High Definition TV Chip
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The World’s Largest Chip
Cerebras Wafer-Scale Engine

46,225 mm? chip
— 8.5” x8.)5”
—  Built from a 12” wafer

— 56x larger than the biggest
GPU ever made: 815 mm? and
21.1 billion transistors

1.2 Trillion transistors
15 KWatts!
400,000 cores

Fabbed by TSMC, 98%-99% of
wafer area is usable

18 GB on-chip SRAM
100 Pb/s interconnect (100,000
Tb/s = 12,500 TB/sec)

Approximately $200M startup ‘
capital as of Aug 2019 |

EEC 116, B. Baas

215 mm

https://www.cerebras.net/
https://www.zdnet.com/article/cerebras-has-as-a-three-year-lead-on-competition-with-its-giant-chip/



