
Magic Tcl Tutorial #4: Simulation with IRSIM

R. Timothy Edwards

Space Department
Johns Hopkins University

Applied Physics Laboratory
Laurel, MD 20723

This tutorial corresponds to Tcl-based Magic version 7.2

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies
Magic Tutorial #8: Circuit Extraction
Magic Tutorial #11: Using IRSIM and RSIM with Magic

Commands introduced in this tutorial:

irsim , getnode, goto
graphnode, watchnode, unwatchnode
movenode, watchtime, unwatchtime, movetime
(plus the standard IRSIM command set)

Macros introduced in this tutorial:

(None)

1 IRSIM Version 9.6

In version 9.6, IRSIM has been redesigned to work under the Tcl interpreter, in the same manner
as Magic version 7.2 does. Like Magic version 7.2, section ofTcl as an interpreter is specified at
compile-time, along with various use options. The “make” method has been rewritten to match
the one which Magic uses, so IRSIM can be compiled and installed in a similar manner:

make config
make tcl
make install-tcl

–1–

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

Tcl-based IRSIM, like its non-interpreter version, can be run as a standalone product, and will
simulate a circuit from a.sim format file. However, it is specifically designed to be operated
in conjunction with magic, with methods for providing feedback directly into the layout from the
simulation, and vice versa. There are a number ofcross-application commands, detailed below,
which belong to neither Magic or IRSIM, but are applicable when both are running in the Tcl
interpreter at the same time.

The cross-application commands highlight the usefulness of the method of compiling each
application as a loadable Tcl object module.

In addition to cross-application commands, Tcl-based IRSIM allows the use of interpreter vari-
ables, conditionals, and control structures to set up detailed simulation environments. A random
number generator has been added to the Tcl-based version, allowing generation of random bit
vectors for statistically-based coverage of input patternspaces.

2 Invoking IRSIM from Magic

Within the Tcl/Tk environment, IRSIM is easier than ever to invoke. For tutorial purposes, we
will use the same cell used for the original Tutorial #11. Unlike the original version, Magic 7.2
requires no preparation for simulation and can operate directly off of the tutorial directory input.
Start magic with the command-line

magic -w -d OGL tut11a

Note that the OpenGL interface and Wrapper environment specified above are optional, and do
not affect the descriptions in this tutorial.

It is not necessary to extract! The scripts which invoke IRSIM are capable of looking for a
netlist file to simulate for the currently-loaded cell. Because these exist for the tutorial cells, they
will be used. IRSIM is therefore simply invoked by:

% irsim

You will see a slew of output that looks like the following:

Warning: irsim command ’time’ use fully-qualified name ’::irsim::time’
Warning: irsim command ’start’ use fully-qualified name ’::irsim::start’
Warning: irsim command ’help’ use fully-qualified name ’::irsim::help’
Warning: irsim command ’path’ use fully-qualified name ’::irsim::path’
Warning: irsim command ’clear’ use fully-qualified name ’::irsim::clear’
Warning: irsim command ’alias’ use fully-qualified name ’::irsim::alias’
Warning: irsim command ’set’ use fully-qualified name ’::irsim::set’
Warning: irsim command ’exit’ use fully-qualified name ’::irsim::exit’
Starting irsim under Tcl interpreter
IRSIM 9.6 compiled on Thu Mar 20 17:19:00 EST 2003
Warning: Aliasing nodes ’GND’ and ’Gnd’
/usr/local/lib/magic/tutorial/tut11a.sim: Ignoring lumped-resistance

(’R’ construct)

–2–

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

Read /usr/local/lib/magic/tutorial/tut11a.sim lambda:1.00u format:MIT
68 nodes; transistors: n-channel=56 p-channel=52
parallel txtors:none
%

These comments require some explanation. The warning messages all have to do with the fact
that certain command names are used both by IRSIM and Magic, or by IRSIM and Tcl or one of
its loaded packages (such as Tk). There are several ways to work around the unfortunate conse-
quences of multiply defining command names, but the easiest is to make use of the Tcl concept
of namespaces. A complete description of Tcl namespaces is beyond the scope of this tutorial;
however, a simple description suffices. By prefixing a “scope” to the command, the command can
only be executed when the complete name (scope plus the double colon ‘::’ plus the command
name) is entered.

In general, the EDA tools make an attempt to allow commands tobe entered without the scope
prefix at the command line. As long as command names are unique, this is done without comment.
However, when commands overlap, the easiest solution is to require the scope prefix. Therefore,
the command ‘set’ would refer to the Tclsetcommand (i.e., to set a variable), while ‘irsim::set’
would refer to the IRSIM command. Some attempt is made to overload commands which conflict
but which have unique syntax, so that it is possible to determine which use is intended when the
command is dispatched by the interpreter.

In addition to the warnings, there are a few standard warnings about global name aliases and
lumped resistance, and some information about the.sim file which was read.

3 IRSIM Command Set

In addition to the exceptions noted above for fully-qualified namespace commands, there are sev-
eral IRSIM commands which are not compatible with Tcl syntax, and these have been renamed.
The old and new commands are as follows (see the IRSIM documentation for the full set of com-
mands):

¿ savestate save network state
¡ restorestate restore network state
¡¡ restoreall restore network and input state
? querysource get info regarding source/drain connections
! querygate get info regarding gate connections

source(Tcl command) source a command file

Note that the ‘’ command is simply superceded by the Tcl ‘source’ command, which is more
general in that it allows a mixture of Tcl and IRSIM commands (and commands for any other
loaded package, such as Magic) to be combined in the command file.

Once loaded into Tcl alongside Magic via theirsim command, the IRSIM commands are
typed directly into the Magic command line, and will executethe appropriate IRSIM function. By
repeating the contents of Tutorial #11 in the Tcl environment, this method should become clear, as
will the benefits of using the interpreter environment for simulation.

To setup the simulation, the equivalent instruction to thatof Tutorial #11 is the following:

–3–

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

% source ${CAD HOME}/lib/magic/tutorial/tut11a.cmd

Note that because thesourcecommand is a Tcl command, not a Magic or IRSIM command, it
it necessary to specify the complete path to the file, as Tcl does not understand the search path for
Magic cells, which includes the tutorial directory.

As most common commands are not among the set that cause conflicts with Magic and Tcl
commands, the tutorial command file loads and executes without comment.

Following the example of Tutorial #11, typec (IRSIM clock command) on the magic com-
mand line to clock the circuit. Values for the watched nodes,which were declared in the tutorial
command file, are displayed in the console window. Likewise,

h RESET B hold

will set the nodesRESET B andhold to value 1.

4 Feedback to Magic

The cross-application commands reveal the usefulness of having both applications as extensions
of the same Tcl interpreter.

While Magic and IRSIM are active and filetut11a is loaded, execute the following com-
mands from the command line:

stepsize 100
watchnode RESETB
watchnode hold

Note that the nodes and values are immediately printed in themagic window, making use of the
magic “element” command. These values are persisent in the sense that they will remain through
various transformations, openings, and closings of the layout window, but they are temporary in the
sense that they will not be saved along with the layout if the file is written (however, this behavior
can be modified).

Thewatchnodecommand requires no special action for placing the label elements in the lay-
out because magic uses the labels or other node information to pinpoint a position in the layout
belonging to that node, and places the label element there. It is possible to usewatchnodewith
vectors. However, as no location can be pinpointed for a vector, the magic cursor box position will
be used to place the label element.

Move the magic cursor box to a empty space in the layout window, and type

watchnode bits

Now move the cursor box to another empty space and type

watchtime

Now all of the simulation values of interest are displayed directly on the Magic layout.
The display of any node can be removed with the commandunwatchnode, with the same

syntax aswatchnode, and similarly, the display of simulation time can be removed with the
commandunwatchtime.

–4–

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

If the position of a label is not in a good position to read, or the relative position of two labels
places them on top of one another, making them difficult to read, the labels can be moved using
themovenodecommand. For instance, the nodeRESET B is not exactly on the polysilicon pad.
To center it exactly on the pad, select the square pad, so thatthe box cursor is on it, then do

movenode RESETB

The label will be moved so that it is centered on the center of the cursor box. The equivalent
method can be applied to the time value using themovetimecommand.

It is not necessary to know the name of a node in order to query or display its simulation value.
For instance, unexpand the layout oftut11a.mag, select an unlabeled node, and use a mixture
of IRSIM and magic commands to watch its value:

box 93 -104 94 -102
select area
watchnode [getnode]

In this example, both the node (bit 1/tut11d 0/a 39 n23#) and its value are displayed.
Likewise, thegetnodecommand can be combined with other IRSIM commands to setup clocks
and vectors from unlabeled nodes. This can be particularly useful in situations where it may not
be obvious which nodes in a design need to be examined prior torunning the simulation.

5 Analyzer Display

Tcl-based IRSIM has a graphical node display which is derived from functions available in the
“BLT ” graphics package. These functions are not particularly well-suited for display of logic val-
ues, and so this will probably be replaced in the future with amore appropriate interface. However,
it accomplishes most of the functions of the former X11-based analyzer display.

In the Tcl-based IRSIM, no special command is needed to initialize the analyzer display. One
command sets up signals to be displayed in the analyzer window. This is:

graphnodename [row] [offset]

For display of multiple signals in the window, the optional argumentsrow andoffset are provided.
Each signal which declares a newrow (default zero) will appear in a separate graph in the display.
Signals which appear in the same graph, however, may declarea non-zerooffset which will set
them at a different vertical placement on the graph, for cases in which this provides better viewing
than having the signals directly overlapping.

The analyzer display updates at the end of each simulation cycle. Logic values are displayed
as 0 or 1, with undefined (value ’X’) values displayed as 1/2. Note that the BLT-based inter-
face prohibits the display of multi-bit values, and only nodes, not vectors, can be passed to the
graphnodecommand.

–5–

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

6 Wildcards

The original IRSIM used “wildcard” characters in the form ofstandard UNIX “regular expres-
sions” to perform operations on multiple nodes with one command. Unfortunately, there was a
syntactical collision between IRSIM and Magic over the use of brackets (‘[’ and ‘]’). Brackets
represent groupings in regular expression syntax. However, Magic uses brackets to represent arrays
of subcells. Because Tcl itself implements regular expressions in the form of the Tcl “regexp”
command, there is a way around this problem in the Tcl versionof IRSIM. IRSIM’s parsing of
regular expressions has been disabled. In place of it, Tcl lists may be passed as arguments to any
command which previously would accept wildcard characters. In addition, Tcl-IRSIM defines a
command

listnodes

which returns a Tcl list of all the nodes defined in the netlistinput file. This list can be searched by
Tcl regular expression commands, and the resulting sub-lists passed as node arguments to IRSIM
commands. For example, the following script sets all nodes in the circuit (except forVdd, which
is fixed) to zero, then releases them:

set nl [listnodes]
l $nl
s
x $nl

Brackets in individual node names are treated as-is by IRSIM, as are other Magic-generated
characters such as the slash, underscore, and hash mark. Note, however, that because Tcl itself de-
fines brackets as representing command groupings which return an immediate result, the following
is illegal:

% l multcell50[1,0]/a 13 n21#
invalid command name "1,0"

Instead, node names containing brackets should be surrounded by braces (‘{’ and ‘}’), which
effectively turns a node name into a list of node names which happens to contain exactly one
entry:

% l {multcell50[1,0]/a 13 n21#}

The Tcl versions of Magic and IRSIM are set up in such a way thatwhen they return results
containing node names, these names are automatically treated as lists. Therefore, the command

% select area [goto {multcell50[1,0]/a 13 n21#}]
% l [getnode]

does not produce any error when the arrayed node name is passed to the IRSIM “l” command,
and sets the value of the node to zero as expected. It is only when node names are entered in a
script or from the command line that precautions must be taken to list-enclose names which contain
brackets.

–6–

Magic Tcl Tutorial #4: Simulation with IRSIM April 14, 2006

7 Scripting IRSIM Command Sequences

A consequence of placing IRSIM in an interpreter environment is the ability to use interpreter
features such as variables, conditionals, and loops to set up complicated simulation environments.

8 Deterministic Bit Vector Generation

A convenience function has been added to Tcl-IRSIM to aid in generating deterministic sequences
of inputs. This is the command

bconvertvalue bits [dir]

wherevalue is an integer decimal value,bits is the length of the bit vector to hold the conversion,
anddir is an optional direction flag. Ifdir is 1, then the bit vector is defined with the most signif-
icant bit (MSB) on the right. Thebconvertcommand returns the string value of the bit vector
containing0 and1 characters. For example:

% bconvert 20 5
10100
% bconvert 20 5 1
00101

9 Random Bit Vector Generation

The tutorial examples are small by design, but real systems (such as a microprocessor) are often
so complex that generating and simulating an exhaustive setof all possible states of the circuit is
impossible, and instead simulations rely on the generationof a set of randomly-generated inputs
to test a representative set of states.

Random number generation is not a built-in feature of the Tcllanguage, but several open-source
packages exist, one of which has been incorporated into the IRSIM 9.6 source. The pseudorandom
number generator is compiled as a separate Tcl package, but is loaded by the IRSIM startup script.
It contains one command,random, with the following arguments:

randomoption

whereoption may be one of:

-resetwill cause the generator to be reseeded using current pid andcurrent time.

-seed n will reseed the generator with the integer valuen.

-integer... will cause the number returned to be rounded down to the largest integer less
than or equal to the number which would otherwise be returned.

-normalm s will cause the number returned to be taken from a gaussian with meanm and
standard deviations.

–7–

April 14, 2006 Magic Tcl Tutorial #4: Simulation with IRSIM

-exponentialm will cause the number returned to be taken from an exponential distri-
bution with meanm.

-uniform low high will cause the number returned to be taken from uniform distribution
on [a,b).

-chi2n will cause the number returned to be taken from the chi2 distribution withn degrees
of freedom.

-select n list will causen elements to be selected at random from the listlist with re-
placement.

-choose n list will causen elements to be selected at random from the listlist without
replacement.

-permutationn will return a permutation of0 . . . n − 1 if n is a number and will return
a permutation of its elements ifn is a list.

The following script clocks a random serial bit vector into astate machine, assuming that
bit in is the node to set, and that the proper clock vectors have already been set up:

for {set i 0} {$i ¡ 100} {incr i} {
if {[random] ¡ 0.5} {

l bit in
} else{

h bit in
}
c

}

–8–

