Rate-Distortion Optimized Streaming
of Packetized Media

Philip A. Chou and Zhourong Miao

pachou@microsoft.com
February 2001

Technical Report
MSR-TR-2001-35

This paper addresses the problem of streaming packetized media
over a lossy packet network, in a rate-distortion optimized way. Out
of all the packets that could be transmitted at a given transmission
opportunity, we show which packets, if any, to transmit in order to
meet a rate constraint while minimizing the end-to-end distortion.
Furthermore, if the network supports multiple qualities of service,
we show which quality of service to use for each transmitted packet
to meet a cost constraint while minimizing the end-to-end distor-
tion. Experimental results show that our system has steady-state
gains of 3—7 dB or more over systems that do not have per-packet
rate-distortion optimization.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

This paper addresses the problem of streaming packetized media over a lossy
packet network, in a rate-distortion optimized way. In a streaming media sys-
tem, a server pre-stores encoded media data and transmits it on demand to a
client for playback in real time. The client buffers the data that it receives and
begins playback after a short delay of up to several seconds. This delay is fixed
and does not depend on the length of the presentation. Once the client begins
playback, it is able to continue without interruption until the end of the presen-
tation. It is this continuous playback with fixed delay that distinguishes stream-
ing from download-and-play schemes. Furthermore streaming is distinguished
from telephony and conferencing by its ability to store media data encoded off-
line, and by its tolerance to a longer playback delay. Streaming, telephony, and
conferencing all transmit in real-time; however, for streaming the media data
must be encoded without the benefit of knowing the state of the channel during
transmission. For this reason, in a streaming media system, the encoding must
be flexible and the server must adaptively select and transmit the correct data
to the client, as a function of the state of the network as observed by the client
or server. In this paper, we show, for arbitrary encodings and packetizations
of multiple media, which packets to select for transmission, when to transmit
them, and how to transmit them (e.g., with high or low quality of service), such
that the rate-distortion performance of the system is optimized. We measure
rate as the total cost of bytes transmitted, which is often proportional to the
number of bytes transmitted, and we measure distortion as the total end-to-end
distortion of the presentation in arbitrary but incrementally additive units.

We set up a general framework for rate-distortion optimized streaming of
packetized media, and within it we consider several scenarios. Throughout, we
assume that the network loses or corrupts packets at random, and delivers those
packets that is does not lose after a random delay. However, the network may
or may not have multiple qualities of service (e.g., with different probabilities
of loss, corruption, and delay) available at different costs per transmitted byte.
Also, the network may or may not allow variations in transmission rate. Finally,
the network may or may not provide a back channel, which can be used either
for feedback (e.g., acknowledgements) from the receiver in a sender-driven mode,
or for control of the sender (e.g., requests for transmission) in a receiver-driven
mode. Thus our framework handles a variety of scenarios of current interest:
sender-driven or receiver-driven streaming, streaming over best-effort networks
such as today’s Internet, streaming over multiple overlay networks, streaming
over networks with integrated or differentiated services, streaming over com-
bined wireline/wireless networks, and streaming over a network with multiple
access to different servers. The same framework has also been shown to handle
error control for the case of receiver-driven layered multicast [1, 2, 3, 4].

We present the major ideas in our paper as follows. In Section 2, we show
that many encodings and packetizations of multiple media can be abstracted
as a single directed acyclic dependency graph, in which each node represents a
packetized data unit, and each packet is labeled by a timestamp, a size, and an

importance.

In Section 3, we show that any of the aforementioned transmission scenarios
can be abstracted as a set of choices for sending single packets, in which each
choice 7 is associated with a cost per byte p(m) of transmitting the packet and
an error probability (7)) of not delivering the packet by its deadline. This leads
to the concept of an error-cost function e(p) = min, {e(w) : p(mw) < p}, for
which optimal performance (for a single packet) can be achieved by selecting
the transmission option 7 minimizing the Lagrangian e(w) + X' p(n) for some
Lagrange multiplier A’. For scenarios involving a back channel, we identify
the transmission options as policies in a Markov decision process and associate
Lagrangians with each policy. We show how to use dynamic programming to
find a policy with the mimimal Lagrangian.

In Section 4 we show how to relate the error-cost functions for the packets to
the distortion-rate function for the entire multimedia presentation. An optimal
distortion-rate performance D(R) for the entire presentation can be achieved
by minimizing D + AR for some Lagrange multiplier A\. In turn, D + AR can be
minimized by individually minimizing the packet Lagrangians e(w) + X p(w) for
appropriately chosen Lagrange multipliers \’. The Lagrange multipliers A’ ulti-
mately depend, cyclically, on the error probabilities e(w). However, we develop
an iterative descent algorithm for finding solutions that are locally optimal.

In Sections 5 and 6, we show how to control the window of transmission
opportunities for each packet, and how to control the bit rate of the transmission
at a packet level, in response to congestion and flow control mechanisms. We
also sketch a possible protocol for sender-driven streaming over a best-effort
network.

In Section 7 we report experimental results focusing on sender-driven stream-
ing over a best-effort network. Using simulations, we show that our system gains
up to 4 dB or more over systems approximating state-of-the-art commercial sys-
tems, over networks with 20% packet loss.

To our knowledge, the most closely related contemporaneous work is that
by Miao and Ortega [5, 6], which develops a low-complexity heuristic algorithm
for sender-driven scheduling of packet transmissions over a best-effort network.
Zhou and Li [7] also develop similar heuristics.

The most closely related rigorous work is that by Podolksy, McCanne, and
Vetterli [8, 9], which uses a Markov chain analysis to find the optimal policy for
transmitting layered media at a fixed rate, including retransmissions, to mini-
mize the end-to-end distortion. To make the analysis tractable, Podolsky et al.
assume zero transmission delay and loss-free acknowledgements. Unfortunately
they are unable to simulate an optimal system with more than a few source lay-
ers and more than a few transmission opportunities per frame, since the space
of policies grows exponentially in both of these quantities. One of the main
contributions of our paper is showing that this policy space can be factored
so that the layers are only loosely coupled, resulting in complexity that grows
roughly linearly in the number of layers.

The work of Chande, Jafakhani, and Farvardin [10] was the first that we
know of to formulate and solve the problem of optimal transmission over a noisy

channel in the presense of feedback, using a Markov decision process framework.
The work of Servetto [11] also recognized that optimal transmission over a noisy
channel in the presense of feedback is a nonlinear stochastic control problem.
Inspired by these works, Chou et al. [1, 2, 3, 4] used an iterative descent algo-
rithm in a Lagrangian framework to find locally optimal transmission policies
for hybrid FEC/ARQ, assuming jitter-free delay and loss-free retransmission
requests, when the source layers are given by arbitrary directed acyclic graphs.
Chou et al. applied their work to receiver-driven layered multicast of audio and
video. That work became the starting point for the present paper, when we real-
ized that the same methodology could be used to solve the problem of Podolsky
et al. in a practical way.

There have been numerous other papers that perform some kind of rate-
distortion optimization for transmission of packetized media. Many have focused
on the problem of source rate control in the absence of transmission errors
[12, 13, 14, 15]. (Works that address the problem of source rate control in the
presense of transmission errors, but are not rate-distortion optimized, include
[16,17, 18,19, 20, 21].) Other works have focused on the problem of error control
using forward error correction (FEC). Many of these use the priority encoding
transmission (PET) technique of Albanese et al. [22, 23, 24, 25, 26, 27, 28, 29, 30,
31], which can be rate-distortion optimized using the algorithms of [23, 28, 32].
Others of these use a systematic rate-compatible technique [1, 2, 3, 4], which can
be rate-distortion optimized using the algorithms of [1, 2, 3, 4, 33, 34, 35]. The
present paper is an extension of these latter methods. (Still others use “signal
processing FEC” for error control [36, 37, 38, 39, 40], for which rate-distortion
optimization is still a research topic [41].) Some papers have investigated the
problem of error control using retransmission-based protocols, e.g., [42, 43, 44,
45, 46, 47, 48]. However, with the exception of those works listed in the previous
paragraph, to our knowledge, none are rate-distortion optimized. Finally, a
few papers suggest the use of multiple qualities of service (e.g., diffserv) to
support more cost-effective media transmission at a higher quality [49, 50, 51].
Of these, only [49] attempts to optimize the distortion subject to transmission
rate constraints. Our paper substantially furthers the work in this direction.

2 Preliminaries

In this section we define our abstractions of the encoding, packetization, and
communication processes, and state the distortion-rate optimization problem
that we are trying to solve.

In a streaming media system, the encoded data are packetized into data
units and are stored in a file on a media server. If the server selects a data
unit for transmission, the data unit is put into a packet and sent across the
network. If the packet is lost, the data unit may be sent again in another
packet. In general we assume a one-to-many correspondence between data units
and packets. However, each packet must contain one and only one data unit.

Regardless of how many media objects (audio, video, etc.) there are in a

(c)

Figure 1: Directed acyclic dependency graphs. (a) Sequential dependencies
typical of embedded codes. (b) Dependencies between IBBPBBPBBP video
frames. (c) Typical dependencies for MPEG-4 progressive fine grain scalability
mode.

multimedia presentation, and regardless of what algorithms are used for encod-
ing and packetizing those media objects, the result is a set of data units for the
presentation whose interdependencies can be expressed by a directed acyclic
graph. Each node of the graph corresponds to a data unit, and each edge of the
graph directed from data unit I’ to data unit [corresponds to a dependence of
data unit / on data unit I’. That is to say, in order for data unit ! to be decoded,
data unit I’ must also be decoded. This induces a partial order between data
units, for which we write I’ < [if I’ is an ancestor of [(or equivalently if [is
a descendant of 1'). Thus, if a set of data units is received by the client, only
those data units whose ancestors have all been also received can be decoded.
Typically, the graph of dependencies between all of the data units in a pre-
sentation is a collection of connected components, where each connected compo-
nent is itself a directed acyclic graph representing the dependencies between all
of the data units of an independently encoded and packetized group of frames
(GOF) of one media type. Some such directed acyclic dependency graphs are
illustrated in Figure 1. Figure 1a shows a dependence graph typical of an embed-

ded encoding of a group of frames, which is packetized sequentially. Figure 1b
shows a dependence graph typical of an encoding by a standard video coder of
a group of (IBBPBBPBBP) frames, which is packetized as one data unit per
frame. And Figure lc shows a dependence graph typical of an encoding of a
group of frames by MPEG-4’s fine grain scalability (FGS) mode [52, 53], which
is again packetized as one data unit per frame.

Labeling each data unit ! in the dependence graph are three constant quan-
tities: its data unit size B; in bytes, its importance Ad; in units of distortion,
and its timestamp tprs,;. We now discuss each of these in turn.

The data unit size B; is the number of source bytes in the data unit.

The importance Ad; is the amount by which the distortion at the receiver will
decrease if the data unit is decoded (on time) at the receiver. Recall that a data
unit can be decoded only if all of the data units on which it depends can also be
decoded. For example, in Figure 1a, Ad; for the third data unit in the sequence
is the decrease in distortion if three data units are decoded instead of only two.
Similarly, in Figure 1b, Ad; for a B frame is the decrease in distortion if the B
frame is decoded, compared to the distortion if the B frame is not decoded. In
this way, the overall distortion can be computed as the initial distortion dy (i.e.,
the distortion if no data units are decoded) less the sum of the decreases Ad;
over all data units [that have been decoded on time. We say the distortion is
incrementally additive with respect to the partial order given by the dependency
graph. An important limitation of this incrementally additive model is that the
amount by which the distortion decreases when a data unit is decoded does
not depend on whether its sibling or cousin data units are decoded. So for
example, in this model, the decrease in distortion when a B frame is decoded
does not depend on whether or not any other B frame is decoded. Strictly
speaking, this rules out a number of error concealment techniques. Fortunately,
the incremental additivity model provides a good approximation to reality even
in those cases where it is not exact.

The timestamp ¢prs, is the time by which the data unit must be decoded to
be useful (i.e., for the distortion to decrease by Ad;). This corresponds to the
decoder timestamp (DTS) in MPEG terminology, and represents the time at
which the decoder extracts the data from its input buffer prior to presentation
(which in turn occurs at the presentation timestamp, PTS). Thus, in the context
of the server/client model for streaming, tprg, is the delivery deadline by which
data unit [must arrive at the client, or be too late to be usefully decoded.
Packets containing a data unit that arrive after the data unit’s delivery deadline
are discarded.

Each data unit / is also implicitly labeled by a set of N = IN; transmission
opportunities tg,t1,,...,tN—1, prior to tprs,; at which the data unit may be
put into a packet and transmitted. Often this set of transmission opportunities
is a single time to,; (such as a “send time”) prior to the delivery deadline, but
in general we assume it is a finite set of times ¢o,%1,,.--,tn—1, (such as the
set of times at 7" = 50 ms intervals within a window [tag, ticqq]) prior to the
delivery deadline. Determination of this set is addressed in Section 5.

It pays to be careful about the temporal coordinate systems (or clocks) in

which time is expressed. In this paper, we deal with three different temporal
coordinate systems: the media (or encoder) temporal coordinate system ¢, the
sender (or server) temporal coordinate system s, and the receiver (or client)
temporal coordinate system r. Each of these is related to the other by an affine
coordinate transformation. For example,

T = Tstart + 0+ (t - tDTSO)/V = At—)r (t)

is the coordinate transformation that maps media time ¢ into receiver time r =
A; . (t). Here, rg147¢ is the time (on the receiver’s clock) that the user effectively
pushes the “play” button; § is the delay between 74,4 and the moment that the
first data unit is due to be removed from the client buffer and decoded; tprsg is
the decoder timestamp of the first data unit to be decoded; and v is the desired
playback speed. Likewise,

S = Sstart + (T - Tstart) = Ar—)s(r)

is the coordinate transformation that maps receiver time r into sender time
s = A, s(r). We assume that the sender and receiver clocks run at the same
rate, but differ only by a constant offset ss¢qrt — T'start, determination of which
effectively synchronizes the clocks. We use the notation tx, sx, and rx to
denote the time of a single event X in each of the three temporal coordinate
systems.

We model the network as an independent time-invariant packet erasure chan-
nel with random delays. That means that if the sender inserts a packet into the
network at sender time s, then the packet is lost with some probability, say e,
independent of s. However, if the packet is not lost, then it arrives at the receiver
at sender time s', where the forward trip time FTT = s' — s is randomly drawn
according to probability density pr(7|not lost). Each packet is lost or delayed
independently of the other packets. This independence and time-invariance is
reasonable over short time scales. In fact, digital transmission systems are often
modeled by hidden Markov models, in which losses are independent given the
current state (e.g., “congested” or “not congested”) [54]. The current state may
change slowly over time. Here, we assume that the loss probability ex and the
delay density pr(7|not lost) can indeed vary slowly over time, depending on the
underlying state of the network, which is typically estimated anyway for the
purposes of congestion control. (See Section 6.)

For convenience, we combine the packet loss probability and the packet delay
density into a single probability measure, by assigning F'TT = oo in the event
that the packet is lost. This places mass ep at infinity, and weights the density
pr(7|not lost) by the factor (1 — er), as illustrated in the upper left corner of
Figure 2. Thus the cumulative distribution function for the forward trip time is

P{FTT <71} = / (1 — ep)pr(tlnot lost)dt,
0

and its complement is

oo

P{FTT > 1} = e + / (1 — ep)pr (tnot lost)dt,

T

Pe(t) Pe(0)
(1-e-)pL(T|not lost) (1-€5)pg(TInot lost)

€ €5
0 K // ot T 0K // oﬁ t
F B
ﬁonvolution
P(T)
(I-ex)pg(tInot lost) &,
0 Kg // 0 T

Figure 2: Density for round trip time as a convolution of densities for forward
and backward trip times.

which is the probability that a packet sent at time s is not received by time
s + 7, whether lost or simply delayed. In principle it is not ever possible to
determine by waiting for a packet whether it is lost, or just delayed for a very
long time.

We assume that the back channel, if available, can be similarly characterized.
If the client sends a packet to the server, then the packet is lost with probability
€B, otherwise it is delayed according to density pp(7|not lost). The probability
that the backward trip time is greater than 7 is

oo

P{BTT >} = 5 + / (1 = ex)pa (t|not lost)dt.

The round trip time RTT = FTT+ BTT is by definition the sum of forward
and backward trip times. The probability that the round trip time is greater
than 7 is therefore the integral of the convolution

P{RTT >71}=€er+ (1—€p)eg+ (1 —€r)(1 —€ep) X

e’} i
/ / pi(t'|not lost)ps (¢ — ¢'|not, lost)dt'd, (1)
T 0

which is the integral from 7 to infinity of the (unconditional) “density” pgr(7) =
pr(7) * pp(7) shown in Figure 2. Of course there are a number of alternative
ways to compute (1), e.g., as the volume of the joint density pr(7r)pp(TB) Over
the area shown in Figure 3.

{tg+t 1.>1

B

T 00 T

[=

Figure 3: Region for (77, 78) over which 7 + 78 > 7.

We do not assume any particular form for the densities pr(7|not lost),
pe(T|not lost), or pr(r|not lost). However, for concreteness in the next sec-
tion and in Section 7 (Experimental Results) we do model these distributions
parametrically. As in [55], we model packet delay as having a shifted Gamma
distribution with rightward shift ¥ and parameters n and «, e.g.,

pr(rlnot lost) = r?nFF) (a(r — kp))rr—lemar(r=rr) 2)

for 7 > kp. This is the distribution of a random variable that is equal to a
constant kg plus the sum of ng independent identically distributed exponential
random variables each with parameter ar [56]. One way to interpret this is that
the forward trip time F'TT is the result of a packet going through ng routers,
each of which requires a constant processing time kp/np plus waiting time in
a steady state M/M/1 queue [57]. Since an exponential random variable with
parameter o has mean 1/a and variance 1/a?, the forward trip time as modeled
by (2) has mean up = kr + nr/ar and variance 0% = nr/a%. Hence

nr = (pur—kr)ar, (3)
ar = (ur—kF)/oF. (4)

In this way the parameters ng and ar can be determined from estimates of
ur and 0%, as we consider in Section 7. A similar approach can be taken for
backward and round trip times.

We end this section with a discussion of our objective: rate-distortion op-
timized streaming of packetized media. By rate we mean the expected cost R
of streaming an entire presentation. Cost may be measured as the number of
bytes transmitted. However it can also be measured more generically. As we
mentioned in the Introduction, each data unit is sent with some transmission
option 7, which has cost per source byte p(7) and hence a data unit cost Bp(r),
where B is the size of the data unit in bytes. The cost of streaming the en-
tire presentation is therefore the sum of the data unit costs for all of the data

Figure 4: The set of achievable rate-distortion pairs, its lower convex hull (dot-
ted), and an achievable pair (R, D) minimizing the Lagrangian D + AR. Each
dot is the (R, D) performance of some algorithm (caricature only).

units transmitted. The rate R is the expected value of this total cost, averaged
over all possible realizations of the random channel, when a given streaming
algorithm is in use.

By distortion we mean the expected distortion D incurred for the entire
presentation. As we mentioned earlier in this section, whenever a data unit is
decoded on time at the receiver, the distortion decreases (from some initial large
distortion dp) by the importance Ad of the data unit. The distortion incurred for
the entire presentation is therefore some initial large distortion dy less the sum
of the importances for all the data units decoded on time. The distortion D is
the expected value of this total distortion, averaged over all possible realizations
of the random channel, when a given streaming algorithm is in use.

We seek a streaming algorithm that has the minimum possible expected dis-
tortion D for its expected rate R. By restricting ourselves to algorithms whose
rate-distortion performance (R, D) lies on the lower convex hull of the set of
all rate-distortion performances achievable by some algorithm, as illustrated in
Figure 4, we can find an optimal algorithm with expected distortion D and
expected rate R by minimizing the Lagrangian D + AR for some positive La-
grange multiplier A. Finding such an algorithm, under various communication
scenarios, is the objective of this paper.

3 Transmitting a Single Data Unit

In this section we study the problem of optimally transmitting a single data unit.
Knowing whether, when, and how to best transmit each data unit in isolation
will lead (in Section 4) to optimal transmission of the entire presentation.
When considering transmission of only a single data unit, the distortion-rate
measures can be normalized. Rather than measuring distortion in terms of, say,
squared error, expected distortion can be measured as the “error probability”
or more precisely the late/loss probability, that is, the probability that the data
unit does not arrive at its destination on time. Rather than measuring rate in

(@) . (b)

o
°
o5 0.5
8
@
0 0 E
) 2 4 6 8 o 2 4 6 8
(c) (d)
1 1
=]
°
o
505 05 - Lk
5}
e ey
0 R 0 Xk k%
0 2 1 6 8 0 2 2 6 8
(e) ®
1 1
E=]
°
2051 4 05 *
s
5]
*
I .
0 0
0 2 4 6 8 0 2 4 6 8

expected cost expected cost

Figure 5: Error-cost functions. (a) Single QoS, no feedback. (b) Multiple QoS,
no feedback. (c) FEC, no feedback. (d) Retransmission, no feedback. (e)
Sender-driven retransmission, with feedback. (f) Receiver-driven retransmis-
sion, with feedback.

terms of, say, bytes per second, rate can be measured as the expected number of
times the data unit is transmitted, or more generally, as the expected number
of bytes transmitted per source byte, or more generally still, as the expected
cost per source byte to transmit the data unit. We refer to these normalized
distortion-rate measures as “error-cost” measures.

At each of the transmission opportunities associated with a data unit, the
data unit may be transmitted or not. If it is transmitted then depending on the
scenario there may be more than one mode in which to transmit the data unit.

The simplest scenario is the following. A data unit with delivery deadline
sprs can either be transmitted at time sg < sprg, or not, over a network with
a single quality of service (QoS) e.g., a best-effort network. In this scenario,
there are two error-cost possibilities. If the data unit is not transmitted, then
the error probability is one, while the cost per source byte (expected number of
packet transmissions) is zero. On the other hand, if the data unit is transmitted,
then the error probability is e = P{FTT > sprs—so}, while the cost per source
byte is one. The operational error-cost function for this scenario and its convex
hull are illustrated in Figure 5a for € = 20%.

A more interesting scenario is the following. Suppose that there are multiple
qualities of service available on the network (or equivalently suppose there are
multiple networks) each with its own forward trip time distribution and its
own marginal cost per transmitted byte. For example, best-effort service with
forward trip time FTT™ could cost p(1) =1 microcent per transmitted byte,

10

a low-loss service with forward trip time FTT®) could cost p(?) = 4 microcents
per transmitted byte, and a low-delay, low-loss service with forward trip time
FTT® could cost p(® = 8 microcents per transmitted byte. Then a data
unit with delivery deadline sprs transmitted (or not) at time sy has one of
four distortion-rate possibilities: 6(® = 1 and p(® = 0; 6§ = P{FTT® >
sprs — so} and pt) = 1; 6@ = P{FTT® > sprg — so} and p® = 4; and
6@ = P{FTT® > sprs — so} and p(® = 8. The operational error-cost
function for this scenario and its convex hull are illustrated in Figure 5b.

Another scenario is one in which only a single best-effort network is available,
but the application emulates different qualities of service over this network using
forward error correction schemes of different strengths. For instance, if £ > 1
and n > k, the application can emulate a higher quality of service for a data
unit transmitted at time sp by 1) grouping it together with k¥ — 1 other data
units also to be transmitted at time sg, 2) applying an (n, k) systematic Reed-
Solomon code to produce n — k parity units, and 3) transmitting the data
packets plus their parity packets at time sg. The original data unit cannot be
recovered at the receiver by time sprg only if it is late or lost (which happens
with probability e = P{FTT > sprs — so}) and at least n — k of the other
n — 1 packets are also late or lost (which happens with probability f,; =
E?;nl_k (n ; 1) €(1 — €)™ 17%). Thus the loss/late probability is reduced by a
factor fnx over best-effort, at a cost of n/k transmitted bytes per source byte.
The error-cost performances for various values of (n, k) can be plotted (e.g., for
k=1,...,8andn=k,...,k+8) to produce an operational error-cost function,
as illustrated in Figure 5c.

In a similar scenario, quality of service can be emulated using retransmis-
sions. Let sg,s1,...,8nv—1 be N discrete transmission opportunities and let
sprs be the delivery deadline. Repeatedly transmitting the data unit at all
N opportunities results in a small loss/late probability (equal to [[, P{FTT >
sprs — si}) but a large cost (equal to N). On the other hand transmitting the
data unit at none of the N opportunities results in a large loss/late probability
(equal to 1) but a small cost (equal to 0). Intermediate loss/late probabilities
and costs can also be achieved and easily computed for any fixed transmission
pattern. For example, suppose ag, a1, --.,any—_1 represents a transmission pat-
tern where a; = 1 if a data packet is transmitted at time s; and a; = 0 otherwise.
Then the loss/late probability is equal to Himi:l P{FTT > sprs — s;} while
the cost is equal to Ei:aizl 1 transmitted bytes per source byte. The error-cost
performances for all 2V transmission patterns can be plotted to produce an
operational error-cost function, as illustrated in Figure 5d.

This scenario becomes more realistic when combined with feedback. Suppose
the receiver sends an acknowledgement packet back to the sender the instant
that it receives a data packet, and that the sender truncates its transmission pat-
tern upon receipt of the acknowledgement packet. Then although the loss/late
probability remains the same, the expected number of data packet transmissions

11

is reduced to 3, ;. i (I;<iq;=1 PARTT > 5i — s;}).} This scenario, which we
refer to as sender-driven transmission over a single-QoS network using retrans-
missions with feedback, is the principal scenario considered in this paper. The
operational error-cost function for this scenario is illustrated in Figure 5e.

A receiver-driven version of the above scenario is the following. The re-
ceiver initiates transmission by sending a request packet to the sender; the
sender responds by sending a data packet to the receiver. Let r¢,71,...,rN_1
be N discrete request opportunities at which the receiver can transmit a re-
quest packet, and let rprs be the deadline for delivery of the data unit to the
receiver. Suppose ag, a1, - ..,an_1 represents a request pattern where a; = 1 if
a request packet is transmitted at time r; and a; = 0 otherwise. Suppose the
sender transmits the data packet to the receiver the instant that it receives
a request, and that the receiver truncates its request pattern upon receipt
of the data unit. Then it is not too hard to show that the loss/late proba-
bility is equal to [[;.,.—, P{RTT > rprs — r;} (which is larger than in the
sender-driven case) while the expected data packet transmission rate is equal
0 350,21 (I ljcisg;=1 P{RTT > ;i — r;})P{BTT < oo} (which is smaller than
in the sender-driven case). The operational error-cost function is illustrated in
Figure 5f.

Hybrids of any of the above scenarios are also possible. For example, receiver-
driven transmission over a multiple-QoS network using retransmissions with
feedback can be handled by letting a; = Q; € {1,2,3} indicate a request by
the receiver at time r; for a data unit to be transmitted with quality of service
Q; (and a; = 0 otherwise). In this case, the loss/late probability is equal to
[Lia:iz0 P{RTT@) > rprgs —r;}, and the cost is equal to
Yicaiz0 P9 ([j<ia; 20 P{RTT @) > 1;—r;}) P{BTT < o0}, where RTT(?) =
BTT + FTT(9 is the round trip time over the single backward channel and
the @’th forward channel. This last “intserv/diffserv” scenario is mathemati-
cally equivalent to a number of other scenarios of interest, such as the “overlay”
scenario in which the receiver is connected to the sender by multiple physical
networks, each offering a different quality of service, and the “multiple access”
scenario in which the receiver is connected to multiple senders over different
network paths, each offering a different quality of service.

In the remainder of this section, we study in detail, using a Markov decision
process framework, the scenario of sender-driven transmission over a single-QoS
network using retransmissions with feedback. At the end of this section, we show
how the Markov decision process framework allows further generalizations to
other scenarios, such as a wireless scenario in which the receiver can respond to
a corrupted packet with a negative acknowledgement (NAK), as well as respond
to a cleanly received packet with a positive acknowledgement (ACK).

A Markov decision process with finite horizon N is an N-step stochastic
process through a state space in which an action can be taken at each state in

1To see this, consider that the quantity in parentheses is the expected value of the indicator
function of the event that a data packet is transmitted at time s;, which in turn is the
probability that none of the previously transmitted packets are acknowledged by time s;.

12

Figure 6: Trellis for a Markov decision process. Final states are indicated with
double circles.

a corresponding trellis of length N to influence the outgoing transition proba-
bilities and thereby maximize an expected reward or minimize an expected cost
along the transitions. The assignment of actions to trellis states is called a policy
(denoted by) and the optimal policy, in our context, is the one that minimizes
the expected cost €, + A p, of traversing the trellis in N steps starting from a
known initial state.

Figure 6 shows the trellis for the Markov decision process associated with
the problem of sender-driven transmission over a single-QoS network using re-
transmissions with feedback. The process begins in the initial state at time sq.
In this state, the sender can choose either to send the data unit, taking action
ag = 1, or not to send the data unit, taking action ag = 0. If the sender chooses
to send the data unit, then just prior to time s;, the sender can observe either
that some packet containing the data unit has been acknowledged, in which case
09 = 1, or that no packet has been acknowledged, in which case og = 0. If a
packet containing the data unit has been acknowledged by time s;, then the
process enters a final state at time s;. Otherwise the process enters a non-final
state at time s1, and the sender can once again choose either to send the data
unit, or not, repeating the process up to a total of N times.

Each state in the trellis (circles in Figure 6) captures the action-observation
history leading up to that state from the initial state. That is, a state g; at time
s; represents a sequence of ¢ action-observation pairs, (ag,0) o (a1,01) 0...0
(@i-1,0i-1)-

The action taken at a state determines the transition probabilities to the
next state. If the next state g;+1 = g; o (a;,0;) is the current state ¢; followed

13

by the action-observation pair (a;,0;), then (in this scenario)

P(git1lgi,a:) =
ngi;aj:1 P{RTT > sj;1 — s;|RTT > s; — s;}
if 0; = 0 (not ACK’d),
1- ngi:ajzl P{RTT > Si41 — $j|RTT > 8; — Sj}
if o; =1 (ACK’d).

That is, the probability that no acknowledgement arrives by time s;1 given
that no acknowledgement arrived by time s; is the product of the probabilities
for each data packet sent at time s; that no acknowledgement arrives by time
si+1 (i.e., RTT > si11 — s;) given that no acknowledgement arrived by time s;
(i.e., RTT > s; — s;). Note that these conditional probabilities can be easily
calculated in terms of known unconditional probabilities, since by Bayes’ rule
and the fact that RTT > 7 + ¢ implies RTT > 7 (for § > 0), P{RTT >
T+ 6|RTT > 7} = P{RTT > 1+ 0}/P{RTT > 7}.

Now, any policy @ : ¢ — a assigning actions to states induces a Markov
chain with transition probabilities

Pr(gi+1lg:) = P(giv1lgi 7(q:))-

Let Q, be the set of all complete paths through this Markov chain, and let
q = (90,q1,---,9r) € Qr. That is, let ¢ satisfy ¢;41 = ¢; o (a;,0;) where
a; = 7(g;) and o; = 0 for ¢ < F — 1. Then q has probability

F-1
Pr(q) = [] Pr(gisilas),
=0

transmission cost
F-1
pe(q) =Y ai,
i=0

and error (loss/late probability)

CW(Q) =
0
if op_; = 1 (ACK’d),
Hj:aj:]. P{FTT > Sprs — Sj|RTT > Sprs — Sj}
otherwise.

The latter expression follows from the facts that if the path leads to an ac-
knowledgement, then the probability that the data packet is lost or late is zero,
while if the path leads to no acknowledgement by time sprs, then the proba-
bility that the data packet is lost or late is the product of the probabilities that
each data packet transmitted is lost or late (FTT > sprs — s;) given that no
acknowledgement is received for that packet (RTT > sprs — s;). Note that

14

again these conditional probabilities can be easily calculated in terms of known
unconditional probabilities, since by Bayes’ rule and the fact that FTT > 7
implies RTT > 7, P{FTT > 7|RTT > 7} = P{FTT > 7}/P{RTT > 7}.

Armed with definitions of probability, transmission cost, and error for each
path, one can now express the expected cost and error for the Markov chain
induced by policy =:

pr = Expr(@) = Y Pr(@)pn(a)
qeo,

€r = E7T€7I'(q) = Z Pﬂ(q)eﬂ'(q)'
qeon

In principle it is possible to enumerate all possible policies 7, plot the error-cost
performances {(pr,€;)} in the error-cost plane, and produce an operational
error-cost function for this scenario as we did in Figure 5e. Unfortunately, in
general it may not be feasible to enumerate all possible policies. However if
one is only interested in finding a point on the convex hull of the operational
error-cost function, it is relatively simple matter to find the policy minimizing
the expected Lagrangian

Jr =€+ Npr = Z Pr(q)J=(q), (5)
qeQnx

where J;(q) = €;:(q) + N pr(q). This can be accomplished with dynamic pro-
gramming by extending the domain of definition of J;(gq) not only to complete
paths through the trellis (under 7) but also to partial paths. Let

ex(q) + Npx(q)
if ¢; is final in q (i = F),

J7r i) —
@)=Y 5, Plairla 7(a:) Jx(gis)
otherwise

be the expected Lagrangian of all paths through ¢; (under 7). Then let

ex(q) + N'px(q)
if ¢; is final in q (1 = F),
ming 3, P(giv1¢,a) T (¢it1)
otherwise.

I @) = (6)

By induction, J*(g;) < Jx(g;) for all ¢; and all , with equality if 7 = 7*, where

™" (¢;) = argmin > Plgiyilgi, a)J* (giv1) (7)

qi+1

for all non-final states g;. Thus the optimal policy (minimizing (5)) can be
computed efficiently using (6) and (7). In this paper, whatever algorithm is

15

Error—cost function and policy vectors 1t

‘
oL T =[0,0,0,00000]

1,=[1,0,0,0,0,0,0,0]

S,
T

m,=[1,0,0,0,0,1,0,0]

o,
s
T

m,=[1,0,0,1,0,0,1,0] 7

M =[1,0,0,1,0,0,1,1]

Expected. Error € (log late/lgss probability)
o
-
Zn
noqnn
[oe]

-6

&g, =20%
{ =[1,0,0,1,0,1,1,1] E
T=50ms A, =09 e
K= 25ms (0.5T))\2 =0.7998 T[; =[1,0,01,1,1,1,1]
oL Nz =2 nodes A,=0.45 7 i
la_=125ms (025T) A,=0.225 K =(1,0,1,1,1,1,11]
Ke=50ms (1 T) A, = 0.05625
o ny=4 nodes)‘e =0.028125
O F 2o, =125ms(0.25T) A, =0.0035156 X 1
mean RTT = 100 ms (2T) A, =0.00021973 Me=[1,11,1,1111]
W=NT=400ms (8T) A, =2.2204e-16
L L

10

0 0.5 25 3

1 15 2
Expected Cost p (# of transmissions)

Figure 7: Optimal policies and their error-cost performances. The optimal poli-
cies for different values of \' are shown as sequences of actions [ag, a1, - ..,an_1]-

used to compute the optimal choice 7 minimizing €, + A'p, will be called the
transmit-one (X1) algorithm.

As an example, Figure 7 shows the error-cost performances of different op-
timal policies 7}, computed by the X1 algorithm described above for different
values of A’'. The expected error is shown on a logarithmic scale. Each optimal
policy is shown as the sequence of actions [ag,a1,...,an—1] taken along the
longest path in the Markov chain defined by the policy, that is, the sequence of
actions taken by the sender at each transmission opportunity until it receives an
acknowledgement. The all-zeros policy (which never transmits) is shown at the
upper left with expected error equal to 1 and expected cost equal to 0. The all-
ones policy (which always transmits) is shown at the lower right with expected
error equal to 7 x 1079 and expected cost equal to 2.7. Intermediate policies are
shown in between. As) decreases, the optimal policy decreases in error but
increases in cost. In this example, there are N = 8 transmission opportunities
every T' = 50 ms. The mean forward trip time is kg +np/ar = T and the mean
round trip time is kg + nr/ar = 2T, using the parametric models discussed in
Section 2.

To conclude this section, we discuss how this Markov decision process frame-
work illustrated in Figure 6 allows further generalizations to other scenarios be-
sides sender-driven transmission over a single-QoS network. Indeed the multiple-
QoS scenario can be treated by adding additional action branches out of each
state, e.g., 0 = don’t send, 1 = send with QoS™), 2 = send with QoS®, and 3
= send with QoS®). The receiver-driven scenario can be treated by relabeling

16

“send” with “request” and relabeling “ACK” with “send”. And a sender-driven
wireless scenario, in which the receiver can respond to a corrupted received
packet with a negative acknowledgement (NAK) as well as respond to a cleanly
received packet with a positive acknowledgement (ACK), can be treated by
adding additional observation branches after each action, e.g., 0 = no ACK, 1
= ACK, and 2 = NAK. Negative acknowledgements can improve performance
by informing the sender that it can retransmit immediately without waiting
for a timeout. A receiver-driven wireless scenario can be treated in the frame-
work as well. Refer to [1, 2, 3, 4] for how the framework is used for hybrid
FEC/Pseudo-ARQ in the receiver-driven multicast scenario.

4 Transmitting a Group of Data Units

In this section we study how a whole group of interdependent data units can
be transmitted in a distortion-rate optimized way, using as a building block the
scenario-appropriate method for transmitting a single data unit.

Suppose we wish to transmit a group of L data units whose dependencies
are specified by an arbitrary directed acyclic graph. These L data units could
be all the data units in a session, all the data units in a group of frames, or only
those data units whose delivery deadlines lie in a limited time window.

Let m be the transmission policy for data unit I € {1,...,L} and let
7 = (m1,-..,7L) be the vector of transmission policies for all L data units
in the group. Any given policy vector 7 induces an expected distortion and an
expected transmission cost for the group. The expected transmission cost is the
sum of the expected transmission costs for each data unit in the group. In turn,
the expected transmission cost for each data unit I € {1,..., L} is the expected
cost per byte of transmitting the data unit, p(m;), times its size in bytes, B;.
That is, we have for the expected transmission cost

R(m) =Y Bip(m). (8)
1

The expected distortion for the group is somewhat more complicated to
express. Let I; be the indicator random variable that is 1 if data unit [arrives
at the receiver on time, and is 0 otherwise. Then [[, -, I is 1 if data unit
I is decodable by the receiver on time, and is 0 otherwise. If data unit [is
decodable by the receiver on time, then the reconstruction error is reduced by
the quantity Ad;; otherwise the reconstruction error is not reduced. Hence
the total reduction in reconstruction error for the group is), Ad; [], <, In-
Subtracting this quantity from the reconstruction error for the group if no data
units are received, and taking expectations, we have for the expected distortion

D(m) = Do~ AD; [](1 - e(m)), 9)
1 =<1

where Dy is the expected reconstruction error for the group if no data units are
received, AD; is the expected reduction in reconstruction error if data unit [is

17

decoded on time, and e(m;) is the probability that data unit ! does not arrive at
the receiver on time (as computed in the previous section). Here we have used
the assumption that the data packet transmission processes are independent,
and are independent of the source process, in order to factor the expectation in
(9).

With expressions (8) and (9) for the expected transmission cost and expected
distortion for any given policy vector now in hand, we are able to optimize the
policy vector to minimize the expected distortion subject to a constraint on the
expected transmission cost. By restricting ourselves to solutions on the lower
convex hull of the set of rate-distortion pairs {(R(w), D(7))}, we can solve the
problem by finding the policy vector & that minimizes the expected Lagrangian

J(m) = D(m) + AR(w)

= Do+ _ [AD; [-J](1—e(my)) | +ABip(m) | .. (10)

I =<1

The solution to this problem is completely characterized by the dependency
graph, the set of distortion increments AD;, and packet sizes B; (which are
determined by the source, source code, and packetization) and the error-cost
functions €(m) and p(w) (which are determined by the transmission scenario
and channel characteristics). This simplifies the problem of determining the
quantities needed for the optimization. However, the minimization itself is com-
plicated by the fact that the expression for the expected distortion cannot be
split into a sum of terms each depending on only a single 7;, as is usually the
case in rate allocation problems. Hence, we solve the problem using an iterative
descent algorithm.

Our iterative approach is based on the method of alternating variables for
multivariate minimization [58]. The objective function J(my,...,nr) in (10) is
minimized one variable at a time, keeping the other variables constant, until
convergence. To be precise, let (%) be any initial policy vector and let 7("®) =
(7r§"), . ,wé")) be determined for n = 1,2, ..., as follows. Select one component
I, € {1,..., L} to optimize at step n. This can be done round-robin style, e.g.,

I, = (n mod L). Then for | # I, let 7' = "™ while for I = I,,, let

Wl(") = a.rgrr}rian(ﬁ”),...,wl(f)l,m,wl(:)l,...,wé"))
= argmin S™Me(m) + AByp(m), (11)
where (11) follows from (10) with
SM=S"aDy T @ - e@iy). (12)
lltl l”jl,
lll;él

The factor S; can be regarded as the sensitivity to losing data unit [, i.e., the
amount by which the expected distortion will increase if data unit [cannot be

18

Given A, {(B;,AD))}-,,

0. Initialize:
€ = -+ = €, = minge(n), pp = -+ = pr =
max,rp(ﬂ),
D =Dy -3, AD Hl’jl(l —e), R=3 Bip,
J© =D+ AR, and
n=1.

1. 1=1,=(nmod L)

2. 851 = Zl’tl ADy Hl”jl’:l”;él(l — &)

3. N =AB/S
4. 7} = argming e(m) + A\jp(m) [Algorithm X1]
5. e =e(my), p=p(n})
6. D= Do — El AD, Hl’jl(l —er), R= Ez Bipi
7. J™ =D+ AR
8. If J(= J(»=1) stop; else n = n + 1 and go to Step
1.
Return 7§, ..., 7.

Figure 8: The sensitivity adaptation (SA) algorithm.

recovered at the receiver, given the current transmission policies for the other
data units. Another interpretation of S; is as the partial derivative of (9) with
respect to €; = €(m), evaluated at (™). See [1, 2, 3, 4].

Now, the solution to (11) is simple. This is the problem of transmitting a
single data unit, which can be solved with the X1 algorithm as described in
the previous section: find the transmission policy m; minimizing e(m;) + A p(m),
where X' = AB;/S;. This can be accomplished by minimizing (5) using (6) and
(7) as described in the previous section, or by using the equivalent procedure
(e.g., exhaustive search) for the appropriate scenario. In this way, the policy
vector (™ is determined and the process is repeated until J(m(™)) converges.
Convergence is guaranteed because J(7(™) is non-increasing and bounded be-
low. The overall algorithm, which we call the sensitivity adaptation (SA) algo-
rithm, is summarized in Figure 8.

In summary, using the SA algorithm in conjunction with the X1 algorithm
we are able to find transmission policies 7j, ..., 7] for each of the L data units in
a group such that after following the policies, the expected distortion D(7*) and
the expected transmission cost R(7*) are minimal (or at least locally minimal)
for each other, since they lie on the convex hull of all operational rate-distortion

19

pairs (R(m), D(w)), for the given set of transmission opportunities.

Actually, when the transmission scenario involves feedback, the above state-
ment is true only approximately. The reason is that the development of the
SA algorithm assumes that the transmission processes are independent of each
other in order to factor the expectation across the product in (9). While in-
dependence between transmission processes is a good model for transmission
without feedback, it is not a good model for transmission with feedback, since
feedback about one data unit being recovered ideally affects not only subsequent
transmissions of that data unit, but also subsequent transmissions of other data
units.

Nevertheless, in transmission scenarios involving feedback, we are still able to
provide stepwise-optimal rate-distortion performance by re-running the SA algo-
rithm at every transmission opportunity. This allows all of the optimized trans-
mission policies 77, ..., 7] to be updated at every transmission opportunity to
take into account the most recent information from feedback on any of the data
packets. To be more specific, for simplicity assume that each data unit [has the
same set of transmission opportunities sg, 51,...,5nv—1. Let g1.0,q.,1,---,@,8-1
be the state of the transmission process for data unit [at each of these trans-
mission opportunities. Run the SA algorithm at each transmission opportunity
s;, but in Step 4 of Figure 8 constrain policy 7} = 771*" ; to pass through state q; ;.
This can be done efficiently using (6) and (7) as usual, but stopping the compu-
tation at state gi,; as if it were the initial state. The resulting quantities €(r}';)
and p(7};) are then conditional expectations of the error and cost, respectively,
of following policy 7;'; from state g;,; given the history of actions and observa-
tions (ag,00) o (a1,01) 0--- 0 (a;—1,0;—1) for data unit ! leading up to ¢;,;- Thus
for example if data unit [is acknowledged by time s;, then 6(7'['1*,1-) = 0, causing
the sensitivities of all other data units (computed in Step 2) to increase, and
causing the Lagrange multipliers of all other data units (computed in Step 3)
to decrease. Upon convergence, each data unit [has independently optimized
its transmission policy 7;; going forward from state g;; at time s;, given all
information up to time s;. Each data unit transmission process then takes one
step forward, i.e., takes action a = 7 ;(g1,;), and the procedure is repeated at
the next transmission opportunity s;4.

This stepwise-optimal procedure can be likened to a procedure common
among human agents who are assigned separate tasks towards a common goal,
where achievement of the goal depends to varying degrees on achievement of the
individual tasks. Suppose the agents call each other at the end of each day to
report their state of progress. Since it is infeasible for an agent to follow from
the outset an optimal strategy involving contingency plans for every possible
daily state of every other agent, each agent instead optimizes his own long-term
strategy assuming an expected level of success for each other agent. The agent
is able to modify his long-term strategy daily, as the expected level of success
of the other agents changes according to their status reports.

Although this stepwise-optimal procedure does not necessarily produce the
optimal performance when feedback is available, it should produce near-optimal
performance. Moreover, it is tractable, because it factors the full state space

20

into a product of state spaces, one for each data unit (or agent). Although these
state spaces are coupled, the coupling is loose. Hence it is possible to separately
solve for the optimal policy for each data unit, and then run the SA algorithm
to couple these solutions. In contrast, the truly optimal solution involves a state
space that grows exponentially in the number of data units as well as the number
of transmission opportunities. Podolsky, McCanne, and Vetterli studied such a
solution in [8, 9], and even with a simplified channel model concluded that the
problem is intractable when there are more than two data units and more than
two transmission opportunities. Our factorization of the problem into loosely
coupled problems of transmitting only a single data unit is one of the main
contributions of our work.

5 Window and Rate Control

In the previous two sections, we showed how a system can achieve locally opti-
mal distortion-rate performance in non-feedback scenarios, and stepwise-optimal
distortion-rate performance in feedback scenarios. However, because we mea-
sure distortion-rate performance in an average sense, it is possible for such a
distortion-rate optimized system to transmit most of the data units in each
group in a single burst, resulting in a large instantaneous rate despite a low
average rate. When the group of data units is large, e.g., the entire session, this
is untenable. Two complementary solutions to this problem are window control
and rate control.

In window control, the data units are given different windows of transmission
opportunities, based on their delivery deadlines. To be specific, at any given
transmission time s, only those data units [whose delivery deadlines tprgs,; fall
within the window [tiq4(5), tieaa(s)] are given the opportunity to transmit. The
window boundaries t144(s) and tieqq(s) advance monotonically with s.

Figure 9 graphs typical values of ¢;44(s) and teqa(s) as a function of the
transmission time s, s > Sgqr¢- FOr any given transmission time s, the vertical
interval {tprs : tieg(s) < tprs < tieada(s)} is the set of delivery deadlines whose
data units are eligible for transmission at time s. Conversely, for any given
delivery deadline tprg, the horizontal interval {s : t;44(s) < tprs < tieqa(s)} is
the set of times at which data units with delivery deadline tprg are eligible for
transmission. It is during this horizontal interval that data units with delivery
deadline tprg can be transmitted.

The function tjeq4(s) determines when a data unit becomes elegible for trans-
mission, while the function #;,4(s) determines when a data unit becomes ineleg-
ible for transmission. A good choice for when a data unit becomes inelegible
for transmission is its delivery deadline. Hence, a good choice for the function
t1a(8) is the temporal coordinate transformation

tlag(s) =tprso + I/[S - (Sstart + 6)] = As—)t(s)-

This is because at time s all data units with delivery deadlines ¢tprg prior to
t = A;_¢(s) have expired. Put another way, all data units with delivery deadline

21

CA beaa® tiag(®

feaa()
t

DTS

t|ag(s) /
0
S

Start %ead S qag

t

>
DTSO S

Figure 9: Window control. The horizontal interval between sjcqq and s;q4 is the
window of transmission opportunity for data units with delivery deadline tprs.
The vertical interval between t;,4(s) and t;eqq(s) is the set of delivery deadlines
tprs whose data units are elegible for transmission at time s.

tprs will expire when s reaches sprg, where A;_¢(sprs) = tprs.

A good choice for the function #.,4(s) is less evident, since there are a num-
ber of considerations. For one, the horizontal gap between the functions tjc.q
and %4, determines the instantaneous buffer size, in seconds, at the receiver. A
large buffer size implies a large storage requirement at the receiver, but it also
implies a large window of opportunity during which data units can be retrans-
mitted so that they can be reliably received before their delivery deadlines. A
large buffer size also usually means a large preroll (start-up) delay d, unless the
instantaneous buffer size is allowed to begin small (at size § seconds), and grow
over time. For practical reasons most implementations limit the receiver buffer
size to some level. This implies that t;c.q(s) eventually parallels t;,4(s) at a
common slope v (the playback speed). However, the limiting buffer size can
vary greatly between implementations. Finally, it is important not to allow too
many data units to become elegible for transmission all at the same time (e.g.,
at the start). Without rate control, this would cause a large spike in instaneous
rate, while with rate control, this would lead to other anomalous behavior (dis-
cussed later in this section). For the experimental results reported in Section 7,
we choose tieqq(s) so that buffer delay begins at § and grows linearly at rate v
up to a constant delay d,.x. However, we have also used

tlead(s) =tprso + V(S - Sstart) + (b/a) ln(a(s - Sstart) +]-)

for appropriately chosen a and b. This choice permits the receiver buffer size to
go to infinity, implying absolute robustness asymptotically.

Now let us consider the transmission dynamics. Beginning at time Sgzq7¢, at
each transmission opportunity s (say, every T = 50 ms), the SA algorithm runs
on the group of data units elegible for transmission at time s. We call this group
of data units, {I : t;44(s) < tprsy < tieqa(s)}, the transmission buffer at time

22

s. For each data unit [in the transmission buffer, the SA algorithm iteratively
computes the sensitivity S; (according to (12)), and produces the optimal policy
7 (minimizing Sje(m;) + AByp(m) according to (11)). Upon convergence, each
data unit / in the transmission buffer is sent (or not) according to the first action
in policy ;. Thus at each transmission opportunity, some of the data units in
the transmission buffer are sent, and others are not. This process is repeated
at each transmission opportunity.

In this way, each data unit builds up a transmission history over the (horizon-
tal) interval of time in which the data unit remains in the transmission buffer,
that is, the interval [Sieqd, Siag] Where tieqd(Sicad) = tprsy and tiag(Sieg) =
tprs,. The transmission history for a data unit is the list of actions taken at
the previous transmission opportunities during the interval, and the accompa-
nying observations.

When the SA algorithm runs at each time s, it takes into account for each
data unit in the transmission buffer its transmission history up to time s i.e.,
the current state of the data unit’s transmission process. Thus, if data unit
I has been acknowledged, then given its transmission history the conditional
expected error €(m;) is zero regardless of the policy m; followed moving forward.
Hence, minimizing Sie(m;) +ABp(m;) produces an optimal policy 7; that has the
least possible expected cost p(m;), which is a policy that never transmits again.
Similarly, if a data unit [has been very recently transmitted, then given its
transmission history the conditional expected error €(m;) is small regardless of
the policy m; followed moving forward. So again, minimizing Sie(m;) + ABp(m;)
produces an optimal policy m; that is unlikely to transmit right away, unless
X' = AB;/S; is exceptionally low.

It can be seen that when the SA algorithm runs on the transmission buffer
at time s, very few of the data units in the buffer are actually selected for
transmission at time s. It is clear from the error-cost function and the expression
Sie(m) + ABip(m) that a data unit has a greater chance of being selected for
transmission at time s under the following conditions: if it has not yet been
transmitted, if it has been transmitted only in the distant past (e.g., more than
one RTT ago) and has not received an acknowledgement, if X is low, if its size
By is low, or if its sensitivity S; is high. In turn, it is clear from (12) that
a data unit’s sensitivity S; tends to be high if its distortion increment Ad; is
high, or if the distortion increment Ady of any of its descendants I’ > [is high,
and if for any such high distortion increment Ady, the probability is high that
all ancestors [" of I arrive on time. Thus, most of the data units that are
selected for transmission are important data units (with high Ad;) that have
recently entered the transmission buffer. A few data units, whose prior packet
transmissions have not been acknowledged within a round trip time or two, are
also selected for (re)transmission. And occasionally, a less important data unit
will be selected for transmission for the first time as instantaneous bandwidth
becomes available (see rate control later in this section) or as its sensitivity
increases when its ancestors’ data packet transmissions are acknowledged. In
this way, the various factors that influence whether a data unit should or should
not be transmitted at any given instant are perfectly blended together in one

23

coherent computation.

Rate control can be used in conjunction with window control to smooth
the instantaneous transmission rate still further. The rate control mechanism
we propose is similar to the rate control mechanisms found in standard video
encoders, but there are differences. In standard video encoders, the rate con-
trol mechanism typically adjusts a quantization stepsize @ [59] or possibly a
Lagrange multiplier A [60, 61] to affect the instantaneous bit rate out of the en-
coder into an encoder buffer. If the encoder buffer is close to empty, then) or
A is decreased to keep the buffer from underflowing, while if the encoder buffer
is close to full, then) or A is increased to keep the buffer from overflowing.
Bits drain out of the buffer at a constant rate and can feed a constant bit rate
(CBR) channel. If the channel is a variable bit rate (VBR) channel with a leaky
bucket constraint, then the encoder buffer can be a virtual buffer matched to
the VBR channel. The rate-controlled bit stream out of the encoder can then
directly feed the VBR channel, while conforming to the channel’s leaky bucket
constraint [13].

In this paper we propose a similar mechanism for controlling the instanta-
neous rate of data packet transmissions out of the SA algorithm. Data units
selected for transmission by the SA algorithm have their packets go into a virtual
buffer. If the virtual buffer is close to empty, then A is decreased, while if the
virtual buffer is close to full, then A is increased. If desired, the SA algorithm
can be repeatedly re-run with new values of A until a precise instantaneous rate
is achieved at each transmission opportunity s. As a special case, A can be ad-
justed at each transmission opportunity s to achieve a constant instantaneous
rate out of the SA algorithm. This is usually done with an iterative binary
search.

Of particular interest is the special case in which the rate control algorithm
adjusts A so that exactly one data unit is selected for transmission at each
transmission opportunity. That is, A is increased until there remains only one
data unit [in the transmission buffer for which the optimal policy 7; (minimizing
Sie(m) +AB;p(m;)) has “send” as its first action. This one data unit is relatively
simple to find, without iteration, by creating a list of Lagrange multipliers A =
{A}, where for each data unit [,); is the threshold for A above which the data
unit is not transmitted, and below which the data unit is transmitted, at the
current transmission opportunity. Once this list is created, the data unit [to
transmit is the data unit with the largest A; on the list.

The problem now is to compute); for each data unit. Let B; be the size
of data unit [, let S; be the sensitivity of data unit [(assuming there are no
further transmissions of any other data units), and let A} be the threshold for A’
above which the policy 7; minimizing e(m;) + A’ p(m;) has “don’t send” as its first
action, and below which it has “send” as its first action. Then X; = X\;.S;/B;.

It turns out that)\; is simple to approximate. Let 7 be the policy for data
unit ! with no further transmissions, and let m; ; be the policy for data unit
I with exactly one further transmission, which is at the current transmission
opportunity. Then); is approximately equal to the slope of the line between

24

the points (p(m1,0),€(m,0)) and (p(m1,1),€(m,1)), that is, A} = 5\;, where

j_ elmo) —elma) _
A= p(ma) — p(mo) (m1,0) — €(m,1). (13)

In turn, e(m,0) and e(m,1) are easy to calculate as the probability that none
of the previously transmitted packets for data unit [arrive at the receiver by
the delivery deadline. (In the case of m;; this includes the packet sent at the
current time s). That is,

6(7rl,0) = H P{FTT > SpTS — Sj|RTT > 8; — Sj},
j<iaj=1
6(71'[,1) = €(7Tl70) . P{FTT > Sprs — Si}

where sg,...,8;_1 are the previous transmission opportunities, s; = s is the
current transmission opportunity, and sprg is the delivery deadline. Thus
/A\; = (1 - P{FTT > SpTSs — si})x
II P{FTT > sprs — s;|RTT > s; — s} (14)

j<i:aj=1

As we showed in Section 3, the conditional probabilities P{FTT > sprs —
s;|RTT > s;—s;} can be expressed as P{FTT > sprs—s;}/P{RITT > s;—s;}.
Thus if we can further approximate P{FTT > 7} as 1 for 7 < pp and as ep for
7 > pr (and likewise for P{RTT > 7}), then

0, if sprs —8; < MF, and

(l—GF) H Z—F H €EF

N
A j<iaj=1, B j<ia;=1, (15)
Si—S; 2[R 8i—8;<UR
otherwise.

Hence, if the current time s; is within a forward trip time pp of the delivery
deadline sprg, then A} ~ 0 (and the data unit will not be sent). Otherwise, A;
is approximately 1, multiplied by er for every packet containing this data unit
already transmitted within the last round trip time pg (typically at most one
such data unit), multiplied still further by er/er (typically about 1/2) for every
packet containing this data unit already transmitted longer ago than one round
trip time pg. Thus data units within the transmission window are out of the
running for transmission if 1) they are within a forward trip time of their dead-
lines, 2) they have already been transmitted and have been acknowledged, or 3)
they have already been transmitted within a round trip time of the current time.
The other data units are ranked by their sensitivities per unit cost, S;/ By, dis-
counted by a factor of 2 for each unacknowledged transmission. The sensitivities
can also be approximated in a similar way. Hence approximate rate-distortion
optimal streaming can be achieved at very low computational complexity. In-
deed using these approximations we have prototyped a rate-distortion optimized

25

streaming media server running in Java that requires only about one percent of
the CPU on a 700 MHz Pentium III, for a 40 Kbps audio stream. The accuracy
of these approximations is evaluated in Section 7.

When it is desired to send more than one data unit at each transmission
opportunity, a possibility is to simply choose the top candidates from the list
A. This will be only approximately correct, however, since in this case the
sensitivities S; should ideally be recomputed for each possible subset of selected
data units.

The rate control algorithm and the window control algorithm interact. Let
R(s) be the instantanous rate of transmission at time s in bits per second, and
let t;,,,(s) be the derivative of the function ;cqq(s) defining the leading edge
of the transmission window. It turns out that the effective encoding bit rate
for the content transmitted at time s is (1 — ep)R(s)/t],,q4(s). The effective
encoding bit rate is the expected number of valid bits received for each second
of content, and hence determines the instantaneous playback quality. Thus if
R(s) gets larger, the effective encoding bit rate goes proportionally up, while if
tieqa(s) gets steeper, the effective encoding bit rate goes proportionally down.
This is because in the interval [s,s + As], approximately R(s) - As bits are
transmitted, approximately (1 — er)R(s) - As of these are eventually received,
and the window advances by approximately ¢;,,,(s) - As seconds. Since most
data units are transmitted along the leading edge of the window (if they are
transmitted at all), the number of bits eventually received per second of content
is (1 — er)R(s)As/t],,4(s)As, and the result follows. The impact of window
control on the effective encoding bit rate is a further consideration in its design.

6 Flow and Congestion Control

Flow control refers to the ability (by the receiver, usually) to limit the sender’s
transmission rate so that the receiver’s resources are not overwhelmed by too
much data. Congestion control refers to the ability (by the network, the sender,
or the receiver) to limit the sender’s transmission rate so that the network’s
resources are not overwhelmed by too much data, from this communication or
from any other communication. Both flow control and congestion control are
necessary features in most communication systems that operate over best-effort
networks.

In the Internet, the transmission control protocol (TCP) employs both flow
control and congestion control by limiting the size of the window of data that
the sender is trying to transmit at any given time. Without going into the
particulars of TCP, it suffices to say that identical flow and congestion control
mechanisms can be used in our framework for streaming packetized media. The
basic idea is to simulate TCP. When the TCP simulator schedules a segment for
transmission, then the scheduled time becomes a transmission opportunity, at
which time any data unit may be transmitted (assuming fixed-size data units the
same size as a segment), e.g., the data unit [for which J; is largest, as described
in the previous section. In this way, packetized media can be streamed for

26

real-time playback such that its transmission pattern is indistinguishable from
that of TCP. While it is true that TCP’s transmission pattern is not smooth
(alternating between additive rate increases and multiplicative rate decreases),
our packet-oriented framework does not require a smooth transmission pattern
if the transmission window [t;eqq($),tiaq(s)] becomes sufficiently large. The
advantages of this approach are total compatibility with TCP, effective flow
and congestion control, and a proven, stable protocol.

An alternative approach is to use “TCP-friendly” equation-based congestion
control [62, 63, 64, 65, 66, 67, 68, 69]. In this approach, the congestion control
mechanism makes a local estimate of TCP’s long-term average transmission rate
using an equation for the number of seconds between data units such as [68]

T = ur/2€r/3 + 3(ur + 40r)er(1 + 32¢%)\/3er/8, (16)

where €g, ur, and 0% are short-term estimates of the packet loss probability,
the mean round trip time, and the round trip time variance, respectively. The
estimated transmission rate is reduced if necessary to effect flow control, and is
then passed to the rate control mechanism (such as described in the previous
section) to maintain the designated transmission rate. The advantages of this
approach are its TCP-friendliness and its simplicity.

There are certainly other forms of flow and congestion control, such as those
found in commercial streaming media products, which we will not describe here.
However, any congestion control mechanism will include some kind of channel
estimation, e.g., estimation of channel parameters such as €g, ug, and o%. This
is because in the absense of explicit feedback from the network, the sender
and/or receiver must infer the state of the network by observing data units as
they enter and leave the network.

We do not advocate particular mechanisms for flow or congestion control.
However, it is worth noting that our framework is compatible with a variety of
such mechanisms.

We close this section with a possible protocol for server-driven streaming over
a best-effort network, as sketched in Figure 10. The client initially contacts
the server using a protocol such as the real time streaming protocol (RTSP)
[70], and communicates information such as the filename, the presentation time
tprso at which to begin playback, the playback speed v, and the playback
(buffering) delay 0. The server then uses an index in the file to find the first
data unit [to send, and notes its decoder timestamp tprso = tprs,;. When
the server is ready to send, it records the time sTil, sends to the client a
synchronization packet containing a unique identifier as well as the first decoder
timestamp tprso, sets a timer, and awaits a reply. If the server does not receive
a reply before the timer expires, then it repeats the process. Eventually, after a
forward trip time, the client receives the synchronization packet, records tprso
and the current time r44,¢, sSends an acknowledgement packet containing both
the unique identifier and r4.4,¢, sets a playback timer for § seconds, and awaits
data packets from the server. If it receives a new synchronization packet in
the meantime, then it repeats the process. Eventually, after a backward trip

27

start

s=gnn o
(acki H
' 1
|
éack,i.:_ 77 8
Sacki 1, ¥y Facki
ax
ack,i®

Figure 10: A real-time transmission protocol.

time, the server receives the acknowledgement data unit, records 44+ and the
current time sT2%,, cancels its timeout timer, estimates Ssq.¢ (corresponding to

Tstart) aS the midpoint
& _ min max
Sstart = (sstart + Sstart)/27

and begins sending data packets to the client as fast as the congestion control
mechanism will allow, e.g., sending the data unit with the highest A}S;/B; every
T seconds, where T is computed by (16). The server uses a unique sequence
number 4 for each data packet sent, and records for each sequence number the
time s; = sg‘ci,‘;i at which the packet is sent as well as an identifier /; for the data
unit in the packet. If and when the client receives a packet with sequence num-
ber ¢, it notes the current time 7, ;, and returns an acknowledgement packet
containing the sequence number ¢ and the time ryc ; (and possibly additional
acknowledgements of previous data units). The client also buffers the received
data unit, eliminates duplicate data units if necessary, and sorts the data units
in the buffer in order of their decoder timestamps tprs;. When the client’s
playback timer expires at time rg4-¢ + &, the client begins to remove from the

28

buffer and decode any data units [with timestamps tprs,; equal to
t= tDTSO + V(T - (Tstart + 5)) = AT—Hf('r): (17)

where r is the current time at the client. Data units that arrive at time r with
timestamps later than (17) are discarded. If and when the server receives an
acknowledgement packet containing sequence number ¢ and timestamp rgcp,i, it
notes the current time sglc‘}c’fi and estimates Sqck,i = Sstart + (Tack,i — Tstart) =
A s(Tack,i) a8 Sack,i = Sstart + (Tack,i — T'start). These quantities can be used

to compute the round trip time RTT; = she; — shap ; and estimate the forward
and backward trip times FTT; = Sack,i — S™B . and BTT; = s™ax _ Sack.iy

ack,i ack,i
where FTT; + BTT; = RTT;. - o
The server can use the samples {RTT;}, {FTT;}, and {BTT;} to compute
short-term estimates of the means, variances, and distributions of these quanti-
ties. For example,
A _RTTz — UR,
PR <+ pR+MA,
2 2 2 2
op + op+m(A%-ofg),
where 7; and 7, are constants such as 1/8 and 1/4, respectively, as in TCP
[71]. Then, using the relations (3) and (4) in Section 2, the parameters of a
translated Gamma, distribution for RT'T can be computed as
KR < min{/ﬁ:R,RTTi},
ar < (ur—KR)/0%,
ng < (4R — KR)QR.
The same can be done for FTT and BTT. . .
Clearly, the forward and backward trip time estimates FTT; and BTT};,
their means p1z and p g, and the translations of their distributions p(7|not lost)
and pg(7|not lost) are biased upward and respectively downward by the same

constant §; — 8; = Sstart — Sstart = A. However, this bias is exactly cancelled
out in the relevant calculations in Section 3, because for example

P{FTT > Sprs — Si}
= P{FTT+A>8DT5+A—Si}
= P{ﬁT>§DT5—Si}.

Thus precise synchronization between the server and client is not necessary;
FTT and $prs can be used instead of FTT and sprs.

7 Experimental Results

In this section, we report our experimental results only for the scenario of sender-
driven transmission over a single-QoS network with retransmissions. First we

29

Error—cost function for varying window sizes
10 T T T T T

10° - b

z
noon
EN

107 -

1
© o N o 9

e =¢ =20%
— F~ B
107 N=4t016
T=50ms
K= 25ms (0.5T)
10° | Nz =4nodes
Lo, =12.5ms (0.25T)
Ko = 50ms (1 T)
n_ = 8 nodes
10—107 R _
o, =125ms (0.257T)
mean RTT =150 ms (3 T)
W = NT = 200 to 800 ms

12 I I I I

Expected Error € (log late/loss probability)
1 1" 1 1
~ERE

zlzlzlzlz|z|z| 2| z| z| z| 2
1

= 2

ol o

[N
(2]

| | |
0 0.5 1 15 2 2.5 3 35 4
Expected Cost p (# of transmissions)

10

Figure 11: Error-cost functions for varying window sizes.

examine in detail error-cost optimized transmission of a single data unit, and
later examine rate-distortion optimized streaming of an entire audio presenta-
tion. Throughout the section we assume that each data unit has transmission
opportunities every T seconds, at sender times sg, s1,...,Sy—1 with delivery
deadline sprs = sy where s, = sg + nT forn =1,...,N. Thus W = NT is
the size of the window of transmission opportunity for each data unit.

The error-cost function for transmission of a single data unit was shown in
Figures 5e and 7 of Section 3 for the parameters shown in Figure 7. Figure 7
shows the error-cost function on a log-linear scale, with each vertex of its convex
hull labeled by the sequence of actions [ag, a1, ..., ar] for the optimal policy 7}
corresponding to the Lagrange multiplier A for that vertex. By following policy
m5,> Which transmits up to three times at intervals of 37" within a window of
duration 8T, is is possible to reduce the late/loss probability to less than one
percent at an expected cost of only about 1.25 transmitted packets per data unit.
The transmission interval 37T is equal to a slightly aggressive timeout interval:
the mean RTT (kg + ngr/ar = 2T) plus two times the standard deviation
(2y/nr/ar =T).

It is natural to ask whether extending the window size larger than 8T,
which is four times the mean RTT, can allow arbitrary further reductions in
the late/loss probability, or whether the reductions saturate. Figure 11 answers
this question, by plotting the error-cost function for the window size W = NT
ranging from 4T to 167, with T fixed at 50 ms and N ranging from 4 to 16. (In
this set of experiments we increased the mean RTT to 37 and the standard de-
viation to about 0.7T in order to improve the dynamic range.) The figure shows
that at any given expected cost p greater than 1/(1 — ep) = 1.25 transmitted

30

Error—cost function for varying transmission densities
10 T T T T T T T

T=150ms,N=4
10° - b

10 L T=75ms,N=8 |

e =g = 20%
N=4to 16
T=150to 37.5 ms T=50ms, N=12
Ke = 25ms

100 | n.= 4 nodes i
1/0(F =125ms

Ke = 50 ms

n,=8 nodes

1/0(R =125ms

mean RTT = 150 ms

W = NT =600 ms

12 L L L I

0 0.5 1

107 -

T=375ms,N=16

Expected Error € (log late/loss probability)

1070k

| | |
. 2 2.5 3 35 4
Expected Cost p (# of transmissions)

10

Figure 12: Error-cost functions for varying transmission densities.

packets per data unit, the late/loss probability can be reduced arbitrarily by in-
creasing the window size to allow a larger number of retransmissions. However,
for any expected cost p less than 1/(1 — ep) = 1.25, the late/loss probabil-
ity saturates at a lower bound equal to 1 — p(1 — ep). This is because the
information-theoretic capacity of an erasure channel with erasure probability
er is C = (1 —ep) source units per transmission unit [72][§8.1], which cannot be
increased by feedback [72][§8.12]. Any attempt to transmit at a rate R = 1/p
greater than C' source units per transmission unit (i.e., at a rate p less than 1/C
packet transmissions per data unit) inherently leads to a positive erasure prob-
ability, which must be at least (R—C)/R=(1/p— (1 —€r))p=1—p(1 —€F).
At capacity (p = 1.25), it appears that the late/loss probability saturates at
N =8, or at a window size 8T equal to about 2.67 times the mean RTT.

It is also natural to ask, for a fized window size W, whether the late/loss
probability can be improved by increasing the density of transmission oppor-
tunities. Figure 12 answers this question, by plotting the error-cost func-
tion for a fixed window size W = NT = 600 ms, for N = 4,8,12,16 and
T = 150,75, 50,37.5 ms, respectively. The mean RTT remains fixed at 150 ms.
The figure shows that at any given expected cost p greater than 1/(1—er) = 1.25
transmitted packets per data unit, the late/loss probability can be reduced ar-
bitrarily by increasing the transmission density (assuming, as we do here, that
each transmission is independent.) However, for any expected cost p less than
1/(1 — er) = 1.25, the late/loss probability again saturates at the lower bound
1—p(1—e€p). At capacity, it appears that the late/loss probability saturates at

N =8, or at a transmission density equal to about two transmissions per mean
RTT.

31

A’ as a function of time until delivery deadline, parametrized by history
1 T T T T T T T

no previous transmission history
09F - -—-—————~ - ————8——— 8 ————

071

0.6

~<05F one previous transmission H time units ago 7
777777 9 H=oo
0.4 |
03 ¢ e
=T = H=6 H=7)
Hea H=5 °
4
02k 5 8 b
01r ° Q. i
<&
o " o 8 "
0 1 2 3 4 5 6 7

time until delivery deadline

Figure 13: Value of X’ below (above) which optimal policy has “send” (“don’t
send”) as its first action.

The above results show that for p < 1/(1 — €r), a sufficient value for N
is probably in the range 8-12. However, the results also also indicate that for
p > 1/(1 — €F), increasing N can dramatically improve performance. Unfortu-
nately, the computational complexity of determining an optimal strategy grows
exponentially in N, even using dynamic programming (6)—(7). Fortunately, it
is possible to compute an approximate stepwise-optimal policy with computa-
tional complexity essentially linear in N using the approximations (14) or (15)
for A, the threshold below and above which the optimal policy has “send” and
“don’t send” (respectively) as its first action. Our next set of results justify
these approximations.

Figure 13 shows X' as a function of time until the delivery deadline, in
units of T' = 50 ms for the channel parameters kK, nr,ar, kg, nR, g shown in
Figure 7. When there have been no previous transmissions, X' is given by the
square markers, the approximation A’ of (14) is given by the solid line through
the square markers, and the approximation of (15) is given by the dashed line
through the square markers. It is evident that the approximation A’ of (14) is
essentially exact, and the approximation of (15) is essentially exact when the
delivery deadline is further away than 2T (the mean RTT).

When there has been one previous transmission H time units ago, for H =
4,5,6,7,8,00, A’ is given by the circle markers, the approximation X' of (14)
is given by the solid line through the circle markers, and the approximation of
(15) is given by the dashed line through the circle markers. It is evident that
the approximation X’ of (14) is essentially exact when the time H since the last

32

A’ as a function of time until delivery deadline, parametrized by history
1 T T T T T T T

no previous transmission history
0.9

071 T

0.6 T

<05 one previous transmission H = 2 time units ago

0.3 i

021 T

0.1r 3

B>
B>

0 I 0 & N &

0 1 2 3 4 5 6
time until delivery deadline

-~

Figure 14: Value of X' when the mean RTT is one time unit and its variance is
Zero.

transmission is large. As H gets smaller the approximation is exact only when
the time until the delivery deadline is smaller than H, i.e., when the delivery
deadline is closer (in the future) than the last transmission (in the past). Other-
wise, when the delivery deadline is further away than H, X’ falls off as the value
of immediately retransmitting the data unit falls off. When the last retransmis-
sion is very recent, ie., H = 1,2,3, M is given by the diamond markers, the
approximation A’ of (14) is given by the solid lines that are initially through the
diamond markers, and the approximation of (15) is given by the lowest dashed
line. It is evident that the approximation) of (14) is still good when the de-
livery deadline is closer (in the future) than the last transmission (in the past).
However, for delivery deadlines further than H away, the approximation of (15)
is better.

The approximations (14) and (15) become even better as the variance of
the round trip time becomes lower. Figure 14 shows)\’ and its approximations
as in Figure 13, where the mean RTT remains equal to one time unit but the
variance has been reduced to zero (i.e., kg + ng/agr = 1T while ng/a% — 0).
Tt is clear that the approximations are excellent, especially as er (the height of
the lowest line) becomes small.

When there are multiple previous transmissions, A’ and its approximations
simply scale down together, by a factor of ep/er, which is a factor of about
1/2 in these experiments, for each previous transmission. This can be seen in
Figure 15.

Finally, we consider the overall distortion-rate performance of various meth-

33

A’ as a function of time until delivery deadline, parametrized by history
1 T T T T T T T

no previous transmission history

09r T T T T T g

071

0.6

~<O05F one previous transmission H=8 time units ago

0.3r
two previous transmissions H=8,12 time units ago o

< <
< < < <

021

S > > b

three previous transmissions H=8,12,16 time units agg

0.1r

4474444444447,444444444444
|

‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8
time until delivery deadline

Figure 15: Value of X' when there are multiple previous transmissions.

ods of streaming one minute of packetized audio content. The audio content,
the first minute of Sarah McLachlan’s Building a Mystery, is compressed using a
scalable version of the Windows Media Audio codec. The codec performs percep-
tual weighting on lapped orthogonal transform coefficients, followed by bitplane
coding to produce an embedded bit string for each group of frames (GOF) of
duration about 0.75 s. The bit string for each GOF is partitioned into segments
of length 500 bytes, and packetized into data units. Twelve 500-byte data units
are kept for each GOF, for a maximum bit rate of 12 x 500 x 8/0.75 = 64
Kbps. The twelve data units per GOF are sequentially dependent, as shown in
Figure 1a. Each data unit [is labeled by the decrease Ad; in the perceptually
weighted squared error if the data unit is decoded on time and all of its pre-
decessors in the same GOF are decoded on time. All twelve data units in the
Mth GOF receive the same decoding timestamp, equal to 0.75M.

We compare several streaming systems. All of the systems use the same
playback delay § = 420 ms and the same transmission buffer size, which ramps
from 420 ms to 840 ms during the preroll period (420 ms) according to the
functions ¢4 (s) and #1eqq(s) as specified in Section 5. The systems also use the
same channel parameters, which are shown in Figure 16. Transmitted packets
are dropped at random, and those not dropped receive a random delay, using
a pseudo-random number generator. The pseudo-random number generator is
initialized to the same seed for each of the systems compared. For each system
at each transmission rate, performance is averaged over multiple runs to smooth
out the effects of particular channel realizations. Figure 16 shows, for each of the
systems compared, the signal-to-noise ratio in dB of the end-to-end perceptual

34

Playback SNR of the audio clip

14 T
=g = 20%
N=12

2F T=70ms

K= 70ms(1T)
n.= 4 nodes
101 1/, =17.5ms (0.25:T)
Ky = 140ms (2 T)

n, = 8 nodes

8 la,=17.5ms(0.25T)
mean RTT =280 ms (4 T)
W = NT = 840 ms

SNR (dB)

—&— (1) No error control

—&— (2) Omniscient retransmission

—#+— (3) Rate—distortion optimization without rate control
—A- (4) Rate—distortion optimization with rate control

L T T T T

0 10 20 40 50 60 70

30
Transmission rate (Kbps)

Figure 16: Layered audio transmission

distortion as a function of the transmission rate (in Kbps) averaged over the
one minute audio clip. We now describe the compared systems in detail.
System 1: No error control. In this system, there is no error control. Data
units are transmitted at most once, in GOF order. A data unit is transmitted
only if all of its predecessors in the same GOF are also transmitted. The number
of data units transmitted in each GOF is proportional to the transmission rate.
As shown in Figure 16, the performance of this system saturates as the trans-
mission rate increases. This is because in the absense of error control, base layer
packets are being lost 20% of the time, limiting overall performance, regardless
of the transmission rate. This shows the need for some sort of error control.
System 2: Ommiscient retransmission. In this system, error control is pro-
vided by retransmissions, which may occupy up to 20% of the channel band-
width (equal to the packet loss probability). Data units for which the server
receives negative acknowledgements (NAKs) from the client are queued, and are
retransmitted from the queue on a space-available basis. However, data units
that are still in the retransmission queue past their delivery deadlines are re-
moved from the queue and are not retransmitted. The remaining 80% or more
of the channel bandwidth is used for first-time transmission of data units in the
same manner as in System 1. Omniscient refers to the manner in which the
client sends NAKs. Commonly, a client will send a NAK whenever a packet
sequence number is detected missing for more than some timeout interval, but
more sophisticated strategies are possible and are implemented in commercial
streaming media systems. Here, we provide an upper bound on the performance
of any such system by simulating an omniscient, though unrealizable, strategy

35

in which the client sends precisely one NAK for each packet that is lost, at pre-
cisely the moment that the packet would have arrived at the client if it had not
been lost. As Figure 16 shows, such a system with omniscient retransmission
can perform up to three or more dB better than a system without error control.

System 3: Rate-distortion optimization without rate control. In this system,
rate-distortion optimization as described in the previous sections is applied with-
out rate control to the scheduling of packet transmissions at the sender. Unlike
System 2, no NAKs are available; only ACKs are sent back to the server upon
receipt of a packet by the client. The server uses its history of previous trans-
missions as well as its history of acknowledgments to determine which packets
to transmit (or retransmit) at each transmission opportunity. The Lagrange
multiplier A is fixed for the entire presentation. However, the number of data
units selected at each transmission opportunity may vary, resulting in a variable
transmission rate during the presentation. Nevertheless, the average transmis-
sion rate during the presentation is well behaved and monotonically increases
as A decreases. As Figure 16 shows, rate-distortion optimization without rate
control outperforms the system with omniscient retransmissions by up to four
or more dB, and outperforms the system without any error control by up to an
additional three or more dB, for a total gain up to seven or more dB.

System 4: Rate-distortion optimization with rate control. This system is
the same as System 3 with the addition of rate control. In this case we fix a
bandwidth limit for each group of frames (instead of fixing A as in System 3).
In order to get as close as possible to the bandwidth limit at each group of
frames we iterate the rate-distortion optimized selection procedure by adjusting
A until the limit is reached but not exceeded. As Figure 16 shows, there is
very little penalty (a fraction of a dB) for using a rate control mechanism to
impose a fixed rate constraint on the transmission. Thus, it is clear that the rate-
distortion optimized systems obtain superior performance by using the available
bandwidth in the most cost-effective way.

As a final comment, it is worth noting that the number of runs required to
smooth out the effects of particular channel realizations differs significantly for
the different systems. Both Systems 1 and 2 require over 300 runs to obtain
statistically “stable” results (in which averaging over additional realizations does
not change the result much, or converges). This is because Systems 1 and 2
do not distinguish between packets of differing importance, and hence different
channel realizations lead to a large dynamic range in playback quality. On the
other hand, System 3 requires fewer than 30 runs, and System 4 requires fewer
than 5 runs; sometimes one or two runs are sufficient. This clearly indicates
that the rate-distortion optimized systems provide a relatively stable playback
quality when operated over a lossy network.

8 Conclusion

Perhaps the main lesson of this paper is that rate-distortion optimized stream-
ing, or more generically, cost-importance optimized streaming, can be achieved

36

in a variety of scenarios by concentrating on cost-error optimized transmission of
one packet at a time, and gluing the resulting transmission policies together. In
this regard, this paper has made a number of important specific contributions,
including the following:

e Abstraction of the encoding and packetization of multiple media in terms
of a single directed acyclic dependency graph, in which each node repre-
sents a data unit labeled by its delivery deadline, size, and importance, and
the concept of an incrementally additive distortion measure with respect
to this dependency graph.

e Abstraction of a variety of different transmission scenarios, including sender-
driven or receiver-driven transmission over best-effort networks, multiple
overlay networks, integrated or differentiated services networks, combined
wireline/wireless networks, and multiple access networks, in terms of a
finite alphabet of choices 7 for sending a single data unit and measures of
error probability () and cost p(m) for each choice.

e The concept of the error-cost function €(p) = min,{e(w) : p(7) < p} of
a data unit and its relationship to the average distortion D and average
rate R of an entire multimedia presentation.

e The generic algorithm X1 for sending a single data unit, 7* = argmin, e(7)+
N p(w), which achieves optimal error-cost performance by selecting the
transmission option 7 that minimizes a Lagrangian.

¢ The specific algorithm X1 for scenarios involving feedback, in which trans-
mission options are identified as policies in a Markov decision process, La-
grangians of the error-cost function are associated with each policy, and a
policy minimizing the Lagrangian is found using dynamic programming.

e The concept of sensitivity of the distortion to not receiving a particular
data unit on time, and its computation in terms of error probabilities of
other data units.

e The algorithm SA for jointly choosing the set of transmission options
for all data units minimizing the Lagrangian D + AR, using a locally
optimal iterative descent algorithm. Also, stepwise application of the SA
algorithm, in feedback scenarios, for stepwise locally optimal transmission
in the distortion-rate sense.

e Formalization of the problem of window control, and characterization of
lagging and leading window boundaries.

o Development of a fast rate control algorithm for use with the SA algorithm,
and a sample protocol.

We believe that these contributions significantly advance the state of the art in
streaming media systems, and lay the groundwork for future work on streaming
media over diffserv, wireless, and multiple access networks, as well as via caching
proxies, which are just now being deployed.

37

References

[1]

[2]

[3]

[4]

[5]

[6]

[10]

[11]

[12]

P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra. FEC and pseudo-ARQ
for receiver-driven layered multicast. In Communication Theory Workshop,
Aptos, CA, May 1999. TEEE.

P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra. FEC and pseudo-ARQ
for receiver-driven layered multicast of audio and video. Technical Report
MSR-TR-99-86, Microsoft Research, Redmond, WA, November 1999.

P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra. FEC and pseudo-
ARQ for receiver-driven layered multicast of audio and video. In Proc. Data
Compression Conference, Snowbird, UT, March 2000. IEEE Computer So-
ciety.

P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra. Error control for
receiver-driven layered multicast of audio and video. IEEE Trans. Multi-
media, 2001. To appear.

Z. Miao and A. Ortega. Optimal scheduling for streaming of scalable media.
In Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, November 2000.

Z. Miao. Algorithms for Streaming, Caching and Storage of Digital Media.
PhD thesis, University of Southern California, Los Angeles, CA, August
2001. Expected.

J. Zhou and J. Li. Scalable audio streaming over the Internet with network-
aware rate-distortion optimization. In Proc. Int’l Conf. Image Processing,
Thessaloniki, Greece, October 2001. IEEE. Submitted.

M. Podolsky, S. McCanne, and M. Vetterli. Soft ARQ for layered stream-
ing media. Technical Report UCB/CSD-98-1024, University of California,
Computer Science Division, Berkeley, CA, November 1998.

M. Podolsky, S. McCanne, and M. Vetterli. Soft ARQ for layered streaming
media. Journal of VLSI Signal Processing Systems for Signal, Image and
Video Technology, Special Issue on Multimedia Signal Processing, Novem-
ber 2001. To appear.

V. Chande, H. Jafarkhani, and N. Farvardin. Joint source-channel coding of
images for channels with feedback. In Proc. Information Theory Workshop,
San Diego, CA, February 1998. IEEE.

S. D. Servetto. Compression and Reliable Transmission of Digital Image
and Video Signals. PhD thesis, University of Illinois, Urbana-Champaign,
1999.

A. Ortega, K. Ramchandran, and M. Vetterli. Optimal trellis-based
buffered compression and fast approximation. IEEE Trans. Image Pro-
cessing, 3:26-40, January 1994.

38

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C.-Y. Hsu, A. Ortega, and A. Reibman. Joint selection of source and
channel rate for VBR video transmission under ATM policing constraints.
IEEE Journal on Selected Areas in Communications, 15(5):1016-1028, Au-
gust 1997.

J.-J. Chen and D. W. Lin. Optimal bit allocation for coding of video
signals over ATM networks. IEEE J. Selected Areas in Communications,
15(6):1002-1015, August 1997.

D. A. Turner and K. W. Ross. Optimal streaming of layer-encoded multi-
media presentations. In Proc. Int’l Conf. Multimedia and Ezhibition, New
York, NY, July 2000. IEEE.

I. Busse, B. Deffner, and H. Schulzrinne. Dynamic QoS control of multime-
dia applications based on RTP. In First International Workshop on High
Speed Networks and Open Distributed Platforms, St. Petersburg, Russia,
June 1995.

H. Song, J. Kim, and C.-C. J. Kuo. Real-time encoding frame rate control
for H.263+ video over the Internet. Signal Processing: Image Communica-
tion, 15(1-2):127-148, September 1999.

K. Chawla, Z. Jiang, X. Qiu, and A. Reibman. Transmission of streaming
video over an EGPRS wireless network. In Proc. Int’l Conf. Multimedia
and Ezhibition, New York, NY, July 2000. IEEE.

A. Reibman, Y. Wang, X. Qiu, Z. Jiang, and K. Chawla. Transmission of
multiple description and layered video over an EGPRS wireless network. In
Proc. Int’l Conf. Image Processing, volume 2, pages 136—139, Vancouver,
BC, October 2000. IEEE.

T. Tian, A. H. Li, J. Wen, and J. D. Villasenor. Prority dropping in net-
work transmission of scalable video. In Proc. Int’l Conf. Image Processing,
volume 3, pages 400-403, Vancouver, Canada, October 2000. IEEE.

P.-C. Hu, Z.-L. Zhang, and M. Kaveh. Channel condition ARQ rate control
for real-time wireless video under buffer constraints. In Proc. Int’l Conf.
Image Processing, volume 2, pages 124-127, Vancouver, BC, October 2000.
IEEE.

A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority
encoding transmission. IEEE Trans. Information Theory, 42:1737-1744,
November 1996.

G. Davis and J. Danskin. Joint source and channel coding for image trans-
mission over lossy packet networks. In Conf. Wavelet Applications to Digital
Image Processing, Denver, CO, August 1996. SPIE.

39

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. M. Boyce. Packet loss resilient transmission of MPEG video over the In-
ternet. Signal Processing: Image Communication, 15(1-2):7-24, September
1999.

U. Horn, K. Stuhlmiiller, M. Link, and B. Girod. Robust Internet video
transmission based on scalable coding and unequal error protection. Signal
Processing: Image Communication, 15(1-2):77-94, September 1999.

A. E. Mohr, E. A. Riskin, and R. E. Ladner. Graceful degradation over
packet erasure channels through forward error correction. In Proc. Data
Compression Conference, Snowbird, UT, March 1999. IEEE Computer So-
ciety.

A. E. Mohr, E. A. Riskin, and R. E. Ladner. Unequal loss protection:
Graceful degradation of image quality over packet erasure channels through

forward error correction. IEEE J. Selected Areas in Communications,
18(6):819-829, June 2000.

R. Puri and K. Ramchandran. Multiple description source coding through
forward error correction codes. In Proc. Asilomar Conference on Signals,
Systems, and Computers, Asilomar, CA, October 1999. IEEE.

W. Zhu, Q. Zhang, and Y.-Q. Zhang. Network-adaptive rate control with
unequal loss protection for scalable video over Internet. In Proc. Int’l Symp.
Circuits and Systems, Sydney, May 2001. IEEE.

Q. Zhang, G. Wang, W. Zhu, and Y.-Q. Zhang. Robust scalable video
streaming over Internet with network-adaptive congestion control and un-
equal loss protection. In Proc. Packet Video Workshop, Kyongju, Korea,
April 2001. EURASIP/IEEE.

P. A. Chou and K. Ramchandran. Clustering source/channel rate alloca-
tions for receiver-driven multicast with error control under a limited number
of streams. In Proc. Int’l Conf. Multimedia and Ezhibition, New York, NY,
July 2000. IEEE.

A. E. Mohr, R. E. Ladner, and E. A. Riskin. Approximately optimal as-
signment for unequal loss protection. In Proc. Int’l Conf. Image Processing,
Vancouver, BC, September 2000. IEEE.

J. Lu, A. Nosratinia, and B. Aazhang. Progressive source-channel coding

of images over bursty error channels. In Proc. Int’l Conf. Image Processing,
Chicago, IL, October 1998. IEEE.

M.J. Ruf and J.W. Modestino. Operational rate-distortion performance for
joint source and channel coding of images. IEEE Trans. Image Processing,
8(3):305-320, March 1999.

40

[35] V. Chande and N. Farvardin. Progressive transmission of images over
memoryless noisy channels. IEEE J. Selected Areas in Communications,
18(6):850-860, June 2000.

[36] J.-C. Bolot and A. Vega-Garcia. The case for FEC-based error control for
packet audio in the Internet. ACM Multimedia Systems Journal, 1998. To
appear.

[37] M. Podolsky, C. Romer, and S. McCanne. Simulation of fec-based error
control for packet audio on the internet. In Proc. Infocom, San Francsico,
CA, March 1998. TEEE.

[38] J. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-based error con-
trol for interactive audio on the Internet. In Proc. Infocom, New York, NY,
March 1999. IEEE.

[39] W. Jiang and A. Ortega. Multiple description coding via polyphase trans-
form and selective quantization. In Proc. Visual Communications and Im-
age Processing, San Jose, CA, January 1999. SPIE.

[40] A.C.Miguel, A. E. Mohr, and E. A. Riskin. SPTHT for generalized multiple
description coding. In Proc. Int’l Conf. Image Processing, Kobe, Japan,
October 1999.

[41] S. Mehrotra. Multiple Description Coding Using Overcomplete Linear Ex-
pansions. PhD thesis, Stanford University, Stanford, CA, June 2000.

[42] C. Papadopoulos and G. M. Parulkar. Retransmission-based error control
for continuous media applications. In Proc. Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Zushi, Japan, July 1996.

[43] G. Carle and E. W. Biersack. Survey of error recovery techniques for
IP-based audio-visual multicast applications. IEEE Network Magazine,
11(6):24-36, November 1997.

[44] X. Li, S. Paul, P. Pancha, and M. H. Ammar. Layered video multicast with
retransmissions (LVMR). In Proc. Network and Operating System Support
for Digital Audio and Video (NOSSDAV), St. Louis, MO, May 1997.

[45] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen. Scalable Internet
video using MPEG-4. Signal Processing: Image Communication, 15(1—
2):95-126, September 1999.

[46] D. Wu, Y. T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. J.
Chao. On end-to-end architecture for transporting MPEG-4 video over
the Internet. IEEE Trans. Circuits and Systems for Video Technology,
10(6):923-941, September 2000.

[47] D. Wu, Y. T. Hou, and Y.-Q. Zhang. Transporting real-time video over the
Internet” challenges and approaches. Proceedings of the IEEE, 88(12):1855—
1875, December 2000.

41

[48] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang. An efficient transport
scheme for multimedia over wireless Internet. In Proc. Int’l Conf. Third
Generation Wireless and Beyond, San Francisco, CA, May 2001. IEEE.

[49] S. D. Servetto, K. Ramchandran, K. Nahrstedt, and A. Ortega. Optimal
segmentation of a VBR source for its parallel transmission over multiple

ATM connections. In Proc. Int’l Conf. Image Processing, Santa Barbara,
CA, October 1997. IEEE.

[50] V. Padmanabhan. Using differentiated services mechanisms to improve
network protocol and application performance. In RTAS Workshop on
QoS Support for Real-Time Internet Applications, Vancouver, Canada, July
1999. IEEE.

[51] J. Shin, J. Kim, and C.-C. J. Kuo. Relative priority based QoS interaction
between video applications and differentiated service networks. In Proc.
Int’l Conf. Image Processing, Vancouver, Canada, October 2000. IEEE.

[62] W. Li and Y. Chen. Experiment result on fine granularity scalability. con-
tribution M4473, ISO/IEC JTC1/SC29/WG11, Seoul, March 1999.

[53] S. Li, F. Wu, and Y.-Q. Zhang. Experimental results with progressive fine
granularity scalable (PFGS) coding. Technical Report m5742, ISO/IEC
JTC1/SC29/WG11, Noordwijkerhout, NL, March 2000.

[54] W. Turin. Digital Transmission Systems: Performance Analysis and Mod-
eling. McGraw-Hill, 1999.

[55] A. Mukherjee. On the dynamics and significance of low frequency com-
ponents of internet load. Internetworking: Res. Experience, 5:163-205,
December 1994.

[56] A.M. Mood, F.A. Graybill, and D.C. Boes. Introduction to the Theory of
Statistics. McGraw-Hill, 3rd edition, 1974.

[57] S.M. Ross. Stochastic Processes. Wiley, 1974.

[58] R. Fletcher. Practical Methods of Optimization. Wiley, 2nd edition edition,
1987.

[59] ITU-T SG16/Q15 (T. Gardos, ed.). Video codec test model number 10
(TMN-10). ITU-T SG16/Q15 document Q15-D-65, April 1998.

[60] J. Choi and D. Park. A stable feedback control of the buffer state using
the controlled lagrange multiplier method. IEEE Trans. Image Processing,
3(5):546-588, September 1994.

[61] G. J. Sullivan and T. Wiegand. Rate-distortion optimization for video
compression. IEEE Signal Processing Magazine, 15(6):74-90, November
1998.

42

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Madhavi and S. Floyd. TCP-friendly unicast rate-based flow control.
Technical note sent to the end2end-interest mailing list, January 1997.
http://www.psc.edu/networking /papers/tcpfriendly.html.

M. Mathis, J. Semke, S. Mahdavi, and T. Ott. The macroscopic behavior
of the TCP congestion avoidance algorithm. Computer Communication
Review, 27(3):67-82, July 1997.

T. Turletti, S.F. Parisis, and J.-C. Bolot. Experiments with a layered
transmission scheme over the Internet. Technical Report 3296, INRIA,
Sophia Antipolis, France, November 1997.

D. Sisalem and H. Schulzrinne. The loss-delay adaptation algorithm: a
TCP-friendly adaptation scheme. In Proc. Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Cambridge, UK, July
1998.

W.-T. Tan and A. Zakhor. Internet video using error resilient scalable
compression and cooperative transport protocol. In Proc. Int’l Conf. Image
Processing, volume 3, pages 458—462, Chicago, IL, October 1998.

R. Rejaie, M. Handley, and D. Estrin. RAP: an end-to-end based con-
gestion control mechanism for realtime streams in the Internet. In Proc.
INFOCOM, New York, NY, March 1999. IEEE.

S. Floyd, M. Handley, and J. Padhye. Equation-based congestion control for
unicast applications. Technical Report TR-00-03, International Computer
Science Institute, Berkeley, CA, March 2000.

Q. Zhang, Y.-Q. Zhang, and W. Zhu. Resource allocation for audio and
video streaming over the Internet. In Proc. Int’l Symp. Circuits and Sys-
tems, volume IV, pages 21-24, Geneva, Switzerland, May 2000. IEEE.

H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol
(RTSP). Technical Report RFC-2236, IETF, April 1998.

D.E. Comer. Internetworking with TCP/IP, volume 1. Prentice-Hall, 3
edition, 1995.

T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

43

