Magic Tcl Tutorial #4: Simulation with IRSIM

R. Timothy Edwards

Space Department
Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20723

This tutorial corresponds to Tcl-based Magic version 7.2

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Magic Tutorial #4: Cell Hierarchies

Magic Tutorial #8: Circuit Extraction

Magic Tutorial #11: Using IRSIM and RSIM with Magic

Commands introduced in this tutorial:

irsim , getnode, goto

graphnode, watchnode, unwatchnode
movenode, watchtime, unwatchtime, movetime
(plus the standard IRSM command set)

Macros introduced in this tutorial:
(None)

1 IRSIM Version 9.6

In version 9.6, IRSIM has been redesigned to work under thént@rpreter, in the same manner
as Magic version 7.2 does. Like Magic version 7.2, sectiohadfas an interpreter is specified at
compile-time, along with various use options. Theadke” method has been rewritten to match
the one which Magic uses, so IRSIM can be compiled and iestatl a similar manner:

make confi g
make tcl
make install-tcl

—1-

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

Tcl-based IRSIM, like its non-interpreter version, can be as a standalone product, and will
simulate a circuit from a si mformat file. However, it is specifically designed to be opedat
in conjunction with magic, with methods for providing feedt directly into the layout from the
simulation, and vice versa. There are a numbetrogs-application commands, detailed below,
which belong to neither Magic or IRSIM, but are applicableentboth are running in the Tcl
interpreter at the same time.

The cross-application commands highlight the usefulnédheomethod of compiling each
application as a loadable Tcl object module.

In addition to cross-application commands, Tcl-based NR&lows the use of interpreter vari-
ables, conditionals, and control structures to set up léetsimulation environments. A random
number generator has been added to the Tcl-based verslowjra) generation of random bit
vectors for statistically-based coverage of input pattgraces.

2 Invoking IRSIM from Magic

Within the Tcl/Tk environment, IRSIM is easier than ever twake. For tutorial purposes, we
will use the same cell used for the original Tutorial #11. iWalthe original version, Magic 7.2
requires no preparation for simulation and can operatectiyreff of the tutorial directory input.
Start magic with the command-line

#magic -w -d OGL tutlla

Note that the OpenGL interface and Wrapper environmentipé@bove are optional, and do
not affect the descriptions in this tutorial.

It is not necessary to extract! The scripts which invoke RR&ire capable of looking for a
netlist file to simulate for the currently-loaded cell. Basa these exist for the tutorial cells, they
will be used. IRSIM is therefore simply invoked by:

% irsim

You will see a slew of output that looks like the following:

Warning: irsimcommuand 'tine’ use fully-qualified name ’"::irsim:tine
Warning: irsimcommand 'start’ use fully-qualified nane "::irsim:sta
Warning: irsimcommuand ' help’ use fully-qualified name "::irsim:help
Warning: irsimcommnd 'path’ use fully-qualified name ’"::irsim:path
Warning: irsimconmmand 'clear’ use fully-qualified nanme "::irsim:cle;
Warning: irsimconmmand 'alias’ use fully-qualified nane ’"::irsim:ali;
Warning: irsimcomand 'set’ use fully-qualified name ’::irsim:set’

Warning: irsimconmmand 'exit’ use fully-qualified name *::irsim:exit’

Starting irsimunder Tcl interpreter

| RSIM 9.6 conpiled on Thu Mar 20 17:19: 00 EST 2003

Warni ng: Aliasing nodes 'GND and ' Ghd’

lusr/local/lib/magic/tutorial/tutlla.sim Ignoring |unped-resistance
('R construct)

2

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

Read /usr/local/lib/mgic/tutorial/tutlla.simlanbda:1.00u format:

68 nodes; transistors: n-channel =56 p-channel =52
paral | el txtors:none
%

These comments require some explanation. The warning gessd have to do with the fact
that certain command names are used both by IRSIM and Magly, lRSIM and Tcl or one of
its loaded packages (such as Tk). There are several waysrtoamaund the unfortunate conse-
guences of multiply defining command names, but the easidstmake use of the Tcl concept
of namespaces. A complete description of Tcl namespaces is beyond theesobphis tutorial;
however, a simple description suffices. By prefixing a “s¢dpghe command, the command can
only be executed when the complete name (scope plus theedoaldn *::" plus the command
name) is entered.

In general, the EDA tools make an attempt to allow commande tentered without the scope
prefix at the command line. As long as command names are yritgsés done without comment.
However, when commands overlap, the easiest solution isgoire the scope prefix. Therefore,
the commandset would refer to the Tclsetcommand (i.e., to set a variable), whilesim::set’
would refer to the IRSIM command. Some attempt is made tologdrcommands which conflict
but which have unique syntax, so that it is possible to ddaterwhich use is intended when the
command is dispatched by the interpreter.

In addition to the warnings, there are a few standard wasaigput global name aliases and
lumped resistance, and some information about themfile which was read.

3 IRSIM Command Set

In addition to the exceptions noted above for fully-quadifremespace commands, there are sev-
eral IRSIM commands which are not compatible with Tcl syntnd these have been renamed.
The old and new commands are as follows (see the IRSIM dodati@mfor the full set of com-
mands):

¢ savestate save network state

i restorestate restore network state

ii restoreall restore network and input state

? querysource get info regarding source/drain connections

I querygate get info regarding gate connections
source(Tcl command) source a command file

Note that the command is simply superceded by the $olrce command, which is more
general in that it allows a mixture of Tcl and IRSIM commandad commands for any other
loaded package, such as Magic) to be combined in the command fi

Once loaded into Tcl alongside Magic via theim command, the IRSIM commands are
typed directly into the Magic command line, and will exectite appropriate IRSIM function. By
repeating the contents of Tutorial #11 in the Tcl environtméms method should become clear, as
will the benefits of using the interpreter environment fanaglation.

To setup the simulation, the equivalent instruction to tfaftutorial #11 is the following:

—3—

MT

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

% source ${CAD.HOVE}/ | i b/ magi c/tutorial/tutlla.cnd

Note that because tlurcecommand is a Tcl command, not a Magic or IRSIM command, it
it necessary to specify the complete path to the file, as Tes adwt understand the search path for
Magic cells, which includes the tutorial directory.

As most common commands are not among the set that causectownfiih Magic and Tcl
commands, the tutorial command file loads and executes wiitmmment.

Following the example of Tutorial #11, type(IRSIM clock command) on the magic com-
mand line to clock the circuit. Values for the watched noaesich were declared in the tutorial
command file, are displayed in the console window. Likewise,

h RESETB hol d
will set the nodefRESET B andhol d to value 1.

4 Feedback to Magic

The cross-application commands reveal the usefulnessviridh@oth applications as extensions
of the same Tcl interpreter.

While Magic and IRSIM are active and fiteut 11a is loaded, execute the following com-
mands from the command line:

stepsize 100
wat chnode RESETB
wat chnode hol d

Note that the nodes and values are immediately printed imihgic window, making use of the
magic “element command. These values are persisent in the sense that thegmain through
various transformations, openings, and closings of thedayindow, but they are temporary in the
sense that they will not be saved along with the layout if tleeigi written (however, this behavior
can be modified).

Thewatchnodecommand requires no special action for placing the labehelgs in the lay-
out because magic uses the labels or other node informatipmpoint a position in the layout
belonging to that node, and places the label element thers.pbssible to usavatchnode with
vectors. However, as no location can be pinpointed for aorettte magic cursor box position will
be used to place the label element.

Move the magic cursor box to a empty space in the layout windod type

wat chnode bits
Now move the cursor box to another empty space and type
wat chti nme

Now all of the simulation values of interest are displaye@clly on the Magic layout.

The display of any node can be removed with the commamdat chnode with the same
syntax aswat chnode, and similarly, the display of simulation time can be rentwvath the
commandunwat cht i me

—4—

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

If the position of a label is not in a good position to read, e telative position of two labels
places them on top of one another, making them difficult ta réfae labels can be moved using
the movenodecommand. For instance, the noOBESET _B is not exactly on the polysilicon pad.
To center it exactly on the pad, select the square pad, sththdiox cursor is on it, then do

movenode RESETB

The label will be moved so that it is centered on the centehefdursor box. The equivalent
method can be applied to the time value usingrth& et i me command.

It is not necessary to know the name of a node in order to quedisplay its simulation value.
For instance, unexpand the layouttaft 11a. nmag, select an unlabeled node, and use a mixture
of IRSIM and magic commands to watch its value:

box 93 -104 94 -102
sel ect area
wat chnode [get node]

In this example, both the nodéi(t -1/t ut 11d_0/ a_39_n23#) and its value are displayed.
Likewise, thegetnodecommand can be combined with other IRSIM commands to setgksl
and vectors from unlabeled nodes. This can be particuladful in situations where it may not
be obvious which nodes in a design need to be examined priantong the simulation.

5 Analyzer Display

Tcl-based IRSIM has a graphical node display which is ddrivem functions available in the
“BLT " graphics package. These functions are not particularlj-sweted for display of logic val-
ues, and so this will probably be replaced in the future witiase appropriate interface. However,
it accomplishes most of the functions of the former X11-lleaealyzer display.

In the Tcl-based IRSIM, no special command is needed talizé the analyzer display. One
command sets up signals to be displayed in the analyzer wintlois is:

gr aphnodename [row] [offset]

For display of multiple signals in the window, the optionaej@mentsow andoffset are provided.
Each signal which declares a neaw (default zero) will appear in a separate graph in the display
Signals which appear in the same graph, however, may deglamn-zerooffset which will set
them at a different vertical placement on the graph, for sas&vhich this provides better viewing
than having the signals directly overlapping.

The analyzer display updates at the end of each simulaticle.cl.ogic values are displayed
as 0 or 1, with undefined (value ’'X’) values displayed as 1/2teNthat the BLT-based inter-
face prohibits the display of multi-bit values, and only eednot vectors, can be passed to the
gr aphnodecommand.

—5—

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

6 Wildcards

The original IRSIM used “wildcard” characters in the form sthndard UNIX “regular expres-
sions” to perform operations on multiple nodes with one cand Unfortunately, there was a
syntactical collision between IRSIM and Magic over the usbrackets ([" and ‘] ’). Brackets
represent groupings in regular expression syntax. Howslagic uses brackets to represent arrays
of subcells. Because Tcl itself implements regular expoassin the form of the Tcl ¥ egexp”
command, there is a way around this problem in the Tcl versiofiRSIM. IRSIM’s parsing of
regular expressions has been disabled. In place of it, 3td thay be passed as arguments to any
command which previously would accept wildcard charactémsaddition, Tcl-IRSIM defines a
command

| i st nodes

which returns a Tcl list of all the nodes defined in the neifiput file. This list can be searched by
Tcl regular expression commands, and the resulting stbgessed as node arguments to IRSIM
commands. For example, the following script sets all noddhke circuit (except fodd, which

is fixed) to zero, then releases them:

set nl [listnodes]
[$nl

S

X $nl

Brackets in individual node names are treated as-is by IR@KVare other Magic-generated
characters such as the slash, underscore, and hash maek.hdatever, that because Tcl itself de-
fines brackets as representing command groupings whichnratummediate result, the following
is illegal:

%! multcell 50[1,0]/al3.n21#
invalid conmand nane "1, 0"

Instead, node names containing brackets should be sueduoyl braces " and ‘}’), which
effectively turns a node name into a list of node names wheghpkns to contain exactly one
entry:

%! {multcell 50[1,0]/al3n2l#}

The Tcl versions of Magic and IRSIM are set up in such a way Wtan they return results
containing node names, these names are automaticallgdraatiists. Therefore, the command

%sel ect area [goto {multcell50[1,0]/al3.n21#}]
%Il [getnode]

does not produce any error when the arrayed node name isdptstiee IRSIM ‘1 ” command,
and sets the value of the node to zero as expected. It is ordynwbde names are entered in a
script or from the command line that precautions must bet#kést-enclose names which contain
brackets.

—6—

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

7 Scripting IRSIM Command Sequences

A consequence of placing IRSIM in an interpreter environtrisrthe ability to use interpreter
features such as variables, conditionals, and loops tgesebmplicated simulation environments.

8 Deterministic Bit Vector Generation

A convenience function has been added to Tcl-IRSIM to aickimegating deterministic sequences
of inputs. This is the command

bconvert value bits[dir]

wherevalue is an integer decimal valuéjtsis the length of the bit vector to hold the conversion,
anddir is an optional direction flag. Mir is 1, then the bit vector is defined with the most signif-
icant bit (MSB) on the right. Théconvert command returns the string value of the bit vector
containing0 andl1 characters. For example:

% bconvert 20 5
10100

%bconvert 20 5 1
00101

9 Random Bit Vector Generation

The tutorial examples are small by design, but real systemsh(as a microprocessor) are often
so complex that generating and simulating an exhaustivefssl possible states of the circuit is
impossible, and instead simulations rely on the generaifanset of randomly-generated inputs
to test a representative set of states.

Random number generation is not a built-in feature of thdaruage, but several open-source
packages exist, one of which has been incorporated intdR8&M 9.6 source. The pseudorandom
number generator is compiled as a separate Tcl packages loaided by the IRSIM startup script.
It contains one commandandom with the following arguments:

r andomoption
whereoption may be one of:
- r eset will cause the generator to be reseeded using current pidament time.
- seed nwill reseed the generator with the integer vatue

- i nt eger ... will cause the number returned to be rounded down to the $aigeeger less
than or equal to the number which would otherwise be returned

- nor mal mswill cause the number returned to be taken from a gaussidnmaanm and
standard deviatios.

—7—

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

- exponent i al mwill cause the number returned to be taken from an exporiefsiti-
bution with meam.

- uni f or mow high will cause the number returned to be taken from uniform distron
on[ab).

- chi 2nwill cause the number returned to be taken from the chi2ibigion withn degrees
of freedom.

-sel ect nlist will causen elements to be selected at random from theligtwith re-
placement.

-choose n list will causen elements to be selected at random from theligtwithout
replacement.

- per nut at i onnwill return a permutation o ... » — 1 if nis a number and will return
a permutation of its elementsirifis a list.

The following script clocks a random serial bit vector intsi@te machine, assuming that
bi t _i nis the node to set, and that the proper clock vectors havadlrieeen set up:

for {seti O} {$i 100} {incri} {
if {[random] 0.5 {

| bit_in
} else{

h bit.in
h
c

