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Abstract 
Existing wireless networks provide dynamically varying resources with only limited support for the 
Quality of Service required by the bandwidth-intense, loss-tolerant, and delay-sensitive multimedia 
applications. This variability of resources does not significantly impact data applications (e.g., file 
transfers), but has considerable consequences for multimedia applications and often leads to 
unsatisfactory user experience. Recently, the research focus has been to adapt existing algorithms 
and protocols at the lower layers of the network stack to better support multimedia transmission 
applications, and conversely, to modify application layer solutions to cope with the varying 
wireless networks resources. In this paper, we show that significant improvements in wireless 
multimedia performance can be obtained by deploying a joint application-layer packetization and 
MAC-layer retransmission strategy. First, we show that packet-size optimizations solely 
determined at the MAC-layer result in a sub-optimal performance in terms of the multimedia 
quality. Subsequently, we propose cross-layer strategies that optimize the packetization, 
prioritization and retransmission strategies based on content characteristics, channel conditions, 
and the specific features of the deployed video coder. Finally, we investigate the use of content 
based distortion models for the video, to reduce the complexity of our proposed optimization. 
1. Introduction 
Wireless networks provide only limited support for the Quality of Service (QoS) required by 
delay-sensitive and high-bandwidth multimedia applications as they provide dynamically varying 
resources in terms of available bandwidth, due to multi-path fading, co-channel interference, and 
noise disturbances. A variety of application-layer solutions have been proposed to cope with these 
challenges. These include rate adaptation, (rate-distortion optimized) scheduling, error resilience 
techniques, error concealment mechanisms and joint source-channel coding. An excellent review 
of application-layer research in wireless multimedia streaming is provided in [1]. Cross-layer 
design for wireless multimedia transmission has also been investigated (e.g. [7][11][15]) and the 
results indicate that a significant gain in performance can be obtained.  It is however important to 
note that existing cross-layer solutions often overlook the important issue of packetization and its 
relationship to other protection strategies at various layers as well as its impact on the rate-
distortion (R-D) performance at the application-layer.  

In this paper, we focus on developing content-based flexible and adaptive packetization 
strategies for scalable multimedia streams and corresponding Medium Access Control (MAC) 
retransmission strategies to enable optimal rate-distortion-resilience tradeoffs for wireless 
multimedia streaming. We develop these joint packetization-retransmission schemes using a cross-
layer optimization approach, where the application layer collaborates with the MAC layer to 
jointly determine the optimal packet sizes and retransmission limits.  

A plethora of application-layer packetization strategies have been developed for various video 
compression schemes. Rogers and Cosman [3] proposed ad hoc strategies of grouping compressed 
wavelet image codeblocks into packets for improved resilience. Similar techniques of grouping 
codeblocks into packets will be deployed in our approach, with the key difference being that our 
solution will explicitly consider the resulting R-D performance due to joint packetization-MAC 



retransmission under different channel conditions. Wu, Cheng and Xiong [4] designed optimal 
strategies to minimize packetization overheads due to bitstream alignment and studied the 
performance of these schemes against packet erasure at different bit-rates, however they did not 
consider any protections offered by the other layers of the OSI stack. In this paper, we also 
investigate the overheads associated with different packetization strategies and the impact on 
performance at the application-layer. Flexible packetization of non-scalable video such as H.264 
using a network adaptation layer (NAL) has also been proposed [5]. A similar NAL could also be 
implemented for the studied wavelet video coder. However, these application-layer packetization 
techniques do not consider the protection and adaptation strategies available at the lower layers 
and do not allow for easy multimedia adaptation based on the channel conditions. 

The problem of optimized packetization has also been addressed at the lower layers of the 
protocol stack. For instance, the error control parameters such as FEC, ARQ, packet length and 
PHY modulation, are optimized based on the network conditions. Qiao and Choi [6] express the 
effective “goodput” of an 802.11 system as a closed form function of the data payload length, the 
frame retry count, the wireless channel conditions and the data transmission rate, and use this to 
select the best PHY mode for transmitting data. However, this work does not consider the content 
characteristics and, as will be shown in this paper, results in sub-optimal performance for 
multimedia. 

In [7], some initial work has been presented on cross APP-MAC-PHY layer adaptation for 
wireless multimedia streaming that explicitly considers adaptive packetization. However, the 
proposed packetization strategy is ad-hoc and uses very limited information about the video 
content, the deployed compression scheme, and the relative importance and dependencies among 
the various packets.  

Alternatively, in this paper, we build on prior research results and improve them by 
considering content-based optimal packetization strategies at the application layer in conjunction 
with adaptive retransmission limits at the MAC layer in a cross-layer manner. Furthermore, we 
also investigate the use of content based R-D models for the video to drive our optimization, and 
reduce the complexity of the proposed scheme. For the video compression, we deploy state-of-the-
art wavelet-based video coding techniques. Specifically, we use the SIV codec developed by 
Secker and Taubman [2] that employs JPEG-2000 like entropy coding for the compression of the 
spatio-temporal subbands. Note, however, that the proposed cross-layer solution can also be 
deployed for other coders (e.g. MPEG-4 or H.264) and will also result in distortion performance 
improvements. Hence, the focus of our paper is not on a particular coding scheme, but rather on 
proposing a content-based optimized joint packetization and retransmission for wireless video 
transmission.  

This paper is organized as follows. Section 2 motivates the need for cross-layer optimization 
by presenting results obtained by deploying an optimized packetization scheme determined solely 
by the MAC layer, without considering the content distortion.  Subsequently, we describe the SIV 
codec bitstream in Section 3 and describe how simple, adaptive packetization strategies can be 
designed based on the specific features of the scalable SIV codec. We present the proposed 
content-aware R-D optimized application-layer packetization and MAC retransmission limit 
adaptation in Section 4. Section 5 uses content-based operational R-D models for determining the 
impact of packet-losses and guiding the packetization-retransmission optimization. We present our 
conclusions and directions for future research in Section 6.  



2. Performance analysis of optimal packet sizes (content independent) determined at the 
MAC 
In this section, we highlight the sub-optimal performance that is obtained when the MAC solely 
decides the packet-size for video applications. As in [6], we assume that the noise over the wireless 
medium is white Gaussian with spectral density N0/2.  

Current 802.11 based systems use orthogonal frequency division multiplexing (OFDM) to 
transmit the data symbols, and provide eight different PHY modes (number from 1 through 8) with 
different modulation schemes and code rates. The frame error probability for a frame of size L bits 
using the PHY mode m is a function of bit error rate (BER) ep 1. The probability of error Lp  in a 
packet of length L bits, assuming random bit errors is: 

( )L
eL pp −−= 11           

Let the overhead (in terms of bits) that is added to the packet size from the various OSI layers 
(PHY, MAC, Network, Transport, Application) be grouped into one overhead that is common to 
all packets and that we label HeaderL . Since the MAC is agnostic to the content characteristics, one 
way for it to improve the video quality is to increase the throughput. The expression for throughput 
as a function of packet error rate is given by: 
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Differentiating the above expression with respect to L and equating it to 0 we obtain the 
optimal packet size that maximizes the throughput, as: 
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The second derivative of the equation is negative suggesting that the above expression for the 
optimal frame length maximizes the throughput of the IEEE 802.11a system for a fixed PHY 
mode. While the throughput achieved by this scheme is maximized, the decoded video PSNR is 
fairly poor. Illustrative results, comparing the decoded PSNR obtained with this optimal packet 
size versus schemes with ad-hoc packet size selection, are summarized in Table 1. These results 
are for the Coastguard sequence (at CIF resolution 30Hz) that was compressed using the SIV 
codec [13]. In all scenarios, the retransmission limits have been set to 0. 

Table 1.Decoded PSNR for packet size optimized at MAC layer 

ep  
Ad-Hoc Scheme 1: 

L= 500 bytes 
Decoded PSNR (dB) 

Ad-Hoc Scheme 2 
L= 1000 bytes 

Decoded PSNR (dB) 

Optimized Scheme 
L* determined by 

MAC 
Decoded PSNR (dB) 

0.000006 32.86 30.65 27.90 
0.000010 30.93 28.10 31.20 
0.000030 28.76 25.43 26.86 
0.000050 24.01 23.09 25.12 

From Table 1, it can be clearly concluded that the optimal packet-size determined at the MAC 
layer, without considering the content characteristics and compression strategies can result in sub-
                                                 
1 This is a function of the PHY mode m. 



optimal performances depending on the bit-error rates. This is not surprising, since the 
optimization was only performed with respect to the throughput (rate) and not the distortion, as 
this information is not available at the MAC. This motivates the need for cross-layer optimization 
involving both the channel conditions, but also the content and application layer characteristics, 
when determining the packet sizes.  
3. Proposed adaptive packetization strategies for the SIV coder 
In this paper, we use the SIV codec [13] that is a t+2D wavelet video coder, which performs the 
motion-compensated temporal filtering (MCTF) first, followed by 2D Discrete Wavelet Transform 
(DWT). For the temporal filtering, the SIV codec uses a lifting based implementation of the 5/3 
wavelet filters, and for the spatial transform it uses the 9/7 wavelet filters. The resulting spatio-
temporal subbands are embedded within the JPEG2000 codestream syntax [14] allowing the codec 
to leverage the codestream syntax and flexibility existing in the JPEG2000 implementation. In a 
SIV codec, multiple temporal subbands can be included in one component (packet). An example 
grouping of spatio-temporal subbands from [13] is shown in Figure 1. 

 
Figure 1. JPEG2000 code-stream components: 4 temporal and 2 spatial decompositions 

levels. 
Each spatio-temporal subband is further divided into codeblocks which are independently 

decodable units. The codeblocks are coded into a collection of layered block bitstreams for SNR 
scalability (see [13] for more details). In order to eliminate dependencies between packets, the 
codeblocks cannot be fragmented across packets. For wireless transmission, the various packets 
created by the SIV coder are further encapsulated in Application (RTP), Transport (UDP), 
Network (IP) and MAC packets, which will add additional packetization overheads (see 
subsequent sections). Note, however, that the flexibility provided by the JPEG2000 codeblocks is 
mainly aimed at enabling accessibility to region of interests or provide easy packetization for 
Internet transmission. Hence, it does not necessarily allow on-the-fly adjustment of packet-sizes as 
required for wireless transmission. As shown in e.g. [6][7], for optimized transmission the packet 
sizes would need to be adjusted in real-time. The optimal packet sizes vary between 100 bytes to 
2000 bytes based on the channel conditions. Figure 1 illustrates for 2 sequences – Foreman and 
Coastguard, the maximum bytes required by each codeblock and PSNR values at different bit-rates 
for various codeblock sizes starting with 64×64 codeblocks going down to 8×8 codeblocks. 

  
Figure 2. Variation of decoded PSNR and maximum bytes per codeblock with codeblock size 



Using smaller sizes for codeblocks reduces the coding efficiency at the application layer and leads 
to larger packet overheads, but has the beneficial effect of improving the R-D performance under 
moderate to heavy packet-losses. As can be seen from these tables, using 8×8 sample blocks leads 
to a reduction in PSNR over using 64×64 sample blocks, which is less than 1dB for a majority of 
decoding bit-rates and for both these sequences. The goal of our packetization strategy is to 
determine the optimal size packets for each subband based on the cross-layer optimization strategy 
proposed in Sections 3-5 and correspondingly adjust the packet-sizes for the SIV coder in real-
time, by grouping together multiple codeblocks from the same subband to form packets. To enable 
such adaptation, we propose to compress the data using 8×8 blocks, and at transmission time, 
based on the instantaneous channel conditions and available R-D information, encapsulate multiple 
8×8 codeblocks into a single packet of the desired size. 

One possible solution for implementing the real-time packetization in a wireless streaming 
scenario is to consider the file format of the media. In [16], we introduced an abstraction layer 
referred to as “multi-track hinting”, which is an extension of the hinting mechanism that is part of 
the MP4 file format specification [9]. We use the multi-track hinting concept to structure 
compressed video into multiple sub-streams (e.g. spatio-temporal subbands) that can be 
independently transmitted through multiple (RTP) channels, as illustrated in Figure 3. The multi-
track concept is useful for wireless multimedia transmission because it enables (i) adapting the 
packet size on-the-fly at transmission time, after the encoding has been performed, (ii) 
prioritization of different video layers (subbands) [15][16]  that can assist the cross-layer 
optimization (e.g. the MAC retransmissions and physical layer modulation strategies can be 
adapted for each priority layer [7]) and (iii) optimized scheduling and rate adaptation by changing 
the number of transmitted RTP channels. 

 

Hint track for packetization 1 - { }1 1 1
, , lossP P PR D D  

Hint track for packetization 2 – { }2 2 2
, , lossP P PR D D  

Hint track for packetization n – { }n n n
, , lossP P PR D D  

Hint track for packetization 3 – { }3 3 3
, , lossP P PR D D  

Bitstream 

 
Figure 3. Proposed multi-track R-D hinting file format. 
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Figure 4. Real-time packetization using the multi-track hinting concept. 

This extension to conventional hinting mechanisms provides the flexibility necessary for enabling 



real-time adaptive packetization for wireless multimedia streaming (see Figure 4) by storing 
multiple tracks, containing packet sizes formed by adjusting the number of codeblocks aggregated 
into one packet (see Figure 3). Using our multi-track hinting method, each bitstream (using 8×8 
codeblocks) remains unchanged and it is stored once, but can be virtually divided into multiple 
streams having different corresponding packetization schemes nP  resulting in different R-D 
truncation points { }n n

,P PR D and distortion impacts under loss for the bitstream n
loss
PD  (see next 

section for more details).  
 
4. Content-aware R-D Optimized Cross-layer Packetization, Prioritization and 
Retransmission strategies 
4.1. Cross-layer optimization problem  
For improved multimedia transmission over wireless networks, cross-layer optimization over the 
various layers of the OSI stack is required. We need to account for both the content 
characteristics, as well as the channel conditions in order to make an optimal decision. The cross-
layer optimization problem can be formulated as follows: 

Determine the optimal joint strategy that minimizes the video distortion, given the channel 
conditions, i.e.  ( ) ( )( )

S

opt SDS xx minarg=  given channel conditions ( )ce Rp ,=x , with ep  being the bit 

error rate, and cR  being the channel bit-rate2. 
In this paper, we investigate content-based packetization and prioritization strategies at the 

application layer in conjunction with adaptive retransmission limits for each packet at the MAC 
layer to optimize the multimedia transmission. We show these two layers in the OSI stack and list 
our employed optimization strategies in Figure 5. Next, we describe the set of adaptation strategies 
available at the MAC and application layers, and subsequently, we present our proposed cross-
layer solution. 
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Figure 5. Cross-layer strategies involved in the proposed wireless multimedia 

optimization framework. 

4.2. Adaptive MAC Retransmissions 
The MAC layer provides error robustness by adapting the number of retransmission of lost packets 
(see e.g. previous work in [7][11][15]). Packets that are not received are retransmitted up to a 
certain maximum number of times maxT . The probability that the packet is received in t 
transmissions, i.e. with t-1 retransmissions is ( )L

t
L pp −− 11 , where Lp  is the packet loss probability 

as defined in Section 2. Hence, with a retry limit maxT , the probability that a packet is received is 
                                                 
2We can also add constraints on the maximum available computation resources and delay, but these issues are not explored in this 
paper. 
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As we have shown in Section 2, while the MAC is aware of the channel conditions, 
packetization overheads and even packet priorities, it cannot independently determine the 
distortion-optimal retransmission limit. Specifically, the MAC is not aware of the video 
characteristics, the relative importance and dependencies between packets, the impact of losing 
specific packets on the quality etc. Hence it can either maximize throughput (as in Section 2) or it 
can reformulate the problem in terms of minimizing the MAC packet loss rate for all priority 
layers, which also leads to sub-optimal decoded video quality (see [15]).  

In prior work [15], a joint application-MAC algorithm for determining the retransmission 
strategy for various priority layers has been designed. In that approach, partial information about 
the content characteristics is passed from the application layer to the MAC in terms of priorities for 
different packets. To maximize the video quality, the following cross-layer strategy was adopted 
[15]: higher priority packets were transmitted first and with a higher retransmission limit since 
they have the highest impact on multimedia quality, while the lower priority packets were 
discarded or transmitted with a lower number of retransmissions. The number of retransmissions 
for the various layers was adapted based on the channel conditions, multimedia traffic rates and 
delay constraints. To enable this cross-layer strategy, multiple priority queues were maintained at 
the interface between MAC and application layer and different retransmission limits were adapted 
based on the video layer priority. All the queues were managed by a common absolute Priority-
Queuing (PQ) discipline. However, the proposed strategy was MAC-centric, considered a very 
simple prioritization algorithm of the packets at the application layer, and did not consider R-D 
impact of the packetization employed. In this paper, we will specifically investigate the additional 
improvements obtained by deploying a content-based (R-D) optimized solution for retransmission 
limit adaptation at the MAC. 

4.3. Content Based Packetization and Prioritization 
The application layer first performs rate adaptation of the multimedia based on the available source 
bit-rate R. Specifically the source rate R should be chosen such that the total bit-rate, including any 
overheads incurred due to retransmission and packetization, does not exceed the channel rate, i.e.  

cRoverheadR ≤+ 3. Then, in order to prioritize the different codeblocks, and packetize them, the 
application layer has to determine their relative importance in terms of the number of bits required 
by each codeblock, and the corresponding impact of the codeblock on the decoded video quality. 

The SIV codec performs an R-D optimization to determine the bit allocation for each 
codeblock for the target decoding source bit-rate R, such that the decoded distortion is minimized. 
Based on this R-D optimization, sbR  bits are assigned to codeblock b in subband s with an 
associated decoded quantization distortion RQuant

sbD , . This quantization distortion is computed 
exhaustively as follows: We first quantize only the current codeblock (s,b) corresponding to the 
rate of interest, while leaving the other codeblocks unquantized. We then decode all the 
codeblocks, and the resulting squared error in the decoded video frames is RQuant

sbD , . Hence, the 
computed error corresponds to the total distortion due to the quantization of this one codeblock on 
                                                 
3In this paper we do not describe how to derive the appropriate R from cR , but, given an R we present the obtained overheads and 
decoded quality under different loss scenarios.   



all the decoded frames (i.e. it includes the error propagation across the temporal decomposition 
tree4). The total number of bits assigned to subband s is ∑=

b
sbs RR  and the distortion in the 

decoded video due to this subband being quantized is ∑=
b

RQuant
sb

RQuant
s DD ,, . Similarly, the total 

distortion in the decoded video, when all the codeblocks in all subbands are quantized to meet this 
particular source bit-rate R, is ∑∑∑ ==

s b

RQuant
sb

s

RQuant
s

RQuant
total DDD ,,, . 

If codeblock b in subband s is lost during transmission, and is not received by the decoder, 
there is a different distortion associated with it, and we label this distortion loss

sbD . This loss
sbD  is 

independent of the decoding bit-rate. As before, we can compute this loss distortion exhaustively, 
by discarding the current codeblock (e.g. by setting all its coefficients to zero), decoding all other 
codeblocks with no quantization error, and observing the resulting squared error in the decoded 
video frames. Thus, the computed error corresponds to the total distortion due to the loss of this 
one codeblock on all the decoded frames. As before, if an entire subband is lost, the resulting loss 
distortion is ∑=

b

loss
sb

loss
s DD 5, and if all codeblocks in all subbands are lost, the resulting distortion  

is ∑=
b

loss
s

loss DD , which is the same as the energy of video frames.  

In a real transmission scenario, the resulting total distortion is likely to be a sum of RQuant
sbD ,  for 

quantized codeblocks and loss
sbD  for lost codeblocks. Consider that, for subband s, we construct 

packets of size HeaderData
spsp LLL += ,,  ( LL sp ≈, ) bits without fragmenting codeblocks across packets6. 

Let packet p contain a set of codeblocks pC , i.e. ∑
∈

=
pCb

sb
Data

sp RL , . Then, the quantization distortion 

associated with this packet is ∑
∈

=
pCb

RQuant
sb

RQuant
sp DD ,,

, , and the loss distortion associated with this 

packet is ∑
∈

=
pCb

loss
sb

loss
sp DD , . 

The application layer has knowledge of all the content characteristics, and hence can determine 
all the rates and distortions for each codeblock. However, it cannot independently perform the 
packetization, because it lacks information about the channel conditions.  

4.4. Cross-Layer Optimization: Solution for Adaptive Packetization and Retransmission 
Limit Selection 
We combine information about the content characteristics as well as the channel conditions to 
jointly determine the optimal packetization as well as the retransmission limit. Since various 
subbands have different priorities, we perform the optimization independently for each subband.  

Based on the MAC retransmission strategy, a packet is received with probability ( )succP  and 
lost with probability ( )failP . Hence, the expected distortion associated with each packet, under 
lossy conditions, is ( ) ( ) loss

sp
RQuant

spsp DfailPDsuccPD ,
,

,, +×= . Similarly, the expected number of bits 

                                                 
4 JPEG-2000 Tier-2 [14] uses distortion models to estimate the quantization error for each codeblock, however it does not consider 
any temporal propagation of the error, and its spatial models need to be extended before we can use them. We describe preliminary 
work on building spatio-temporal distortion models for wavelet based video codecs in Section 5. 
5This distortion is likely to be much higher for low-pass subbands than for the finer resolution high-pass subbands. 
6In such a case it is not guaranteed that all packets have the same size, however if the codeblocks are small enough, we can generate 
packets with roughly the same size. 



transmitted for this packet is spLT , , and the expected number of additional bits that we need to send 
due to the packetization and retransmissions in this lossy scenario becomes: 

( ) Header
spsp LLTR +−= ,, 1  . 

We have to determine the optimal packet-size LL sp ≈,  and the retransmission limit maxT , for 
this subband so that the total expected distortion is minimized and the rate overhead is also 
minimized.  We can formulate this optimization problem as: 

                         ( )
( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∑

=

sP

p
spsp

LT

opt
s

opt
s RDLT

1
,,

,
max,

max

minarg, λ ,                                                (1) 

where sP is the total number of packets in subband s, and λ  is an optimization parameter that 
determines the desired R-D tradeoff.  

4.5. Experimental Results 
In our experiments, we use a 4 frame Group Of Pictures (GOP) with two levels of temporal 

decomposition, and four levels of spatial decomposition, producing 13 spatial subbands per 
temporally filtered frame, and a total of 52 spatio-temporal subbands. For ease of notation we 
number these subbands in increasing spatio-temporal resolution order, as shown in Figure 6. 
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Figure 6. Spatio-temporal subband numbering 

We further constrain the SIV codeblocks for each subband to contain data from only one 
frame, i.e. we do not group frames from different temporal resolutions in one codeblock. The 
number of bits assigned to every codeblock sbR  is computed by the SIV codec using a JPEG-2000 
like R-D optimization for every target decoding source bit-rate. Finally, we set the packetization 
overhead to 30=HeaderL  bytes, which is typical for wireless IP networks. 

4.5.1. Implementation Issues  
Since the number of codeblocks in each frame is large (~1600), determining the quantization 

and loss distortions for each codeblock exhaustively can be very computationally demanding. 
Hence, instead, we compute the distortions RQuant

sD ,  and loss
sD , subband by subband7, i.e. by 

quantizing or discarding all codeblocks in the subband and observing the distortion in the decoded 
video frames. From RQuant

sD ,  and loss
sD  we determine the distortion for each codeblock RQuant

sbD ,  and 
loss
sbD  by simply assuming that each codeblock within the subband contributes equally to the 

observed distortion. This assumption is not necessarily true in all cases, but it is reasonable, and 
helps us reduce the computations associated with determining these distortions. 

                                                 
7Measuring these distortions once per subband, requires only 13 decodings per frame, as opposed to ~1600 if we 
measure these for each codeblock. 



We solve the cross-layer optimization problem of determining ( )opt
s

opt
s LT ,max,  for each subband 

independently. We use numerical approaches to solve the optimization problem and allow the 

packet sizes for subband s to vary in the interval ⎥
⎦

⎤
⎢
⎣

⎡
s

s R
R

,
10

 and the retransmission limits to lie in the 

interval [ ]10,0 .  
4.5.2. Optimal packet sizes and retransmission limits 

We show the determined optimal retry limits and packet sizes for 4 frame GOPs from Foreman, 
Football, Mobile and Coastguard CIF sequences, decoded at 1024 Kbps, with a bit-error rate 

410−=ep  in Figure 7-Figure 10. 

 
Figure 7. Football: Determined retry limits and packet sizes for four frame GOPs 

410−=ep  

 
Figure 8. Foreman: Determined retry limits and packet sizes for four frame GOPs 

410−=ep  



 
Figure 9. Mobile: Determined retry limits and packet sizes for four frame GOPs 410−=ep  

 
Figure 10. Coastguard: Determined retry limits and packet sizes for four frame GOPs 

410−=ep  

The expected PSNR is in dB, and the expected overhead corresponds to the total additional 
bytes transmitted due to packetization headers and retransmissions, and is computed as a 
percentage of the original bitstream size. Instead of observing different values for the derived retry 
limits, we see that they converge to either a large value (>8) for some subbands, or to 0 for the rest. 
This indicates, especially for high bit error rates, subbands worth retransmitting should be 
transmitted as many times as possible, at the expense of not retransmitting other subbands. These 
optimal retry limits and packet sizes  ( )opt

s
opt

s LT ,max,  are determined for each different decoding source 
bit-rate R  and bit error rate ep .  

After determining the optimal packet sizes and retransmission limits, we test the performance 
of this scheme under lossy conditions. In order to compare against state-of-the-art packetization 
schemes, we design a reference scheme that we describe in the following sub-section. 
4.5.3. Reference Fixed-Packetization Scheme 
Our reference scheme is based on commonly used state-of-the-art wireless multimedia 
retransmission scheme [7][11][15] that uses layered priority queuing and a common fixed packet 
size for all the multimedia data in the bitstream. Furthermore, as in [15], we partition the 
multimedia data into multiple priorities and set higher retry limits for data with higher priority. In 
particular, we prioritize our 52 spatio-temporal subbands as shown in Table 2. The priorities are set 
based on the coding dependencies, i.e. to low-pass spatio-temporal subbands a higher priority is 
assigned than to the higher spatio-temporal subbands. 



Table 2. Prioritization of spatio-temporal subbands 

Priority Subband Number 
5 (High) 0, 13 

4 1-3, 14-16 
3 4-6, 17-19, 26, 39 
2 7-9, 20-22, 27-29, 40-42 

1 (Low) 10-12, 23-25, 30-38, 43-51 
In order to achieve a fair comparison against our optimized scheme, we restrict the retry limit 

to take values either 10 or 0 and we ensure that the number of subbands with retry limit 10 is the 
same as in the case of the optimized scheme. By doing the above, we implicitly provide our 
reference scheme with the cross-layer optimized information on the number of subbands to be 
selected with non-zero retry limit. For instance, as in Figure 7 for the Football sequence, if the 
result of the optimization indicates 7 subbands with non-zero retry limit, we set the retry limit to 
10 for 7 subbands even for the reference scheme. Furthermore, to determine which subbands are 
assigned a retry limit 10 we select them in order of decreasing priority. Hence, in our example with 
7 subbands, we will select subbands 0, 13, 1, 2, 3, 14 and 15 to have a retry limit 10. After we 
assign retry limits to the different subbands, we determine the fixed packet size (common to all 
subbands) that leads to roughly the same amount of overhead as expected for the optimized 
scheme.  

Summarizing, the main differences between the reference scheme and the proposed 
optimization scheme are twofold. First, in the proposed scheme the retransmission limits are 
determined based on a content-based R-D optimization framework and secondly, adaptive 
packetization strategies are deployed in conjunction with the retransmission limit adaptation. 
4.5.4. Performance Comparison under Lossy Scenarios 
We study the performance obtained using the proposed content-based cross-layer optimization 
solution for 10 GOPs of the following sequences Football, Foreman, Mobile and Coastguard. The 
performance is determined for 410−=ep  and 510−=ep . We present the average decoded PSNR 
across 100 different error patterns. The results are summarized in Table 3. (The overhead is 
computed as explained in Section 4.4 based on ,p sR .) 

Table 3. Loss Performance: Football 
Bit-rate 
(kbps) ep  Scheme PSNR (dB) Overhead 

Reference 28.01 35% 10-4 Optimized 29.14 36% 
Reference 28.67 10% 1024 

10-5 Optimized 29.11 9% 
Reference 30.17 33% 10-4 Optimized 31.66 31% 
Reference 29.89 11% 1536 

10-5 Optimized 31.64 11% 
 
 
 
 



Table 4. Loss Performance: Foreman 
Bit-rate 
(kbps) ep  Scheme PSNR (dB) Overhead 

Reference 30.11 26% 10-4 Optimized 30.78 26% 
Reference 31.56 12% 512 

10-5 Optimized 31.75 13% 
Reference 34.90 27% 10-4 Optimized 35.66 25% 
Reference 36.89 12% 1024 

10-5 Optimized 37.08 12% 
 

Table 5. Loss Performance: Mobile 
Bit-rate 
(kbps) ep  Scheme PSNR (dB) Overhead 

Reference 24.29 29% 10-4 Optimized 25.10 27% 
Reference 26.23 17% 1024 

10-5 Optimized 26.67 15% 
Reference 26.99 28% 10-4 Optimized 27.87 26% 
Reference 29.43 17% 1536 

10-5 Optimized 29.74 16% 
 

Table 6. Loss Performance: Coastguard 
Bit-rate 
(kbps) ep  Scheme PSNR (dB) Overhead 

Reference 27.54 26% 10-4 Optimized 28.55 26% 
Reference 29.02 14% 512 

10-5 Optimized 29.51 12% 
Reference 28.91 25% 10-4 Optimized 30.17 23% 
Reference 31.56 15% 1024 

10-5 Optimized 32.11 12% 
The sequences Football and Mobile are more complex than Foreman and Coastguard, and hence to 
achieve ~ 30 dB decoded PSNR, we need to use higher bit-rates for them. Clearly, the optimized 
scheme with adaptive packet size with retry limit selection outperforms the reference scheme 
consistently across all the sequences. The largest observed PSNR gain was ~1.5 dB for the same 
amount of overhead. The advantage of the proposed optimization solution is especially exhibited at 
higher bit-rates, where the possible packetization and protection strategies are numerous and can 
impact the distortion to a larger extent.  

The gains for the optimized scheme are lower for the Foreman and Mobile sequence because, 
in both these sequences the high frequency subbands are allotted fewer bits (as may be observed in 



Figure 7), and therefore adaptive packet sizes and retry limits do not affect performance 
significantly. 

Finally, to assess the PSNR gains obtained due to use of adaptive packetization, as opposed to 
optimized retry limit selection, we perform an additional experiment. We use a fixed common 
packet-size for all subbands, as used in the Reference scheme, but we determine ( )opt

sTmax,  by solving 
the optimization problem. We call this the Partial Optimization scheme. The results for this 
scheme are included in Table 7. 

Table 7. Partial Optimization versus Optimized and Reference Schemes  
(1024 Kbps 410−=ep ) 

Seq. Scheme PSNR (dB) Overhead 
Reference 34.90 27% 

Partial 35.03 27% Foreman 
Optimized 35.66 25% 
Reference 28.01 35% 

Partial 28.19 36% Football 
Optimized 29.14 36% 

We observe that the results for Partial optimization are very close to the Reference scheme. We 
can conclude that a significant portion of the gains of the Optimized scheme are derived from the 
cross-layer optimized packetization strategy. Hence, at run-time, the proposed retransmission limit 
optimization can be enabled depending on the complexity constraints. 
 
5. Content Model-based cross-layer optimization 
While the previously presented distortion optimized cross-layer solution leads to a very good 
performance, it requires exhaustively determining the distortions ( loss

sbD  and RQuant
sbD , ). Hence, the 

complexity associated with performing such optimizations in real-time is very high, even if it is 
done only once per subband. Alternatively, we propose to reduce this computational complexity 
associated with determining optimal cross-layer strategies for wireless multimedia transmission by 
using models based on content characteristics. The basic idea is to determine for each video 
sequence specific low-level features such as the average signal variance and based on these to 
predict the distortion impact for different packet losses. At run-time, we deploy these predicted 
distortions to determine the optimal cross-layer strategy. Next, we describe the used content-aware 
distortion model and compare the obtained results with that of the exhaustive R-D optimized cross-
layer strategy.  
5.1. Content-based distortion models    
There has been only very preliminary work on developing models to capture the content 
characteristics and distortion propagation for 3D wavelet schemes [8][17]. In [12], this work was 
extended to develop a unified mathematical model that describes the operational R-D behavior of 
motion-compensated wavelet video coders for different encoding settings. There are two parts 
involved in the R-D modeling: a) develop an R-D model for one frame; b) develop an R-D model 
across frames, by tracking the propagation of quantization noise along the 3D wavelet 
decomposition trees. Importantly, note that these model parameters depend on the sequence 
characteristics. 

To capture the distortion propagation within each frame we base our derivation on [12][14]. 
For a J-scale 2D spatial domain wavelet transform, there are 3J +1 subbands. Let the subband of 



the k-th (k = 1, 2, 3) orientation in scale j be denoted as (j, k), and the coarsest representation 
subband be (J). The average distortion in the frame caused by quantization of its subband 
coefficients can be determined as: 
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where ,j kG  is the synthesis gain,  ,j kw are defined based on the bi-orthogonal wavelet filter [14] and 

kj,ε  is the quantization noise associated with subband { , }j k .  Hence, by determining the 
quantization error kj,ε  associated with a subband we can determine the distortion impact on the 
frame. We can also use this equation in the loss case, where we replace kj,ε  with the energy of the 
subband being discarded. 

We now consider the propagation of this distortion d  across the temporal decomposition tree. 
Let us consider the simple case of a Haar motion-compensated temporal filter [8]. In a temporal 

filtering structure with T levels, there are 2T frames in one group of frames for the Haar filtering 
case. We assume approximately constant content (signal) variance 2

0σ  within one group of frames 
and label the even and odd frames in the temporal lifting structure as A and B.  The high pass 
frame H has the same time location as frame A and the low pass frame I has the same time location 
as frame B. In motion estimation, the pixels can be classified into three types: connected, 
unconnected and multiple connected. We show an example of this in Figure 11 (which is taken 
from [8]). 

 
Figure 11. Pixels classification into three types: multiple connected, connected and 

unconnected. 

Let rc be the ratio of connected pixels, ru be the ratio of unconnected pixels and rm be the 

multiple connected pixels. In the following notations, the superscript (k) denotes the k-th temporal 
level. By following the same method as in [8], the average distortion of I frames in the k-th 
temporal level is given by:  
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where ( )k
Hd  is the observed distortion in the high-pass H frame, and ( )k

Id  is the distortion in the low-
pass frame (that may be derived from the inversion of a previous temporal level), both of which 



may be computed from the quantization error using equation (2). We may iterate this expression 
through all the temporal levels to obtain the average distortion in the decoded video frames i.e. at 
level k=0 (after inverse temporal filtering) as 
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Note that this derivation can be considered as an approximation for the cases where sub-pixel 
interpolation is used for motion estimation. The lifting structures for longer filters such as the 5/3 
and 9/7 filters are much more complicated than that for the Haar filter, which makes it almost 
impossible to track the quantization noise along the temporal wavelet tree. Nevertheless, equation 
(3) shows that we can find a linear relationship between the average frame distortions within 
adjacent temporal levels: 
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The average distortion for the original video frames may be expressed as: 
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The parameters kB  and kA  are determined by training (curve-fitting) the model based on the 
measured distortions for two rate points (512 Kbps and 1024 Kbps) for one group of 4 frames each 
from the different sequences. These models are then used in the cross-layer optimization for all 
other groups of frames, i.e. the training is performed on 4 frames, while the testing is done on 40 
frames from each sequence. Thus, the complexity of the cross-layer strategy is reduced 
significantly. 
5.2. Performance Results    
The distortions computed using the models are used in equation (1) to solve the joint optimization 
problem, and determine the optimal packet sizes and retry limits for each subband. We repeat our 
lossy scenario experiments and present experimental results over 40 frames for the optimization 
with the modeled distortions. We compare these results with those obtained for the exhaustive 
optimization as well as the reference scheme for the same four sequences, in Table 8. 

Table 8. Performance Results: Model-based Optimization (1024 Kbps) 410−=ep ) 
Seq. Scheme PSNR (dB) Overhead 

Reference 34.90 27% 
Model-based 35.14 25% Foreman 
Optimized 35.66 25% 
Reference 28.01 35% 

Model-based 29.09 35% Football 
Optimized 29.14 36% 
Reference 24.29  29% 

Model-based 24.91 28% 
Mobile 

Optimized 25.10  27% 
Reference 28.91 25% 

Model-based 29.43 23% 
Coastguard 

Optimized 30.17 23% 
The model-based scheme performance is between that of the exhaustive scheme and the reference 



fixed-packetization scheme. We can see that the model-based scheme performance is very close to 
the exhaustive optimization especially for the Football and Mobile sequences, for which the model 
is very accurate. In our future work, we plan to adopt improved distortion models for the cross-
layer optimization. 
6. Conclusions 

In this paper, we propose a content-aware cross-layer (Application and MAC) packetization 
and retransmission strategy for optimized multimedia transmission over wireless networks. We 
show that previously proposed state-of-the-art MAC-only optimization schemes lead to a sub-
optimal performance for wireless multimedia. We conclude that both the packetization and 
retransmission strategies need to be optimized jointly based on content parameters, such as the 
distortion impact, as well as channel conditions. We formulate this joint optimization problem in 
terms of minimizing the expected distortion and rate overhead, and solve it numerically to 
determine the optimal packet sizes and retransmission limits for each spatio-temporal subband. To 
enable this content and channel aware adaptive packetization, we propose a simple real-time 
packetization algorithm for the deployed scalable video coder.  

Subsequently, we show that the proposed optimized cross-layer aware packetization strategies 
can improve the PSNR over fixed packetization schemes by 0.4-1.8 dB under different channel 
loss scenarios. The proposed scheme can be adopted in conjunction with other compression 
schemes and protection and adaptation schemes at the lower layers of the protocol stack. Our joint 
optimization improves the multimedia performance under losses, especially for moderate and high 
transmission bit-rates. However, a disadvantage of the proposed scheme is the complexity incurred 
in performing this exhaustive optimization. In order to reduce this complexity, we propose to use 
content-based distortion models to drive the cross-layer strategies.  

Summarizing, the main conclusions of this paper are threefold. First, the optimization of packet 
sizes solely at the MAC results in a sub-optimal performance for wireless video delivery, as it does 
not explicitly consider the content-based distortion impact at the application layer. Secondly, 
significant improvements in distortion can be obtained by optimizing the packet sizes in a cross-
layer manner that explicitly considers the content characteristics and the resulting R-D 
performance under different channel conditions. In this way, cross-layer rate-distortion-resilience 
tradeoffs can be performed to determine the optimal packet sizes. Finally, our results indicate that 
the additional gains due to R-D optimized retransmission limit adaptation are not significant as 
compared to schemes that explicitly consider the codec features for packet prioritization and 
deploy layered priority queuing to drive the retransmission adaptation. Our further research will 
consider more sophisticated mechanisms for packetization, the use of better network loss models, 
better R-D models for on the fly cross-layer optimization etc.   
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