
Intel XScale® Core
Developer’s Manual

January, 2004

Order Number: 273473-002

2 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® internal code names are subject to change.

THIS SPECIFICATION, THE Intel XScale® Core Developer’s Manual IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

Copyright © Intel Corporation, 2004

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

The ARM* and ARM Powered logo marks (the ARM marks) are trademarks of ARM, Ltd., and Intel uses these marks under license from ARM, Ltd.

*Other names and brands may be claimed as the property of others.

Developer’s Manual January, 2004 3

Intel XScale® Core Developer’s Manual
Contents

Contents
1 Introduction..13

1.1 About This Document ...13
1.1.1 How to Read This Document ...13
1.1.2 Other Relevant Documents ...14

1.2 High-Level Overview of the Intel XScale® Core..15
1.2.1 ARM Compatibility ...15
1.2.2 Features...16

1.2.2.1 Multiply/Accumulate (MAC)..16
1.2.2.2 Memory Management ..17
1.2.2.3 Instruction Cache ...17
1.2.2.4 Branch Target Buffer..17
1.2.2.5 Data Cache ..17
1.2.2.6 Performance Monitoring...18
1.2.2.7 Power Management ...18
1.2.2.8 Debug ..18
1.2.2.9 JTAG..18

1.3 Terminology and Conventions ..19
1.3.1 Number Representation...19
1.3.2 Terminology and Acronyms ...19

2 Programming Model ..21

2.1 ARM Architecture Compatibility ..21
2.2 ARM Architecture Implementation Options...21

2.2.1 Big Endian versus Little Endian ...21
2.2.2 26-Bit Architecture ...21
2.2.3 Thumb..21
2.2.4 ARM DSP-Enhanced Instruction Set ...22
2.2.5 Base Register Update..22

2.3 Extensions to ARM Architecture ...23
2.3.1 DSP Coprocessor 0 (CP0)...23

2.3.1.1 Multiply With Internal Accumulate Format ...24
2.3.1.2 Internal Accumulator Access Format ...27

2.3.2 New Page Attributes ..29
2.3.3 Additions to CP15 Functionality ...31
2.3.4 Event Architecture ...32

2.3.4.1 Exception Summary...32
2.3.4.2 Event Priority..32
2.3.4.3 Prefetch Aborts ..33
2.3.4.4 Data Aborts ..34
2.3.4.5 Events from Preload Instructions ...35
2.3.4.6 Debug Events ..36

3 Memory Management..37

3.1 Overview...37
3.2 Architecture Model..38

3.2.1 Version 4 vs. Version 5 ..38
3.2.2 Memory Attributes..38

3.2.2.1 Page (P) Attribute Bit ...38

4 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Contents

3.2.2.2 Cacheable (C), Bufferable (B), and eXtension (X) Bits.......................... 38
3.2.2.3 Instruction Cache ... 38
3.2.2.4 Data Cache and Write Buffer ... 39
3.2.2.5 Details on Data Cache and Write Buffer Behavior................................. 40
3.2.2.6 Memory Operation Ordering .. 40

3.2.3 Exceptions ... 40
3.3 Interaction of the MMU, Instruction Cache, and Data Cache ... 41
3.4 Control .. 42

3.4.1 Invalidate (Flush) Operation ..42
3.4.2 Enabling/Disabling ... 42
3.4.3 Locking Entries .. 43
3.4.4 Round-Robin Replacement Algorithm ... 45

4 Instruction Cache... 47

4.1 Overview... 47
4.2 Operation.. 48

4.2.1 Operation When Instruction Cache is Enabled.. 48
4.2.2 Operation When The Instruction Cache Is Disabled.. 48
4.2.3 Fetch Policy ... 49
4.2.4 Round-Robin Replacement Algorithm ... 49
4.2.5 Parity Protection .. 50
4.2.6 Instruction Fetch Latency...51
4.2.7 Instruction Cache Coherency .. 51

4.3 Instruction Cache Control ... 52
4.3.1 Instruction Cache State at RESET .. 52
4.3.2 Enabling/Disabling ... 52
4.3.3 Invalidating the Instruction Cache.. 53
4.3.4 Locking Instructions in the Instruction Cache ..54
4.3.5 Unlocking Instructions in the Instruction Cache... 55

5 Branch Target Buffer ... 57

5.1 Branch Target Buffer (BTB) Operation ... 57
5.1.1 Reset ... 58
5.1.2 Update Policy... 58

5.2 BTB Control ..59
5.2.1 Disabling/Enabling ... 59
5.2.2 Invalidation... 59

6 Data Cache..61

6.1 Overviews... 61
6.1.1 Data Cache Overview.. 61
6.1.2 Mini-Data Cache Overview.. 63
6.1.3 Write Buffer and Fill Buffer Overview... 64

6.2 Data Cache and Mini-Data Cache Operation ... 65
6.2.1 Operation When Caching is Enabled... 65
6.2.2 Operation When Data Caching is Disabled ... 65
6.2.3 Cache Policies... 65

6.2.3.1 Cacheability ... 65
6.2.3.2 Read Miss Policy ... 66
6.2.3.3 Write Miss Policy.. 67
6.2.3.4 Write-Back Versus Write-Through ... 67

Developer’s Manual January, 2004 5

Intel XScale® Core Developer’s Manual
Contents

6.2.4 Round-Robin Replacement Algorithm ...68
6.2.5 Parity Protection ..68
6.2.6 Atomic Accesses ...68

6.3 Data Cache and Mini-Data Cache Control ...69
6.3.1 Data Memory State After Reset ...69
6.3.2 Enabling/Disabling ...69
6.3.3 Invalidate and Clean Operations ...69

6.3.3.1 Global Clean and Invalidate Operation ..70
6.4 Re-configuring the Data Cache as Data RAM ..71
6.5 Write Buffer/Fill Buffer Operation and Control ..75

7 Configuration ...77

7.1 Overview...77
7.2 CP15 Registers...80

7.2.1 Register 0: ID & Cache Type Registers ...81
7.2.2 Register 1: Control & Auxiliary Control Registers ..83
7.2.3 Register 2: Translation Table Base Register ...85
7.2.4 Register 3: Domain Access Control Register...85
7.2.5 Register 4: Reserved ...85
7.2.6 Register 5: Fault Status Register ...86
7.2.7 Register 6: Fault address Register ..86
7.2.8 Register 7: Cache Functions ...87
7.2.9 Register 8: TLB Operations ...89
7.2.10 Register 9: Cache Lock Down ...90
7.2.11 Register 10: TLB Lock Down ...91
7.2.12 Register 11-12: Reserved ..91
7.2.13 Register 13: Process ID ...91

7.2.13.1 The PID Register Affect On Addresses ...92
7.2.14 Register 14: Breakpoint Registers ...93
7.2.15 Register 15: Coprocessor Access Register ...94

7.3 CP14 Registers...96
7.3.1 Performance Monitoring Registers ..96

7.3.1.1 XSC1 Performance Monitoring Registers ..96
7.3.1.2 XSC2 Performance Monitoring Registers ..97

7.3.2 Clock and Power Management Registers..98
7.3.3 Software Debug Registers ...99

8 Performance Monitoring ..101

8.1 Overview...101
8.2 XSC1 Register Description (2 counter variant) ...102

8.2.1 Clock Counter (CCNT; CP14 - Register 1) ..102
8.2.2 Performance Count Registers (PMN0 - PMN1;

CP14 - Register 2 and 3, Respectively)...103
8.2.3 Extending Count Duration Beyond 32 Bits ..103
8.2.4 Performance Monitor Control Register (PMNC) ..103

8.2.4.1 Managing PMNC..105
8.3 XSC2 Register Description (4 counter variant) ...106

8.3.1 Clock Counter (CCNT)...106
8.3.2 Performance Count Registers (PMN0 - PMN3) ...107
8.3.3 Performance Monitor Control Register (PMNC) ..108
8.3.4 Interrupt Enable Register (INTEN)...109

6 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Contents

8.3.5 Overflow Flag Status Register (FLAG) .. 110
8.3.6 Event Select Register (EVTSEL) ...111
8.3.7 Managing the Performance Monitor ..112

8.4 Performance Monitoring Events ...113
8.4.1 Instruction Cache Efficiency Mode .. 115
8.4.2 Data Cache Efficiency Mode ... 115
8.4.3 Instruction Fetch Latency Mode... 115
8.4.4 Data/Bus Request Buffer Full Mode ..116
8.4.5 Stall/Writeback Statistics ...116
8.4.6 Instruction TLB Efficiency Mode .. 117
8.4.7 Data TLB Efficiency Mode ... 117

8.5 Multiple Performance Monitoring Run Statistics ... 118
8.6 Examples.. 119

8.6.1 XSC1 Example (2 counter variant) .. 119
8.6.2 XSC2 Example (4 counter variant) .. 120

9 Software Debug... 121

9.1 Definitions... 121
9.2 Debug Registers ...121
9.3 Introduction... 122

9.3.1 Halt Mode .. 122
9.3.2 Monitor Mode... 122

9.4 Debug Control and Status Register (DCSR) ..123
9.4.1 Global Enable Bit (GE) .. 124
9.4.2 Halt Mode Bit (H) ... 124
9.4.3 SOC Break (B)... 124
9.4.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR) .. 125
9.4.5 Sticky Abort Bit (SA) ..125
9.4.6 Method of Entry Bits (MOE)... 125
9.4.7 Trace Buffer Mode Bit (M) ... 125
9.4.8 Trace Buffer Enable Bit (E).. 125

9.5 Debug Exceptions... 126
9.5.1 Halt Mode .. 127
9.5.2 Monitor Mode... 129

9.6 HW Breakpoint Resources ... 130
9.6.1 Instruction Breakpoints .. 130
9.6.2 Data Breakpoints ... 131

9.7 Software Breakpoints..133
9.8 Transmit/Receive Control Register (TXRXCTRL) .. 134

9.8.1 RX Register Ready Bit (RR) ..135
9.8.2 Overflow Flag (OV).. 136
9.8.3 Download Flag (D)... 136
9.8.4 TX Register Ready Bit (TR) ... 137
9.8.5 Conditional Execution Using TXRXCTRL.. 137

9.9 Transmit Register (TX) ... 138
9.10 Receive Register (RX).. 138
9.11 Debug JTAG Access .. 139

9.11.1 SELDCSR JTAG Register ... 139
9.11.1.1 hold_reset ..140
9.11.1.2 ext_dbg_break ...140

Developer’s Manual January, 2004 7

Intel XScale® Core Developer’s Manual
Contents

9.11.1.3 DCSR (DBG_SR[34:3])..140
9.11.2 DBGTX JTAG Register ..141

9.11.2.1 DBG_SR[0] ..141
9.11.2.2 TX (DBG_SR[34:3]) ...141

9.11.3 DBGRX JTAG Register ...142
9.11.3.1 RX Write Logic ...143
9.11.3.2 DBG_SR[0] ..143
9.11.3.3 flush_rr ...143
9.11.3.4 hs_download ..143
9.11.3.5 RX (DBG_SR[34:3]) ...143
9.11.3.6 rx_valid...144

9.12 Trace Buffer ..145
9.12.1 Trace Buffer Registers ...145

9.12.1.1 Checkpoint Registers ...146
9.12.1.2 Trace Buffer Register (TBREG) ...147

9.13 Trace Buffer Entries..148
9.13.1 Message Byte ..148

9.13.1.1 Exception Message Byte ...149
9.13.1.2 Non-exception Message Byte ..150
9.13.1.3 Address Bytes..151

9.13.2 Trace Buffer Usage..152
9.14 Downloading Code in the Instruction Cache...154

9.14.1 Mini Instruction Cache Overview ...154
9.14.2 LDIC JTAG Command...155
9.14.3 LDIC JTAG Data Register ...155
9.14.4 LDIC Cache Functions...156
9.14.5 Loading Instruction Cache During Reset ...158
9.14.6 Dynamically Loading Instruction Cache After Reset..160

9.14.6.1 Dynamic Download Synchronization Code..162

10 Performance Considerations ...163

10.1 Interrupt Latency...163
10.2 Branch Prediction ...164
10.3 Addressing Modes ..164
10.4 Instruction Latencies...165

10.4.1 Performance Terms ...165
10.4.2 Branch Instruction Timings ..167
10.4.3 Data Processing Instruction Timings ...167
10.4.4 Multiply Instruction Timings..168
10.4.5 Saturated Arithmetic Instructions...170
10.4.6 Status Register Access Instructions ..170
10.4.7 Load/Store Instructions ..171
10.4.8 Semaphore Instructions...171
10.4.9 Coprocessor Instructions ...172
10.4.10 Miscellaneous Instruction Timing...172
10.4.11 Thumb Instructions ..173

A Optimization Guide ..175

A.1 Introduction ...175
A.1.1 About This Guide ...175

A.2 The Intel XScale® Core Pipeline...176

8 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Contents

A.2.1 General Pipeline Characteristics ...176
A.2.1.1. Number of Pipeline Stages ..176
A.2.1.2. The Intel XScale® Core Pipeline Organization 177
A.2.1.3. Out Of Order Completion ... 178
A.2.1.4. Register Scoreboarding ... 178
A.2.1.5. Use of Bypassing ... 178

A.2.2 Instruction Flow Through the Pipeline ... 179
A.2.2.1. ARM* V5TE Instruction Execution ... 179
A.2.2.2. Pipeline Stalls .. 179

A.2.3 Main Execution Pipeline .. 180
A.2.3.1. F1 / F2 (Instruction Fetch) Pipestages... 180
A.2.3.2. ID (Instruction Decode) Pipestage ... 180
A.2.3.3. RF (Register File / Shifter) Pipestage .. 181
A.2.3.4. X1 (Execute) Pipestages ... 181
A.2.3.5. X2 (Execute 2) Pipestage ..181
A.2.3.6. WB (write-back) ... 181

A.2.4 Memory Pipeline .. 182
A.2.4.1. D1 and D2 Pipestage... 182

A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline ..182
A.2.5.1. Behavioral Description ...182

A.3 Basic Optimizations ..183
A.3.1 Conditional Instructions ...183

A.3.1.1. Optimizing Condition Checks... 183
A.3.1.2. Optimizing Branches.. 184
A.3.1.3. Optimizing Complex Expressions .. 186

A.3.2 Bit Field Manipulation .. 187
A.3.3 Optimizing the Use of Immediate Values...188
A.3.4 Optimizing Integer Multiply and Divide .. 189
A.3.5 Effective Use of Addressing Modes... 190

A.4 Cache and Prefetch Optimizations ... 191
A.4.1 Instruction Cache... 191

A.4.1.1. Cache Miss Cost.. 191
A.4.1.2. Round-Robin Replacement Cache Policy.. 191
A.4.1.3. Code Placement to Reduce Cache Misses ... 191
A.4.1.4. Locking Code into the Instruction Cache ... 192

A.4.2 Data and Mini Cache ... 193
A.4.2.1. Non Cacheable Regions .. 193
A.4.2.2. Write-through and Write-back Cached Memory Regions 193
A.4.2.3. Read Allocate and Read-write Allocate Memory Regions 194
A.4.2.4. Creating On-chip RAM...194
A.4.2.5. Mini-data Cache... 195
A.4.2.6. Data Alignment .. 196
A.4.2.7. Literal Pools ... 197

A.4.3 Cache Considerations ... 198
A.4.3.1. Cache Conflicts, Pollution and Pressure.. 198
A.4.3.2. Memory Page Thrashing.. 198

A.4.4 Prefetch Considerations .. 199
A.4.4.1. Prefetch Distances... 199
A.4.4.2. Prefetch Loop Scheduling..199
A.4.4.3. Prefetch Loop Limitations ..199
A.4.4.4. Compute vs. Data Bus Bound.. 199
A.4.4.5. Low Number of Iterations... 200

Developer’s Manual January, 2004 9

Intel XScale® Core Developer’s Manual
Contents

A.4.4.6. Bandwidth Limitations ..200
A.4.4.7. Cache Memory Considerations..201
A.4.4.8. Cache Blocking ..203
A.4.4.9. Prefetch Unrolling ..203
A.4.4.10. Pointer Prefetch ...204
A.4.4.11. Loop Interchange ...205
A.4.4.12. Loop Fusion ...205
A.4.4.13. Prefetch to Reduce Register Pressure ..206

A.5 Instruction Scheduling ..207
A.5.1 Scheduling Loads ..207

A.5.1.1. Scheduling Load and Store Double (LDRD/STRD)210
A.5.1.2. Scheduling Load and Store Multiple (LDM/STM).................................211

A.5.2 Scheduling Data Processing Instructions ..212
A.5.3 Scheduling Multiply Instructions ..213
A.5.4 Scheduling SWP and SWPB Instructions ..214
A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)...............................215
A.5.6 Scheduling the MIA and MIAPH Instructions ...216
A.5.7 Scheduling MRS and MSR Instructions...217
A.5.8 Scheduling CP15 Coprocessor Instructions ..217

A.6 Optimizing C Libraries ..218
A.7 Optimizations for Size...218

A.7.1 Space/Performance Trade Off ...218
A.7.1.1. Multiple Word Load and Store ...218
A.7.1.2. Use of Conditional Instructions ..218
A.7.1.3. Use of PLD Instructions ...218

B Test Features ..219

B.1 Overview...219

10 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Contents

Figures
1-1 Architecture Features ...16
3-1 Example of Locked Entries in TLB ... 45
4-1 Instruction Cache Organization .. 47
4-2 Locked Line Effect on Round Robin Replacement ... 54
5-1 BTB Entry ... 57
5-2 Branch History .. 58
6-1 Data Cache Organization ... 62
6-2 Mini-Data Cache Organization ... 63
6-3 Locked Line Effect on Round Robin Replacement ... 74
9-1 SELDCSR... 139
9-2 DBGTX ... 141
9-3 DBGRX... 142
9-4 Message Byte Formats... 148
9-5 Indirect Branch Entry Address Byte Organization ..151
9-6 High Level View of Trace Buffer ... 152
9-7 LDIC JTAG Data Register Hardware.. 155
9-8 Format of LDIC Cache Functions ... 157
9-9 Code Download During a Cold Reset For Debug... 158
9-10Downloading Code in IC During Program Execution.. 160

A-1 The Intel XScale® Core RISC Superpipeline.. 177

Developer’s Manual January, 2004 11

Intel XScale® Core Developer’s Manual
Contents

Tables
2-1 Multiply with Internal Accumulate Format ...24
2-2 MIA{<cond>} acc0, Rm, Rs ..25
2-3 MIAPH{<cond>} acc0, Rm, Rs ...25
2-4 MIAxy{<cond>} acc0, Rm, Rs...26
2-5 Internal Accumulator Access Format..27
2-6 MAR{<cond>} acc0, RdLo, RdHi ..28
2-7 MRA{<cond>} RdLo, RdHi, acc0 ..28
2-9 Second-level Descriptors for Coarse Page Table...30
2-10Second-level Descriptors for Fine Page Table ...30
2-8 First-level Descriptors ...30
2-11Exception Summary..32
2-12Event Priority ..32
2-13Encoding of Fault Status for Prefetch Aborts..33
2-14Encoding of Fault Status for Data Aborts ...34
3-1 Data Cache and Buffer Behavior when X = 0...39
3-2 Data Cache and Buffer Behavior when X = 1...39
3-3 Memory Operations that Impose a Fence ..40
3-4 Valid MMU & Data/mini-data Cache Combinations ..41
7-1 MRC/MCR Format ..78
7-2 LDC/STC Format when Accessing CP14 ...79
7-3 CP15 Registers...80
7-4 ID Register..81
7-5 Cache Type Register ..82
7-6 ARM* Control Register ...83
7-7 Auxiliary Control Register ...84
7-8 Translation Table Base Register ..85
7-9 Domain Access Control Register..85
7-10Fault Status Register ..86
7-11Fault Address Register ...86
7-12Cache Functions...87
7-13TLB Functions...89
7-14Cache Lockdown Functions..90
7-15Data Cache Lock Register..90
7-16TLB Lockdown Functions ...91
7-17Accessing Process ID...91
7-18Process ID Register..91
7-19Accessing the Debug Registers..93
7-20Coprocessor Access Register ..95
7-21Accessing the XSC1 Performance Monitoring Registers ...96
7-22Accessing the XSC2 Performance Monitoring Registers ...97
7-23PWRMODE Register ..98
7-24Clock and Power Management...98
7-25CCLKCFG Register ..98
7-26Accessing the Debug Registers..99
8-1 XSC1 Performance Monitoring Registers ...102
8-2 Clock Count Register (CCNT) ..102
8-3 Performance Monitor Count Register (PMN0 and PMN1)..103
8-4 Performance Monitor Control Register (CP14, register 0)..104
8-5 Performance Monitoring Registers ...106

12 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Contents

8-6 Clock Count Register (CCNT) .. 106
8-7 Performance Monitor Count Register (PMN0 - PMN3) .. 107
8-8 Performance Monitor Control Register ...108
8-9 Interrupt Enable Register..109
8-10Overflow Flag Status Register .. 110
8-11Event Select Register ...111
8-12Performance Monitoring Events ... 113
8-13Some Common Uses of the PMU ..114
9-1 Debug Control and Status Register (DCSR) .. 123
9-2 Event Priority .. 126
9-3 Halt Mode R14_DBG Updating .. 127
9-4 Monitor Mode R14_DBG Updating... 129
9-5 Instruction Breakpoint Address and Control Register (IBCRx)... 130
9-6 Data Breakpoint Register (DBRx)... 131
9-7 Data Breakpoint Controls Register (DBCON)... 131
9-8 TX RX Control Register (TXRXCTRL).. 134
9-9 Normal RX Handshaking ..135
9-10High-Speed Download Handshaking States .. 135
9-11TX Handshaking ... 137
9-12TXRXCTRL Mnemonic Extensions .. 137
9-13TX Register... 138
9-14RX Register .. 138
9-15CP 14 Trace Buffer Register Summary .. 145
9-16Checkpoint Register (CHKPTx).. 146
9-17TBREG Format ... 147
9-18Message Byte Formats... 148
9-19LDIC Cache Functions ... 156
9-20Steps For Loading Mini Instruction Cache During Reset.. 159
9-21Steps For Dynamically Loading the Mini Instruction Cache ... 161
10-1Branch Latency Penalty.. 164
10-2Latency Example ..166
10-3Branch Instruction Timings (Those predicted by the BTB) ... 167
10-4Branch Instruction Timings (Those not predicted by the BTB) ... 167
10-5Data Processing Instruction Timings .. 167
10-6Multiply Instruction Timings .. 168
10-7Multiply Implicit Accumulate Instruction Timings .. 169
10-8 Implicit Accumulator Access Instruction Timings.. 169
10-9Saturated Data Processing Instruction Timings ... 170
10-10Status Register Access Instruction Timings.. 170
10-11Load and Store Instruction Timings .. 171
10-12Load and Store Multiple Instruction Timings... 171
10-13Semaphore Instruction Timings .. 171
10-14CP15 Register Access Instruction Timings... 172
10-15CP14 Register Access Instruction Timings... 172
10-16Exception-Generating Instruction Timings .. 172
10-17Count Leading Zeros Instruction Timings ... 172

A-1 Pipelines and Pipe stages .. 177

Developer’s Manual January, 2004 13

Intel XScale® Core Developer’s Manual
Introduction

Introduction 1

1.1 About This Document

This document is the authoritative and definitive reference for the external architecture of the Intel
XScale® core1.

This document describes two variants of the Intel XScale® core that differ only in the performance
monitoring and the size of the JTAG instruction register. Software can detect which variant it is
running on by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See
Table 7-4, “ID Register” on page 7-81 for more details.) A CoreGen value of 0x1 is referred to as
XSC1 and a value of 0x2 is referred to as XSC2.

Intel Corporation assumes no responsibility for any errors which may appear in this document nor
does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice. In
particular, descriptions of features, timings, and pin-outs does not imply a commitment to
implement them.

1.1.1 How to Read This Document

It is necessary to be familiar with the ARM Version 5TE Architecture in order to understand some
aspects of this document.

Each chapter in this document focuses on a specific architectural feature of the Intel XScale® core.

• Chapter 2, “Programming Model”

• Chapter 3, “Memory Management”

• Chapter 4, “Instruction Cache”

• Chapter 5, “Branch Target Buffer”

• Chapter 6, “Data Cache”

• Chapter 7, “Configuration”

• Chapter 8, “Performance Monitoring”

• Chapter 9, “Software Debug”

• Chapter 10, “Performance Considerations”

Several appendices are also present:

• Appendix A, “Optimization Guide” covers instruction scheduling techniques.

• Appendix B, “Test Features” describes the JTAG unit.

Note: All the “buzz words” and acronyms found throughout this document are captured in Section 1.3.2,
“Terminology and Acronyms” on page 1-19, located at the end of this chapter.

1. ARM* architecture compliant.

14 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Introduction

1.1.2 Other Relevant Documents

• ARM Architecture Version 5TE Specification Document Number: ARM DDI 0100E
This document describes Version 5TE of the ARM Architecture which includes Thumb ISA
and ARM DSP-Enhanced ISA. (ISBN 0 201 737191)

• StrongARM SA-1100 Microprocessor Developer’s Manual, Intel Order # 278105

• StrongARM SA-110 Microprocessor Technical Reference Manual, Intel Order #278104

Developer’s Manual January, 2004 15

Intel XScale® Core Developer’s Manual
Introduction

1.2 High-Level Overview of the Intel XScale® Core

The Intel XScale® core is an ARM V5TE compliant microprocessor. It has been designed for high
performance and low-power; leading the industry in mW/MIPs. The core is not intended to be
delivered as a stand alone product but as a building block for an ASSP (Application Specific
Standard Product) with embedded markets such as handheld devices, networking, storage, remote
access servers, etc.

The Intel XScale® core incorporates an extensive list of architecture features that allows it to
achieve high performance. This rich feature set allows programmers to select the appropriate
features that obtains the best performance for their application. Many of the architectural features
added to the Intel XScale® core help hide memory latency which often is a serious impediment to
high performance processors. This includes:

• the ability to continue instruction execution even while the data cache is retrieving data from
external memory.

• a write buffer.

• write-back caching.

• various data cache allocation policies which can be configured different for each application.

• and cache locking.

All these features improve the efficiency of the memory bus external to the core.

The Intel XScale® core has been equipped to efficiently handle audio processing through the
support of 16-bit data types and 16-bit operations. These audio coding enhancements center around
multiply and accumulate operations which accelerate many of the audio filter operations.

1.2.1 ARM Compatibility

ARM Version 5 (V5) Architecture added floating point instructions to ARM Version 4. The Intel
XScale® core implements the integer instruction set architecture of ARM V5, but does not provide
hardware support of the floating point instructions.

The Intel XScale® core provides the Thumb instruction set (ARM V5T) and the ARM V5E DSP
extensions.

Backward compatibility with StrongARM* products is maintained for user-mode applications.
Operating systems may require modifications to match the specific hardware features of the Intel
XScale® core and to take advantage of the performance enhancements added.

16 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Introduction

1.2.2 Features

Figure 1-1 shows the major functional blocks of the Intel XScale® core. The following sections
give a brief, high-level overview of these blocks.

1.2.2.1 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a
throughput of a MAC operation every cycle. Several architectural enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for
16-bit packed data.

See Section 2.3, “Extensions to ARM Architecture” on page 2-23 for more details.

Figure 1-1. Architecture Features

Write Buffer
• 8 entries
• Full coalescing

Fill
Buffer
• 4 - 8 entries

Instruction Cache
• 32K or 16K bytes
• 32 ways
• Lockable by line

IMMU
• 32 entry TLB
• Fully associative
• Lockable by entry

DMMU
• 32 entry TLB
• Fully Associative
• Lockable by entry

JTAG
Debug
• Hardware Breakpoints
• Branch History Table

Branch Target
Buffer
• 128 entries

MAC
• Single Cycle
 Throughput (16*32)
• 16-bit SIMD
• 40 bit Accumulator

Data Cache
• 32K or 16K bytes
• 32 ways
• wr-back or
 wr-through
• Hit under
 miss

 Data RAM
• 28K or 12K
 bytes
• Re-map of data
 cache

Power
Mgnt
Ctrl

Mini-
Data
Cache
• 2K or 1K
 bytes
• 2 ways

Performance
Monitoring

Developer’s Manual January, 2004 17

Intel XScale® Core Developer’s Manual
Introduction

1.2.2.2 Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified
in the ARM Architecture Reference Manual. The MMU provides access protection and virtual to
physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

Chapter 3, “Memory Management” discusses this in more detail.

1.2.2.3 Instruction Cache

The Intel XScale® core comes with either a 16 K or 32 K byte instruction cache. The size is
determined by the ASSP. The instruction cache is 32-way set associative and has a line size of
32 bytes. All requests that “miss” the instruction cache generate a 32-byte read request to external
memory. A mechanism to lock critical code within the cache is also provided.

Chapter 4, “Instruction Cache” discusses this in more detail.

1.2.2.4 Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch
type instructions. It provides storage for the target address of branch type instructions and predicts
the next address to present to the instruction cache when the current instruction address is that of a
branch.

The BTB holds 128 entries. See Chapter 5, “Branch Target Buffer” for more details.

1.2.2.5 Data Cache

The Intel XScale® core comes with either a 16 K or 32 K byte data cache. The size is determined
by the ASSP. Besides the main data cache, a mini-data cache is provided whose size is 1/16th the
main data cache. So a 32 K, 16 K byte main data cache would have a 2 K, 1 K byte mini-data cache
respectively. The main data cache is 32-way set associative and the mini-data cache is 2-way set
associative. Each cache has a line size of 32 bytes, supports write-through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by
coprocessor 15.

Chapter 6, “Data Cache” discusses all this in more detail.

The Intel XScale® core allows applications to re-configure a portion of the data cache as data
RAM. Software may place special tables or frequently used variables in this RAM. See
Section 6.4, “Re-configuring the Data Cache as Data RAM” on page 6-71 for more information on
this.

18 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Introduction

1.2.2.6 Performance Monitoring

Performance monitoring counters have been added to the Intel XScale® core that can be configured
to monitor various events in the core. These events allow a software developer to measure cache
efficiency, detect system bottlenecks and reduce the overall latency of programs.

Chapter 8, “Performance Monitoring” discusses this in more detail.

1.2.2.7 Power Management

The Intel XScale® core incorporates a power and clock management unit that can assist ASSPs in
controlling their clocking and managing their power. These features are described in Section 7.3,
“CP14 Registers” on page 7-96.

1.2.2.8 Debug

The Intel XScale® core supports software debugging through two instruction address breakpoint
registers, one data-address breakpoint register, one data-address/mask breakpoint register, and a
trace buffer.

Chapter 9, “Software Debug” discusses this in more detail.

1.2.2.9 JTAG

Testability is supported on the Intel XScale® core through the Test Access Port (TAP) Controller
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and
Boundary-Scan Architecture. The purpose of the TAP controller is to support test logic internal and
external to the core such as built-in self-test and boundary-scan.

Appendix B discusses this in more detail.

Developer’s Manual January, 2004 19

Intel XScale® Core Developer’s Manual
Introduction

1.3 Terminology and Conventions

1.3.1 Number Representation

All numbers in this document can be assumed to be base 10 unless designated otherwise. In text and
pseudo code descriptions, hexadecimal numbers have a prefix of 0x and binary numbers have a prefix
of 0b. For example, 107 would be represented as 0x6B in hexadecimal and 0b1101011 in binary.

1.3.2 Terminology and Acronyms

ASSP Application Specific Standard Product

Assert This term refers to the logically active value of a signal or bit.

BTB Branch Target Buffer

Clean A clean operation updates external memory with the contents of the specified line in
the data/mini-data cache if any of the dirty bits are set and the line is valid. There are
two dirty bits associated with each line in the cache so only the portion that is dirty
will get written back to external memory.

After this operation, the line is still valid and both dirty bits are deasserted.

Coalescing Coalescing means bringing together a new store operation with an existing store
operation already resident in the write buffer. The new store is placed in the same
write buffer entry as an existing store when the address of the new store falls in the
4 word aligned address of the existing entry. This includes, in PCI terminology, write
merging, write collapsing, and write combining.

Deassert This term refers to the logically inactive value of a signal or bit.

Flush A flush operation invalidates the location(s) in the cache by deasserting the valid bit.
Individual entries (lines) may be flushed or the entire cache may be flushed with one
command. Once an entry is flushed in the cache it can no longer be used by the
program.

XSC1 XSC1 refers to a variant of the Intel XScale® core denoted by a CoreGen
(Coprocessor 15, ID Register) value of 0x1. This variant has a 2 counter performance
monitor and a 5-bit JTAG instruction register. See Table 7-4, “ID Register” on
page 7-81 for more details.

XSC2 XSC2 refers to a variant of the Intel XScale® core denoted by a CoreGen
(Coprocessor 15, ID Register) value of 0x2. This variant has a 4 counter performance
monitor and a 7-bit JTAG instruction register. See Table 7-4, “ID Register” on
page 7-81 for more details.

Reserved A reserved field is a field that may be used by an implementation. If the initial value
of a reserved field is supplied by software, this value must be zero. Software should
not modify reserved fields or depend on any values in reserved fields.

20 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Introduction

This Page Intentionally Left Blank

Developer’s Manual January, 2004 21

Intel XScale® Core Developer’s Manual
Programming Model

Programming Model 2

This chapter describes the programming model of the Intel XScale® core, namely the
implementation options and extensions to the ARM Version 5TE architecture.

2.1 ARM Architecture Compatibility

The Intel XScale® core implements the integer instruction set architecture specified in ARM
V5TE. T refers to the Thumb instruction set and E refers to the DSP-Enhanced instruction set.

ARM V5TE introduces a few more architecture features over ARM V4, specifically the addition of
tiny pages (1 Kbyte), a new instruction (CLZ) that counts the leading zeroes in a data value,
enhanced ARM-Thumb transfer instructions and a modification of the system control coprocessor,
CP15.

2.2 ARM Architecture Implementation Options

2.2.1 Big Endian versus Little Endian

The Intel XScale® core supports both big and little endian data representation. The B-bit of the
Control Register (Coprocessor 15, register 1, bit 7) selects big and little endian mode. To run in big
endian mode, the B bit must be set before attempting any sub-word accesses to memory, or
undefined results will occur. Note that this bit takes effect even if the MMU is disabled.

2.2.2 26-Bit Architecture

The Intel XScale® core does not support 26-bit architecture.

2.2.3 Thumb

The Intel XScale® core supports the Thumb instruction set.

22 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

2.2.4 ARM DSP-Enhanced Instruction Set

The Intel XScale® core implements the ARM DSP-enhanced instruction set which is a set of
instructions that boost the performance of signal processing applications. There are new multiply
instructions that operate on 16-bit data values and new saturation instructions. Some of the new
instructions are:

• SMLAxy 32<=16x16+32

• SMLAWy 32<=32x16+32

• SMLALxy 64<=16x16+64

• SMULxy 32<=16x16

• SMULWy 32<=32x16

• QADD adds two registers and saturates the result if an overflow occurred

• QDADD doubles and saturates one of the input registers then add and saturate

• QSUB subtracts two registers and saturates the result if an overflow occurred

• QDSUB doubles and saturates one of the input registers then subtract and saturate

The Intel XScale® core also implements LDRD, STRD and PLD instructions with the following
implementation notes:

• PLD is interpreted as a read operation by the MMU and is ignored by the data breakpoint unit
(i.e., PLD will never generate data breakpoint events).

• PLD to a non-cacheable page performs no action. Also, if the targeted cache line is already
resident, this instruction has no affect.

• Both LDRD and STRD instructions will generate an alignment exception when the address
bits [2:0] = 0b100.

MCRR and MRRC are only supported on the Intel XScale® core when directed to coprocessor 0
and are used to access the internal accumulator. See Section 2.3.1.2 for more information. Access
to coprocessors 15 and 14 generate an undefined instruction exception. Refer to the Intel XScale®
core implementation option section of the ASSP architecture specification for the behavior when
accessing all other coprocessors.

2.2.5 Base Register Update

If a data abort is signalled on a memory instruction that specifies writeback, the contents of the
base register will not be updated. This holds for all load and store instructions. This behavior
matches that of the first generation StrongARM processor and is referred to in the ARM V5TE
architecture as the Base Restored Abort Model.

Developer’s Manual January, 2004 23

Intel XScale® Core Developer’s Manual
Programming Model

2.3 Extensions to ARM Architecture

The Intel XScale® core made a few extensions to the ARM Version 5TE architecture to meet the
needs of various markets and design requirements. The following is a list of the extensions which
are discussed in the next sections.

• A DSP coprocessor (CP0) has been added that contains a 40-bit accumulator and eight new
instructions.

• New page attributes were added to the page table descriptors. The C and B page attribute
encoding was extended by one more bit to allow for more encodings: write allocate and
mini-data cache. An ASSP definable attribute (P bit) was also added.

• Additional functionality has been added to coprocessor 15. Coprocessor 14 was also created.

• Enhancements were made to the Event Architecture, which include instruction cache and data
cache parity error exceptions, breakpoint events, and imprecise external data aborts.

2.3.1 DSP Coprocessor 0 (CP0)

The Intel XScale® core adds a DSP coprocessor to the architecture for the purpose of increasing
the performance and the precision of audio processing algorithms. This coprocessor contains a
40-bit accumulator and 8 new instructions.

Note: Products using the Intel XScale® core may extend the definition of CP0. If this is the case, a
complete definition can be found in the Intel XScale® core implementation option section of the
ASSP architecture specification. For this very reason, software should not rely on behavior that is
specific to the 40-bit length of the accumulator, since the length may be extended.

The 40-bit accumulator is referenced by several new instructions that were added to the
architecture; MIA, MIAPH and MIAxy are multiply/accumulate instructions that reference the
40-bit accumulator instead of a register specified accumulator. MAR and MRA provide the ability
to read and write the 40-bit accumulator.

Access to CP0 is always allowed in all processor modes when bit 0 of the Coprocessor Access
Register is set. Any access to CP0 when this bit is clear will cause an undefined exception. (See
Section 7.2.15, “Register 15: Coprocessor Access Register” on page 7-94 for more details).

Note: Only privileged software can set this bit in the Coprocessor Access Register.

The 40-bit accumulator will need to be saved on a context switch if multiple processes are using it.

Two new instruction formats were added for coprocessor 0: Multiply with Internal Accumulate
Format and Internal Accumulate Access Format. The formats and instructions are described next.

24 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

2.3.1.1 Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators. Table 2-1,
“Multiply with Internal Accumulate Format” on page 2-24 shows the layout of the new format.
The opcode for this format lies within the coprocessor register transfer instruction type. These
instructions have their own syntax.

Two new fields were created for this format, acc and opcode_3. The acc field specifies 1 of 8
internal accumulators to operate on and opcode_3 defines the operation for this format. The Intel
XScale® core defines a single 40-bit accumulator referred to as acc0; future implementations may
define multiple internal accumulators. The Intel XScale® core uses opcode_3 to define six
instructions, MIA, MIAPH, MIABB, MIABT, MIATB and MIATT.

Table 2-1. Multiply with Internal Accumulate Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 opcode_3 Rs 0 0 0 0 acc 1 Rm

Bits Description Notes

31:28 cond - ARM condition codes -

19:16 opcode_3 - specifies the type of multiply with
internal accumulate

The Intel XScale® core defines the following:
0b0000 = MIA
0b1000 = MIAPH
0b1100 = MIABB
0b1101 = MIABT
0b1110 = MIATB
0b1111 = MIATT
The effect of all other encodings are
unpredictable.

15:12 Rs - Multiplier

7:5 acc - select 1 of 8 accumulators
The Intel XScale® core only implements acc0;
access to any other acc has an unpredictable
effect.

3:0 Rm - Multiplicand -

Developer’s Manual January, 2004 25

Intel XScale® Core Developer’s Manual
Programming Model

The MIA instruction operates similarly to MLA except that the 40-bit accumulator is used. MIA
multiplies the signed value in register Rs (multiplier) by the signed value in register Rm
(multiplicand) and then adds the result to the 40-bit accumulator (acc0).

MIA does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values. MIA is useful for operating on signed 16-bit data that was loaded into a general
purpose register by LDRSH.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

The MIAPH instruction performs two16-bit signed multiplies on packed half word data and
accumulates these to a single 40-bit accumulator. The first signed multiplication is performed on
the lower 16 bits of the value in register Rs with the lower 16 bits of the value in register Rm. The
second signed multiplication is performed on the upper 16 bits of the value in register Rs with the
upper 16 bits of the value in register Rm. Both signed 32-bit products are sign extended and then
added to the value in the 40-bit accumulator (acc0).

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Table 2-2. MIA{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 0 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = (Rm[31:0] * Rs[31:0])[39:0] + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

No condition code flags are updated

Notes: Early termination is supported. Instruction timings can be found

in Section 10.4.4, “Multiply Instruction Timings” on page 10-168.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on the core.

Table 2-3. MIAPH{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = sign_extend(Rm[31:16] * Rs[31:16]) +

sign_extend(Rm[15:0] * Rs[15:0]) +

acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
in Section 10.4.4, “Multiply Instruction Timings” on page 10-168.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on the core

26 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

The MIAxy instruction performs one16-bit signed multiply and accumulates these to a single
40-bit accumulator. x refers to either the upper half or lower half of register Rm (multiplicand) and
y refers to the upper or lower half of Rs (multiplier). A value of 0x1 will select bits [31:16] of the
register which is specified in the mnemonic as T (for top). A value of 0x0 will select bits [15:0] of
the register which is specified in the mnemonic as B (for bottom).

MIAxy does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Table 2-4. MIAxy{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 1 x y Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

if (bit[17] == 0)

<operand1> = Rm[15:0]

else

<operand1> = Rm[31:16]

if (bit[16] == 0)

<operand2> = Rs[15:0]

else

<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operand1> * <operand2>) + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
in Section 10.4.4, “Multiply Instruction Timings” on page 10-168.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on the core.

Developer’s Manual January, 2004 27

Intel XScale® Core Developer’s Manual
Programming Model

2.3.1.2 Internal Accumulator Access Format

The Intel XScale® core defines a new instruction format for accessing internal accumulators in
CP0. Table 2-5, “Internal Accumulator Access Format” on page 2-27 shows that the opcode falls
into the coprocessor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between StrongARM registers and an
internal accumulator. The acc field specifies 1 of 8 internal accumulators to transfer data to/from.
The core implements a single 40-bit accumulator referred to as acc0; future implementations can
specify multiple internal accumulators of varying sizes, up to 64 bits.

Access to the internal accumulator is allowed in all processor modes (user and privileged) as long
bit 0 of the Coprocessor Access Register is set. (See Section 7.2.15, “Register 15: Coprocessor
Access Register” on page 7-94 for more details).

The Intel XScale® core implements two instructions MAR and MRA that move two ARM
registers to acc0 and move acc0 to two ARM registers, respectively.

Note: MAR has the same encoding as MCRR (to coprocessor 0) and MRA has the same encoding as
MRRC (to coprocessor 0). These instructions move 64-bits of data to/from ARM registers from/to
coprocessor registers. MCRR and MRRC are defined in ARM’s DSP instruction set.

Disassemblers not aware of MAR and MRA will produce the following syntax:

MCRR{<cond>} p0, 0x0, RdLo, RdHi, c0

MRRC{<cond>} p0, 0x0, RdLo, RdHi, c0

Table 2-5. Internal Accumulator Access Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 L RdHi RdLo 0 0 0 0 0 0 0 0 0 acc

Bits Description Notes

31:28 cond - ARM condition codes -

20
L - move to/from internal accumulator
0= move to internal accumulator (MAR)
1= move from internal accumulator (MRA)

-

19:16 RdHi - specifies the high order eight (39:32)
bits of the internal accumulator.

On a read of the acc, this 8-bit high order field
will be sign extended.

On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]

15:12 RdLo - specifies the low order 32 bits of the
internal accumulator -

7:4 Should be zero

This field could be used in future
implementations to specify the type of
saturation to perform on the read of an internal
accumulator. (e.g., a signed saturation to
16-bits may be useful for some filter
algorithms.)

3 Should be zero -

2:0 acc - specifies 1 of 8 internal accumulators The core only implements acc0; access to
any other acc is unpredictable

28 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit accumulator
(acc0) and moves bits[7:0] of the value in register RdHi into bits[39:32] of acc0.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers. Bits[31:0] of
the value in acc0 are moved into the register RdLo. Bits[39:32] of the value in acc0 are sign
extended to 32 bits and moved into the register RdHi.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

Table 2-6. MAR{<cond>} acc0, RdLo, RdHi

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 0 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then
acc0[39:32] = RdHi[7:0]
acc0[31:0] = RdLo[31:0]

Exceptions:none

Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in

Section 10.4.4, “Multiply Instruction Timings” on page 10-168

Specifying R15 as either RdHi or RdLo has unpredictable results.

Table 2-7. MRA{<cond>} RdLo, RdHi, acc0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then
RdHi[31:0] = sign_extend(acc0[39:32])
RdLo[31:0] = acc0[31:0]

Exceptions:none

Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in
Section 10.4.4, “Multiply Instruction Timings” on page 10-168

Specifying the same register for RdHi and RdLo has unpredictable
results.

Specifying R15 as either RdHi or RdLo has unpredictable results.

Developer’s Manual January, 2004 29

Intel XScale® Core Developer’s Manual
Programming Model

2.3.2 New Page Attributes

The Intel XScale® core extends the page attributes defined by the C and B bits in the page
descriptors with an additional X bit. This bit allows four more attributes to be encoded when X=1.
These new encodings include allocating data for the mini-data cache and write-allocate caching. A
full description of the encodings can be found in Section 3.2.2, “Memory Attributes” on page 3-38.

The Intel XScale® core retains ARM definitions of the C and B encoding when X = 0, which is
different than the StrongARM products. The memory attribute for the mini-data cache has been
moved and replaced with the write-through caching attribute.

When write-allocate is enabled, a store operation that misses the data cache (cacheable data only)
will generate a line fill. If disabled, a line fill only occurs when a load operation misses the data
cache (cacheable data only).

Write-through caching causes all store operations to be written to memory, whether they are
cacheable or not cacheable. This feature is useful for maintaining data cache coherency.

The Intel XScale® core also adds a P bit in the first level descriptors to allow an ASSP to identify a
new memory attribute. Refer to the Intel XScale® core implementation option section of the ASSP
architecture specification to find out how the P bit has been defined. Bit 1 in the Control Register
(coprocessor 15, register 1, opcode=1) is used to assigned the P bit memory attribute for memory
accesses made during page table walks.

These attributes are programmed in the translation table descriptors, which are highlighted in
Table 2-8, “First-level Descriptors” on page 2-30, Table 2-9, “Second-level Descriptors for Coarse
Page Table” on page 2-30 and Table 2-10, “Second-level Descriptors for Fine Page Table” on
page 2-30. Two second-level descriptor formats have been defined for the core, one is used for the
coarse page table and the other is used for the fine page table.

30 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

The TEX (Type Extension) field is present in several of the descriptor types. In the core, only the
LSB of this field is defined; this is called the X bit. The remaining bits should be programmed as
zero (SBZ).

A Small Page descriptor does not have a TEX field. For these descriptors, TEX is implicitly zero;
that is, they operate as if the X bit had a ‘0’ value.

The X bit, when set, modifies the meaning of the C and B bits. Description of page attributes and
their encoding can be found in Chapter 3, “Memory Management”.

Table 2-8. First-level Descriptors

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Coarse page table base address P Domain SBZ 0 1

Section base address SBZ TEX AP P Domain 0 C B 1 0

Fine page table base address SBZ P Domain SBZ 1 1

Table 2-9. Second-level Descriptors for Coarse Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Extended small page base address SBZ TEX AP C B 1 1

Table 2-10. Second-level Descriptors for Fine Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Tiny Page Base Address TEX AP C B 1 1

Developer’s Manual January, 2004 31

Intel XScale® Core Developer’s Manual
Programming Model

2.3.3 Additions to CP15 Functionality

To accommodate the functionality in the Intel XScale® core, registers in CP15 and CP14 have been
added or augmented. See Chapter 7, “Configuration” for details.

At times it is necessary to be able to guarantee exactly when a CP15 update takes effect. For
example, when enabling memory address translation (turning on the MMU), it is vital to know
when the MMU is actually guaranteed to be in operation. To address this need, a processor-specific
code sequence is defined for the core. The sequence -- called CPWAIT -- is shown in Example 2-1
on page 2-31.

Example 2-1. CPWAIT: Canonical method to wait for CP15 update

When setting multiple CP15 registers, system software may opt to delay the assurance of their
update. This is accomplished by executing CPWAIT only after the sequence of MCR instructions.

Note: The CPWAIT sequence guarantees that CP15 side-effects are complete by the time the CPWAIT is
complete. It is possible, however, that the CP15 side-effect will take place before CPWAIT
completes or is issued. Programmers should take care that this does not affect the correctness of
their code.

;; The following macro should be used when software needs to be

;; assured that a CP15 update has taken effect.

;; It may only be used while in a privileged mode, because it

;; accesses CP15.

MACRO CPWAIT

MRC P15, 0, R0, C2, C0, 0 ; arbitrary read of CP15

MOV R0, R0 ; wait for it

SUB PC, PC, #4 ; branch to next instruction

; At this point, any previous CP15 writes are

; guaranteed to have taken effect.

ENDM

32 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

2.3.4 Event Architecture

2.3.4.1 Exception Summary

Table 2-11 shows all the exceptions that the core may generate, and the attributes of each.
Subsequent sections give details on each exception.

2.3.4.2 Event Priority

The Intel XScale® core follows the exception priority specified in the ARM Architecture Reference
Manual. The processor has additional exceptions that might be generated while debugging. For
information on these debug exceptions, see Chapter 9, “Software Debug”.

Table 2-11. Exception Summary

Exception Description Exception Typea

a. Exception types are those described in the ARM, section 2.5.

Precise? Updates FAR?

Reset Reset N N

FIQ FIQ N N

IRQ IRQ N N

External Instruction Prefetch Y N

Instruction MMU Prefetch Y N

Instruction Cache Parity Prefetch Y N

Lock Abort Data Y N

MMU Data Data Y Y

External Data Data N N

Data Cache Parity Data N N

Software Interrupt Software Interrupt Y N

Undefined Instruction Undefined Instruction Y N

Debug Eventsb

b. Refer to Chapter 9, “Software Debug” for more details

varies varies N

Table 2-12. Event Priority

Exception Priority

Reset 1 (Highest)

Data Abort (Precise & Imprecise) 2

FIQ 3

IRQ 4

Prefetch Abort 5

Undefined Instruction, SWI 6 (Lowest)

Developer’s Manual January, 2004 33

Intel XScale® Core Developer’s Manual
Programming Model

2.3.4.3 Prefetch Aborts

The Intel XScale® core detects three types of prefetch aborts: Instruction MMU abort, external
abort on an instruction access, and an instruction cache parity error. These aborts are described in
Table 2-13.

When a prefetch abort occurs, hardware reports the highest priority one in the extended Status field
of the Fault Status Register. The value placed in R14_ABORT (the link register in abort mode) is
the address of the aborted instruction + 4.

Table 2-13. Encoding of Fault Status for Prefetch Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domain FAR

Highest

Instruction MMU Exception

Several exceptions can generate this encoding:
- translation faults
- domain faults, and
- permission faults

It is up to software to figure out which one occurred.

0b10000 invalid invalid

External Instruction Error Exception

This exception occurs when the external memory system
reports an error on an instruction cache fetch.

0b10110 invalid invalid

Lowest Instruction Cache Parity Error Exception 0b11000 invalid invalid

34 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

2.3.4.4 Data Aborts

Two types of data aborts exist in the Intel XScale® core: precise and imprecise. A precise data
abort is defined as one where R14_ABORT always contains the PC (+8) of the instruction that
caused the exception. An imprecise abort is one where R14_ABORT contains the PC (+4) of the
next instruction to execute and not the address of the instruction that caused the abort. In other
words, instruction execution will have advanced beyond the instruction that caused the data abort.

On the core, precise data aborts are recoverable and imprecise data aborts are not recoverable.

Precise Data Aborts

• A lock abort is a precise data abort; the extended Status field of the Fault Status Register is set
to 0xb10100. This abort occurs when a lock operation directed to the MMU (instruction or
data) or instruction cache causes an exception, due to either a translation fault, access
permission fault or external bus fault.

The Fault Address Register is undefined and R14_ABORT is the address of the aborted
instruction + 8.

• A data MMU abort is precise. These are due to an alignment fault, translation fault, domain
fault, permission fault or external data abort on an MMU translation. The status field is set to a
predetermined ARM definition which is shown in Table 2-14, “Encoding of Fault Status for
Data Aborts” on page 2-34.

The Fault Address Register is set to the effective data address of the instruction and
R14_ABORT is the address of the aborted instruction + 8.

Imprecise data aborts

• A data cache parity error is imprecise; the extended Status field of the Fault Status Register is
set to 0xb11000.

• All external data aborts except for those generated on a data MMU translation are imprecise.

The Fault Address Register for all imprecise data aborts is undefined and R14_ABORT is the
address of the next instruction to execute + 4, which is the same for both ARM and Thumb mode.

Table 2-14. Encoding of Fault Status for Data Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domain FAR

Highest Alignment 0b000x1 invalid valid

External Abort on Translation First level
Second level

0b01100
0b01110

invalid
valid

valid
valid

Translation Section
Page

0b00101
0b00111

invalid
valid

valid
valid

Domain Section
Page

0b01001
0b01011

valid
valid

valid
valid

Permission Section
Page

0b01101
0b01111

valid
valid

valid
valid

Lock Abort

This data abort occurs on an MMU lock operation (data or
instruction TLB) or on an Instruction Cache lock operation.

0b10100 invalid invalid

Imprecise External Data Abort 0b10110 invalid invalid

Lowest Data Cache Parity Error Exception 0b11000 invalid invalid

Developer’s Manual January, 2004 35

Intel XScale® Core Developer’s Manual
Programming Model

Although the core guarantees the Base Restored Abort Model for precise aborts, it cannot do so in
the case of imprecise aborts. A Data Abort handler may encounter an updated base register if it is
invoked because of an imprecise abort.

Imprecise data aborts may create scenarios difficult for an abort handler to recover. Both external data
aborts and data cache parity errors may result in corrupted targeted register data. Because these faults
are imprecise, it is possible corrupted data will have been used before the Data Abort fault handler is
invoked. Because of this, software should treat imprecise data aborts as unrecoverable.Even memory
accesses marked as “stall until complete” (see Section 3.2.2.4) can result in imprecise data aborts.
For these types of accesses, the fault is somewhat less imprecise than the general case: it is
guaranteed to be raised within three instructions of the instruction that caused it. In other words, if
a “stall until complete” LD or ST instruction triggers an imprecise fault, then that fault will be seen
by the program within three instructions.

With this knowledge, it is possible to write code that accesses “stall until complete” memory with
impunity. Simply place several NOP instructions after such an access. If an imprecise fault occurs,
it will do so during the NOPs; the data abort handler will see identical register and memory state as
it would with a precise exception, and so should be able to recover. An example of this is shown in
Example 2-2 on page 2-35.

If a system design precludes events that could cause external aborts, then such precautions are not
necessary.
Multiple Data Aborts

Multiple data aborts may be detected by hardware but only the highest priority one will be
reported. If the reported data abort is precise, software can correct the cause of the abort and
re-execute the aborted instruction. If the lower priority abort still exists, it will be reported.
Software can handle each abort separately until the instruction successfully executes.

If the reported data abort is imprecise, software needs to check the SPSR to see if the previous
context was executing in abort mode. If this is the case, the link back to the current process has
been lost and the data abort is unrecoverable.

2.3.4.5 Events from Preload Instructions

A PLD instruction will never cause the Data MMU to fault for any of the following reasons:

• Domain Fault

• Permission Fault

• Translation Fault

If execution of the PLD would cause one of the above faults, then the PLD causes no effect.

Example 2-2. Shielding Code from Potential Imprecise Aborts

;; Example of code that maintains architectural state through the

;; window where an imprecise fault might occur.

LD R0, [R1] ; R1 points to stall-until-complete

; region of memory

NOP

NOP

NOP

; Code beyond this point is guaranteed not to see any aborts

; from the LD.

36 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Programming Model

This feature allows software to issue PLDs speculatively. For example, Example 2-3 on page 2-36
places a PLD instruction early in the loop. This PLD is used to fetch data for the next loop
iteration. In this example, the list is terminated with a node that has a null pointer. When execution
reaches the end of the list, the PLD on address 0x0 will not cause a fault. Rather, it will be ignored
and the loop will terminate normally.

2.3.4.6 Debug Events

Debug events are covered in Section 9.5, “Debug Exceptions” on page 9-126.

Example 2-3. Speculatively issuing PLD

;; R0 points to a node in a linked list. A node has the following layout:

;; Offset Contents

;;----------------------------------

;; 0 data

;; 4 pointer to next node

;; This code computes the sum of all nodes in a list. The sum is placed into R9.

;;

MOV R9, #0 ; Clear accumulator

sumList:

LDR R1, [R0, #4] ; R1 gets pointer to next node

LDR R3, [R0] ; R3 gets data from current node

PLD [R1] ; Speculatively start load of next node

ADD R9, R9, R3 ; Add into accumulator

MOVS R0, R1 ; Advance to next node. At end of list?

BNE sumList ; If not then loop

Developer’s Manual January, 2004 37

Intel XScale® Core Developer’s Manual
Memory Management

Memory Management 3

This chapter describes the memory management unit implemented in the Intel XScale® core.

3.1 Overview

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified
in the ARM Architecture Reference Manual. To accelerate virtual to physical address translation,
the core uses both an instruction Translation Look-aside Buffer (TLB) and a data TLB to cache the
latest translations. Each TLB holds 32 entries and is fully-associative. Not only do the TLBs
contain the translated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware translation-table-walking mechanism is
invoked to translate the virtual address to a physical address. Once translated, the physical address is
placed in the TLB along with the access rights and attributes of the page or section. These translations
can also be locked down in either TLB to guarantee the performance of critical routines.

The Intel XScale® core allows system software to associate various attributes with regions of
memory:

• cacheable

• bufferable

• line allocate policy

• write policy

• I/O

• mini Data Cache

• Coalescing

• an ASSP definable attribute - P bit (Refer to the Intel XScale® core implementation section of
the ASSP architecture specification for more information.)

See Section 3.2.2, “Memory Attributes” on page 3-38 for a description of page attributes and
Section 2.3.2, “New Page Attributes” on page 2-29 to find out where these attributes have been
mapped in the MMU descriptors.

Note: The virtual address with which the TLBs are accessed may be remapped by the PID register. See
Section 7.2.13, “Register 13: Process ID” on page 7-91 for a description of the PID register.

38 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Memory Management

3.2 Architecture Model

3.2.1 Version 4 vs. Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KByte in
size. The reserved field in the first-level descriptor (encoding 0b11) is used as the fine page table
base address. The exact bit fields and the format of the first and second-level descriptors can be
found in Section 2.3.2, “New Page Attributes” on page 2-29.

3.2.2 Memory Attributes

The attributes associated with a particular region of memory are configured in the memory
management page table and control the behavior of accesses to the instruction cache, data cache,
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new core attributes take advantage of
encoding space in the descriptors that was formerly reserved.

3.2.2.1 Page (P) Attribute Bit

The P bit allows an ASSP to assign its own page attribute to a memory region. This bit is only
present in the first level descriptors. Refer to the Intel XScale® core implementation section of the
ASSP architecture specification to find out how this has been defined. Accesses to memory for
page table walks do not use the MMU. The core provides ASSP definable memory attributes for
these accesses in the Auxiliary Control Register. See Table 7-7, “Auxiliary Control Register” on
page 7-84.

3.2.2.2 Cacheable (C), Bufferable (B), and eXtension (X) Bits

3.2.2.3 Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit. If the C bit is
clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and will not
fill a cache entry. If the C bit is set, then fetches from the associated memory region will be cached.

Developer’s Manual January, 2004 39

Intel XScale® Core Developer’s Manual
Memory Management

3.2.2.4 Data Cache and Write Buffer

All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.

If the X bit for a descriptor is zero, the C and B bits operate as mandated by the ARM architecture.
This behavior is detailed in Table 3-1.

If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as detailed in Table 3-2.

Table 3-1. Data Cache and Buffer Behavior when X = 0

C B Cacheable? Bufferable? Write Policy
Line

Allocation
Policy

Notes

0 0 N N - - Stall until completea

a. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise (but see Section 2.3.4.4 for a method to shield code from this imprecision).

0 1 N Y - -

1 0 Y Y Write Through Read Allocate

1 1 Y Y Write Back Read Allocate

Table 3-2. Data Cache and Buffer Behavior when X = 1

C B Cacheable? Bufferable? Write Policy
Line

Allocation
Policy

Notes

0 0 - - - - Unpredictable -- do not use

0 1 N Y - - Writes will not coalesce into
buffersa

a. Normally, bufferable writes can coalesce with previously buffered data in the same address range

1 0 (Mini Data
Cache) - - -

Cache policy is determined
by MD field of Auxiliary
Control registerb

b. See Section 7.2.2 for a description of this register

1 1 Y Y Write Back Read/Write
Allocate

40 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Memory Management

3.2.2.5 Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesses will be non-cacheable and non-bufferable. This is the
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B
all set to 0.

The X, C, and B bits determine when the processor should place new data into the Data Cache. The
cache places data into the cache in lines (also called blocks). Thus, the basis for making a decision
about placing new data into the cache is a called a “Line Allocation Policy”.

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a
32-byte cache line from external memory and allocate it into either the data cache or mini-data
cache (this is assuming the cache is enabled). Store operations that miss the cache will not cause a
line to be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will request a 32-byte
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy
instructs the Data Cache to keep external memory coherent by performing stores to both external
memory and the cache. A write-back policy only updates external memory when a line in the cache
is cleaned or needs to be replaced with a new line. Generally, write-back provides higher
performance because it generates less data traffic to external memory.

More details on cache policies may be gleaned from Section 6.2.3, “Cache Policies” on page 6-65.

3.2.2.6 Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence
will execute before any memop issued after the fence. Thus software may issue a fence to impose a
partial ordering on memory accesses.

Table 3-3 on page 3-40 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a fence.

3.2.3 Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory
accesses. The types and priorities of these exceptions are described in Section 2.3.4, “Event
Architecture” on page 2-32.

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15,
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU
exceptions are disabled when the MMU is disabled.

Table 3-3. Memory Operations that Impose a Fence

operation X C B

load - 0 -

store 1 0 1

load or store 0 0 0

Developer’s Manual January, 2004 41

Intel XScale® Core Developer’s Manual
Memory Management

3.3 Interaction of the MMU, Instruction Cache, and Data
Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently.
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of
the MMU and data/mini-data cache enables are valid. The invalid combination will cause
undefined results.

Table 3-4. Valid MMU & Data/mini-data Cache Combinations

MMU Data/mini-data Cache

Off Off

On Off

On On

42 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Memory Management

3.4 Control

3.4.1 Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they can
be invalidated separately. An individual entry in the data or instruction TLB can also be invalidated.
See Table 7-13, “TLB Functions” on page 7-89 for a listing of commands supported by the core.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry
operations can invalidate individual locked entries. In this case, the locked remains in the TLB, but
will never “hit” on an address translation. Effectively, a hole is in the TLB. This situation may be
rectified by unlocking the TLB.

3.4.2 Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register).

When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses
to data memory are made non-cacheable.

A recommended code sequence for enabling the MMU is shown in Example 3-1 on page 3-42.

Example 3-1. Enabling the MMU

; This routine provides software with a predictable way of enabling the MMU.

; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

; that the MMU will be enabled sometime after MCR and before the instruction

; that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to

; physical address mapping on this code since

; the MMU may be enabled part way through. This would allow the instructions

; after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP15, register 1

ORR R0, R0, #0x1; Turn on the MMU

MCR P15,0,R0,C1,C0,0; Write to CP15, register 1

; For a description of CPWAIT, see

; Section 2.3.3, “Additions to CP15 Functionality” on page 2-31

CPWAIT

; The MMU is guaranteed to be enabled at this point; the next instruction or

; data address will be translated.

Developer’s Manual January, 2004 43

Intel XScale® Core Developer’s Manual
Memory Management

3.4.3 Locking Entries

Individual entries can be locked into the instruction and data TLBs. See Table 7-14, “Cache
Lockdown Functions” on page 7-90 for the exact commands. If a lock operation finds the virtual
address translation already resident in the TLB, the results are unpredictable. An invalidate by
entry command before the lock command will ensure proper operation. Software can also
accomplish this by invalidating all entries, as shown in Example 3-2 on page 3-43.

Locking entries into either the instruction TLB or data TLB reduces the available number of entries (by
the number that was locked down) for hardware to cache other virtual to physical address translations.

A procedure for locking entries into the instruction TLB is shown in Example 3-2 on page 3-43.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault Status
Register is updated to indicate a Lock Abort (see Section 2.3.4.4, “Data Aborts” on page 2-34), and
the exception is reported as a data abort.

Note: If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a
translation that is about to be locked. For example, if R1 is the virtual address of an interrupt
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock
operation will be ignored when the interrupt service routine returns back to this code sequence.
Software should disable interrupts (FIQ or IRQ) in this case.

As a general rule, software should avoid locking in all other exception types.

Example 3-2. Locking Entries into the Instruction TLB

; R1, R2 and R3 contain the virtual addresses to translate and lock into

; the instruction TLB.

; The value in R0 is ignored in the following instruction.

; Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1) and lock into

; instruction TLB

MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB

MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

; The MMU is guaranteed to be updated at this point; the next instruction will

; see the locked instruction TLB entries.

44 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Memory Management

The proper procedure for locking entries into the data TLB is shown in Example 3-3 on page 3-44.

Note: Care must be exercised here when allowing exceptions to occur during this routine whose handlers
may have data that lies in a page that is trying to be locked into the TLB.

Example 3-3. Locking Entries into the Data TLB

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R1

MCR P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into

; data TLB

; Repeat sequence for virtual address in R2

MCR P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R2

MCR P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into

; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will

; see the locked data TLB entries.

Developer’s Manual January, 2004 45

Intel XScale® Core Developer’s Manual
Memory Management

3.4.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that
keeps track of the next entry to replace. The next entry to replace is the one sequentially after the
last entry that was written. For example, if the last virtual to physical address translation was
written into entry 5, the next entry to replace is entry 6.

At reset, the round-robin pointer is set to entry 31. Once a translation is written into entry 31, the
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have
been locked down. Subsequent translations move the round-robin pointer to the next sequential
entry until entry 31 is reached, where it will wrap back to entry 0 upon the next translation.

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A TLB lock
operation places the specified translation at the entry designated by the lock pointer, moves the
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking
entries into either TLB effectively reduces the available entries for updating. For example, if the
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over
from entry 31.

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock
pointer is at entry 31, a lock operation will update the TLB entry with the translation and ignore the
lock. In this case, the round-robin pointer will stay at entry 31.

Figure 3-1. Example of Locked Entries in TLB

entry 0
entry 1

entry 7
entry 8

entry 22
entry 23

entry 30
entry 31

Lo
ck

ed

Eight entries locked, 24 entries available for
round robin replacement

46 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Memory Management

This Page Intentionally Left Blank

Developer’s Manual January, 2004 47

Intel XScale® Core Developer’s Manual
Instruction Cache

Instruction Cache 4
The Intel XScale® core instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast execution of cached code. Code
can also be locked down when guaranteed or fast access time is required.

4.1 Overview
Figure 4-1 shows the cache organization and how the instruction address is used to access the cache.

The instruction cache is available as a 32K or 16K byte, 32-way set associative cache. The size
determines the number of sets; a 32K byte cache has 32 sets and the 16K byte cache has 16 sets.
Each set, irrespective of size, contains 32 ways. Each way of a set contains eight 32-bit words and
one valid bit, which is referred to as a line. The replacement policy is a round-robin algorithm and
the cache also supports the ability to lock code in at a line granularity.

The instruction cache is virtually addressed and virtually tagged.

Note: The virtual address presented to the instruction cache may be remapped by the PID register. See
Section 7.2.13, “Register 13: Process ID” on page 7-91 for a description of the PID register.

Figure 4-1. Instruction Cache Organization

way 0
way 1

way 31

8 Words (cache line)
Set 31

CAM DATA

way 0
way 1

way 31

8 Words (cache line)
Set 1

CAM DATA

way 0
way 1

way 31

8 Words (cache line)

Set Index

Set 0

Tag

Instruction Word
(4 bytes)

Instruction Address (Virtual) - 32K byte cache

31 10 9 5 4 2 1 0

Tag Set Index Word

Word Select

CAM DATA
This example
shows Set 0 being
selected by the
set index.

CAM: Content
Addressable Memory

Example: 32K byte cache

Instruction Address (Virtual) - 16K byte cache

31 9 8 5 4 2 1 0

Tag Set Index Word

48 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Instruction Cache

4.2 Operation

4.2.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of
instructions that it is currently holding. If the cache contains the requested instruction, the access
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the
requested instruction, the access “misses” the cache, and the cache requests a fetch from external
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy
described in Section 4.2.3. As the fetch returns instructions to the cache, they are placed in one of
two fetch buffers and the requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the
cacheable (C) bit is set to 1 in its corresponding page. See Chapter 3, “Memory Management” for a
discussion on page attributes.

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers. When this
happens, the requested instruction will be delivered to the instruction decoder in the same manner
as a cache “hit.”

4.2.2 Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the
cache is disabled, it is still accessed and may generate a “hit” if the data is already in the cache.

Disabling the instruction cache does not disable instruction buffering that may occur within the
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the
presence of forward and backward branches), no external fetches for instructions are generated. A
miss causes one or the other buffer to be filled from external memory using the fill policy described
in Section 4.2.3.

Developer’s Manual January, 2004 49

Intel XScale® Core Developer’s Manual
Instruction Cache

4.2.3 Fetch Policy

An instruction-cache “miss” occurs when the requested instruction is not found in the instruction
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds
32-bytes and eight valid bits, one for each word.

A miss causes the following:

1. A fetch buffer is allocated

2. The instruction cache sends a fetch request to the external bus. This request is for a 32-byte line.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch
buffer.

4. As soon as the fetch buffer receives the requested instruction, it forwards the instruction to the
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cache if it is
cacheable and enabled. The line chosen for update in the cache is controlled by the
round-robin replacement algorithm. This update may evict a valid line at that location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated.

4.2.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next
line to replace in a set is the one after the last line that was written. For example, if the line for the
last external instruction fetch was written into way 5-set 2, the next line to replace for that set
would be way 6. None of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0
if no lines have been locked into that particular set. Locking lines into the instruction cache
effectively reduces the available lines for cache updating. For example, if the first three lines of a
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over
from way 31. Refer to Section 4.3.4, “Locking Instructions in the Instruction Cache” on page 4-54
for more details on cache locking.

50 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Instruction Cache

4.2.5 Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction cache word
has 1 parity bit. (The instruction cache tag is NOT parity protected.) When a parity error is detected
on an instruction cache access, a prefetch abort exception occurs if the core attempts to execute the
instruction. Before servicing the exception, hardware place a notification of the error in the Fault
Status Register (Coprocessor 15, register 5).

A software exception handler can recover from an instruction cache parity error. This can be
accomplished by invalidating the instruction cache and the branch target buffer and then returning
to the instruction that caused the prefetch abort exception. A simplified code example is shown in
Example 4-1 on page 4-50. A more complex handler might choose to invalidate the specific line
that caused the exception and then invalidate the BTB.

If a parity error occurs on an instruction that is locked in the cache, the software exception handler
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it
returns to the faulting instruction.

Example 4-1. Recovering from an Instruction Cache Parity Error

; Prefetch abort handler

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target

; buffer

CPWAIT ; wait for effect (see Section 2.3.3 for a

; description of CPWAIT)

SUBS PC,R14,#4 ; Returns to the instruction that generated the

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point

Developer’s Manual January, 2004 51

Intel XScale® Core Developer’s Manual
Instruction Cache

4.2.6 Instruction Fetch Latency

The instruction fetch latency is dependent on the core to memory frequency ratio, system bus
bandwidth, system memory, etc., which are all particular to each ASSP. So, refer to the Intel
XScale® core implementation option section of the ASSP architecture specification for exact
details on instruction fetch latency.

4.2.7 Instruction Cache Coherency

The instruction cache does not detect modification to program memory by loads, stores or actions
of other bus masters. Several situations may require program memory modification, such as
uploading code from disk.

The application program is responsible for synchronizing code modification and invalidating the
cache. In general, software must ensure that modified code space is not accessed until modification
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification
in external memory is complete. Refer to Section 4.3.3, “Invalidating the Instruction Cache” on
page 4-53 for the proper procedure in invalidating the instruction cache.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software
must still invalidate the instruction cache before using the newly-written code. This precaution
ensures that state associated with the new code is not buffered elsewhere in the processor, such as
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor
into external memory before attempting to execute it. If writing into a non-cacheable region,
flushing the write buffers is sufficient precaution (see Section 7.2.8 for a description of this
operation). If writing to a cacheable region, then the data cache should be submitted to a
Clean/Invalidate operation (see Section 6.3.3.1) to ensure coherency.

52 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Instruction Cache

4.3 Instruction Cache Control

4.3.1 Instruction Cache State at RESET

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed).

4.3.2 Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control Register).
This process is illustrated in Example 4-2, Enabling the Instruction Cache.

Example 4-2. Enabling the Instruction Cache

; Enable the ICache

MRC P15, 0, R0, C1, C0, 0 ; Get the control register

ORR R0, R0, #0x1000 ; set bit 12 -- the I bit

MCR P15, 0, R0, C1, C0, 0 ; Set the control register

CPWAIT

Developer’s Manual January, 2004 53

Intel XScale® Core Developer’s Manual
Instruction Cache

4.3.3 Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to
coprocessor 15, register 7. (See Table 7-12, “Cache Functions” on page 7-87 for the exact
command.) This command does not unlock any lines that were locked in the instruction cache nor
does it invalidate those locked lines. To invalidate the entire cache including locked lines, the
unlock instruction cache command needs to be executed before the invalidate command. This
unlock command can also be found in Table 7-14, “Cache Lockdown Functions” on page 7-90.

There is an inherent delay from the execution of the instruction cache invalidate command to
where the next instruction will see the result of the invalidate. The following routine can be used to
guarantee proper synchronization.

The Intel XScale® core also supports invalidating an individual line from the instruction cache. See
Table 7-12, “Cache Functions” on page 7-87 for the exact command.

Example 4-3. Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch

; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next

; instruction sees the result of the invalidate command.

54 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Instruction Cache

4.3.4 Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to
28 lines in each set can be locked; hardware will ignore the lock command if software is trying to
lock all the lines in a particular set (i.e., ways 28-31can never be locked). When this happens, the
line will still be allocated into the cache but the lock will be ignored. The round-robin pointer will
stay at way 31 for that set.

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. (See
Table 7-14, “Cache Lockdown Functions” on page 7-90 for the exact command.) Register Rd
contains the virtual address of the line to be locked into the cache.

There are several requirements for locking down code:

7. the routine used to lock lines down in the cache must be placed in non-cacheable memory,
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur
while locking instructions into the cache.the code being locked into the cache must be
cacheable

8. the instruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the
instruction cache.

System programmers should ensure that the code to lock instructions into the cache does not reside
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets
locked into depends on the set index of the virtual address. Figure 4-2 is an example (32K byte
cache) of where lines of code may be locked into the cache along with how the round-robin pointer
is affected.

Figure 4-2. Locked Line Effect on Round Robin Replacement

way 0
way 1

way 7
way 8

way 22
way 23

way 30
way 31

set 1 set 31

Lo
ck

ed

set 0

Lo
ck

ed

set 2

Lo
ck

ed

...

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only way28-31 available for replacement
set 31: all 32 ways available for round robin replacement

...
...

...

32K Byte Cache Example

Developer’s Manual January, 2004 55

Intel XScale® Core Developer’s Manual
Instruction Cache

Software can lock down several different routines located at different memory locations. This may
cause some sets to have more locked lines than others as shown in Figure 4-2.

Example 4-4 on page 4-55 shows how a routine, called “lockMe” in this example, might be locked
into the instruction cache. Note that it is possible to receive an exception while locking code (see
Section 2.3.4, “Event Architecture” on page 2-32).

4.3.5 Unlocking Instructions in the Instruction Cache

The Intel XScale® core provides a global unlock command for the instruction cache. Writing to
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them
valid. These lines then become available for the round-robin replacement algorithm. (See
Table 7-14, “Cache Lockdown Functions” on page 7-90 for the exact command.)

Example 4-4. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache

mov r0, #5

add r5, r1, r2

. . .

lockMeEnd:

. . .

codeLock: ; here is the code to lock the “lockMe” routine

ldr r0, =(lockMe AND NOT 31); r0 gets a pointer to the first line we

should lock

ldr r1, =(lockMeEnd AND NOT 31); r1 contains a pointer to the last line we

should lock

lockLoop:

mcr p15, 0, r0, c9, c1, 0; lock next line of code into ICache

cmp r0, r1 ; are we done yet?

add r0, r0, #32 ; advance pointer to next line

bne lockLoop ; if not done, do the next line

56 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Instruction Cache

This Page Intentionally Left Blank

Developer’s Manual January, 2004 57

Intel XScale® Core Developer’s Manual
Branch Target Buffer

Branch Target Buffer 5

The Intel XScale® core uses dynamic branch prediction to reduce the penalties associated with
changing the flow of program execution. The core features a branch target buffer that provides the
instruction cache with the target address of branch type instructions. The branch target buffer is
implemented as a 128-entry, direct mapped cache.

This chapter is primarily for those optimizing their code for performance. An understanding of the
branch target buffer is needed in this case so that code can be scheduled to best utilize the
performance benefits of the branch target buffer.

5.1 Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets. Figure 5-1
shows an entry in the BTB, where the tag is the instruction address of a previously executed branch
and the data contains the target address of the previously executed branch along with two bits of
history information.

The BTB takes the current instruction address and checks to see if this address is a branch that was
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB
uses the data (target address) as the next instruction address to send to the instruction cache.

Bit[1] of the instruction address is included in the tag comparison in order to support Thumb
execution. This organization means that two consecutive Thumb branch (B) instructions, with
instruction address bits[8:2] the same, will contend for the same BTB entry. Thumb also requires
31 bits for the branch target address. In ARM mode, bit[1] is zero.

Figure 5-1. BTB Entry

Branch Address[31:9,1] Target Address[31:1] History

DATATAG

Bits[1:0]

58 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Branch Target Buffer

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 5-2,
“Branch History” on page 5-58 shows these states along with the possible transitions. The initial
state for branches stored in the BTB is Weakly-Taken (WT). Every time a branch that exists in the
BTB is executed, the history bits are updated to reflect the latest outcome of the branch, either
taken or not-taken.

Chapter 10, “Performance Considerations” describes which instructions are dynamically predicted
by the BTB and the performance penalty for mispredicting a branch.

The BTB does not have to be managed explicitly by software; it is disabled by default after reset
and is invalidated when the instruction cache is invalidated.

5.1.1 Reset

After Processor Reset, the BTB is disabled and all entries are invalidated.

5.1.2 Update Policy

A new entry is stored into the BTB when the following conditions are met:

• the branch instruction has executed,

• the branch was taken

• the branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at
the same entry in the BTB, it will be evicted by the new branch.

Once a branch is stored in the BTB, the history bits are updated upon every execution of the branch
as shown in Figure 5-2.

Figure 5-2. Branch History

SN WN WT ST

Taken

Not Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Taken

SN: Strongly Not Taken
WN: Weakly Not Taken

ST: Strongly Taken
WT: Weakly Taken

Developer’s Manual January, 2004 59

Intel XScale® Core Developer’s Manual
Branch Target Buffer

5.2 BTB Control

5.2.1 Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through a bit in a
coprocessor register (see Section 7.2.2).

Before enabling or disabling the BTB, software must invalidate it (described in the following
section). This action will ensure correct operation in case stale data is in the BTB. Software should
not place any branch instruction between the code that invalidates the BTB and the code that
enables/disables it.

5.2.2 Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset

2. Software can directly invalidate the BTB via a CP15, register 7 function. Refer to
Section 7.2.8, “Register 7: Cache Functions” on page 7-87.

3. The BTB is invalidated when the Process ID Register is written.

4. The BTB is invalidated when the instruction cache is invalidated via CP15, register 7
functions.

60 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Branch Target Buffer

This Page Intentionally Left Blank

Developer’s Manual January, 2004 61

Intel XScale® Core Developer’s Manual
Data Cache

Data Cache 6

The Intel XScale® core data cache enhances performance by reducing the number of data accesses
to and from external memory. There are two data cache structures in the core, a data cache with two
size options (32 K or 16 Kbytes) and a mini-data cache that is 1/16th the size of the main data
cache. An eight entry write buffer and a four entry fill buffer are also implemented to decouple the
core instruction execution from external memory accesses, which increases overall system
performance.

6.1 Overviews

6.1.1 Data Cache Overview

The data cache is available as a 32 K or 16 Kbyte, 32-way set associative cache. The size
determines the number of sets; a 32 Kbyte cache has 32 sets and the 16 Kbyte cache has 16 sets.
Each set, irrespective of size, contains 32 ways. Each way of a set contains 32 bytes (one cache
line) and one valid bit. There also exist two dirty bits for every line, one for the lower 16 bytes and
the other one for the upper 16 bytes. When a store hits the cache the dirty bit associated with it is
set. The replacement policy is a round-robin algorithm and the cache also supports the ability to
reconfigure each line as data RAM.

Figure 6-1, “Data Cache Organization” on page 6-62 shows the cache organization and how the
data address is used to access the cache.

Cache policies may be adjusted for particular regions of memory by altering page attribute bits in
the MMU descriptor that controls that memory. See Section 3.2.2 for a description of these bits.

The data cache is virtually addressed and virtually tagged. It supports write-back and write-through
caching policies. The data cache always allocates a line in the cache when a cacheable read miss
occurs and will allocate a line into the cache on a cacheable write miss when write allocate is
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the
data cache or mini-data cache.

62 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

Figure 6-1. Data Cache Organization

way 0
way 1

way 31

32 bytes (cache line)
Set 31

CAM DATA
way 0
way 1

way 31

32 bytes (cache line)
Set 1

CAM DATA

way 0
way 1

way 31

32 bytes (cache line)

Set Index

Set 0

Tag

Data Address (Virtual) - 32K byte cache

31 10 9 5 4 2 1 0

Tag Set Index Word Byte

Data Address (Virtual) - 16K byte cache

31 9 8 5 4 2 1 0

Tag Set Index Word

Word Select

CAM DATA

Data Word
(4 bytes to Destination Register)

Byte Alignment
Sign Extension

Byte Select

This example shows
Set 0 being selected
by the set index.

CAM: Content Addressable Memory

Example: 32 Kbyte cache

Developer’s Manual January, 2004 63

Intel XScale® Core Developer’s Manual
Data Cache

6.1.2 Mini-Data Cache Overview

The mini-data cache is 1/16th the size of the data cache, so depending on the data cache size
selected the available sizes are 2 K or 1 Kbytes. The 2 Kbyte version has 32 sets and the 1 Kbyte
version has 16 sets; both versions are 2-way set associative. Each way of a set contains 32 bytes
(one cache line) and one valid bit. There also exist 2 dirty bits for every line, one for the lower
16 bytes and the other one for the upper 16 bytes. When a store hits the cache the dirty bit
associated with it is set. The replacement policy is a round-robin algorithm.

Figure 6-2, “Mini-Data Cache Organization” on page 6-63 shows the cache organization and how
the data address is used to access the cache.

The mini-data cache is virtually addressed and virtually tagged and supports the same caching
policies as the data cache. However, lines can’t be locked into the mini-data cache.

Figure 6-2. Mini-Data Cache Organization

way 0
way 1

32 bytes (cache line)
Set 1

way 0
way 1

32 bytes (cache line)

Set Index

Set 0

Tag

Data Word
(4 bytes to Destination Register)

Data Address (Virtual) - 2K byte cache

31 10 9 5 4 2 1 0

Tag Set Index Word Byte

Data Address (Virtual) - 1K byte cache

31 9 8 5 4 2 1 0

Tag Set Index Word

Word Select

This example
shows Set 0
being selected by
the set index.

way 0
way 1

32 bytes (cache line)
Set 31

Byte Alignment
Sign Extension

Byte Select

Example: 2K byte cache

64 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

6.1.3 Write Buffer and Fill Buffer Overview

The Intel XScale® core employs an eight entry write buffer, each entry containing 16 bytes. Stores
to external memory are first placed in the write buffer and subsequently taken out when the bus is
available.

The write buffer supports the coalescing of multiple store requests to external memory. An
incoming store may coalesce with any of the eight entries.

The fill buffer holds the external memory request information for a data cache or mini-data cache
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in
the fill buffer before the core needs to stall.

The fill buffer has been augmented with a four entry pend buffer that captures data memory
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer.

Pended operations complete in program order.

Developer’s Manual January, 2004 65

Intel XScale® Core Developer’s Manual
Data Cache

6.2 Data Cache and Mini-Data Cache Operation

The following discussions refer to the data cache and mini-data cache as one cache
(data/mini-data) since their behavior is the same when accessed.

6.2.1 Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the
address of the request against the addresses of data that it is currently holding. If the line containing
the address of the request is resident in the cache, the access “hits’ the cache. For a load operation
the cache returns the requested data to the destination register and for a store operation the data is
stored into the cache. The data associated with the store may also be written to external memory if
write-through caching is specified for that area of memory. If the cache does not contain the
requested data, the access ‘misses’ the cache, and the sequence of events that follows depends on
the configuration of the cache, the configuration of the MMU and the page attributes, which are
described in Section 6.2.3.2, “Read Miss Policy” on page 6-66 and Section 6.2.3.3, “Write Miss
Policy” on page 6-67 for a load “miss” and store “miss” respectively.

6.2.2 Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If a load hits the cache it will
return the requested data to the destination register. If a store hits the cache, the data is written into
the cache. Any access that misses the cache will not allocate a line in the cache when it’s disabled,
even if the MMU is enabled and the memory region’s cacheability attribute is set.

6.2.3 Cache Policies

6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:

• the MMU is enabled

• the cacheable attribute is set in the descriptor for the accessed address

• and the data/mini-data cache is enabled

66 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable (see Section 6.2.3.1, “Cacheability” on
page 6-65) load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it accesses the cache again, to obtain the request data and
returns it to the destination register.

If there is no outstanding fill request for that line, the current load request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
is full, the core will stall until an entry is available.

2. A line is allocated in the cache to receive the 32 bytes of fill data. The line selected is
determined by the round-robin pointer (see Section 6.2.4, “Round-Robin Replacement
Algorithm” on page 6-68). The line chosen may contain a valid line previously allocated in the
cache. In this case both dirty bits are examined and if set, the four words associated with a
dirty bit that’s asserted will be written back to external memory as a four word burst operation.

3. When the data requested by the load is returned from external memory, it is immediately sent
to the destination register specified by the load. A system that returns the requested data back
first, with respect to the other bytes of the line, will obtain the best performance.

4. As data returns from external memory it is written into the cache in the previously allocated
line.

A load operation that misses the cache and is NOT cacheable makes a request from external
memory for the exact data size of the original load request. For example, LDRH requests exactly
two bytes from external memory, LDR requests 4 bytes from external memory, etc. This request is
placed in the fill buffer until, the data is returned from external memory, which is then forwarded
back to the destination register(s).

Developer’s Manual January, 2004 67

Intel XScale® Core Developer’s Manual
Data Cache

6.2.3.3 Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if
the access is cacheable and write allocation is specified in the page. In this case the following
sequence of events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it writes its data into the recently allocated cache line.

If there is no outstanding fill request for that line, the current store request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
is full, the core will stall until an entry is available.

2. The 32 bytes of data can be returned back to the core in any word order, i.e, the eight words in
the line can be returned in any order. Note that it does not matter, for performance reasons,
which order the data is returned to the core since the store operation has to wait until the entire
line is written into the cache before it can complete.

3. When the entire 32-byte line has returned from external memory, a line is allocated in the
cache, selected by the round-robin pointer (see Section 6.2.4, “Round-Robin Replacement
Algorithm” on page 6-68). The line to be written into the cache may replace a valid line
previously allocated in the cache. In this case both dirty bits are examined and if any are set,
the four words associated with a dirty bit that’s asserted will be written back to external
memory as a 4 word burst operation. This write operation will be placed in the write buffer.

4. The line is written into the cache along with the data associated with the store operation.

If the above condition for requesting a 32-byte cache line is not met, a write miss will cause a write
request to external memory for the exact data size specified by the store operation, assuming the
write request doesn’t coalesce with another write operation in the write buffer.

6.2.3.4 Write-Back Versus Write-Through

The Intel XScale® core supports write-back caching or write-through caching, controlled through
the MMU page attributes. When write-through caching is specified, all store operations are written
to external memory even if the access hits the cache. This feature keeps the external memory
coherent with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data
cache. This however does not guarantee that the data/mini-data cache is coherent with external
memory, which is dependent on the system level configuration, specifically if the external memory
is shared by another master.

When write-back caching is specified, a store operation that hits the cache will not generate a write
to external memory, thus reducing external memory traffic.

68 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

6.2.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a
round-robin pointer that keeps track of the next line (in that set) to replace. The next line to replace
in a set is the next sequential line after the last one that was just filled. For example, if the line for
the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None
of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written
into way 31, the round-robin pointer points to the first available way of a set, beginning with way 0
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data
RAM effectively reduces the available lines for cache updating. For example, if the first three lines
of a set were re-configured, the round-robin pointer would point to the line at way 3 after it rolled
over from way 31. Refer to Section 6.4, “Re-configuring the Data Cache as Data RAM” on
page 6-71 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except
that there are only two lines the round-robin pointer can point to such that the round-robin pointer
always points to the least recently filled line. A least recently used replacement algorithm is not
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal
locality, i.e.,data that is placed into the mini-data cache is typically modified once and then written
back out to external memory.

6.2.5 Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one
parity bit per byte of data. (The tags are NOT parity protected.) When a parity error is detected on a
data/mini-data cache access, a data abort exception occurs. Before servicing the exception,
hardware will set bit 10 of the Fault Status Register register.

A data/mini-data cache parity error is an imprecise data abort, meaning R14_ABORT may not
point to the instruction that caused the parity error. If the parity error occurred during a load, the
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address
that caused the abort occurred on a line in the cache that has a write-back caching policy. Prior
updates to this line may be lost; in this case the software exception handler should perform a “clean
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending
process. This operation is shown in Section 6.3.3.1.

6.2.6 Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory
semaphore to be loaded and altered without interruption. These accesses may hit or miss the
data/mini-data cache depending on configuration of the cache, configuration of the MMU, and the
page attributes. Refer to the ASSP architecture specification for a product specific definition.

Developer’s Manual January, 2004 69

Intel XScale® Core Developer’s Manual
Data Cache

6.3 Data Cache and Mini-Data Cache Control

6.3.1 Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to
zero (invalid), and the round-robin bit points to way 31. Any lines in the data cache that were
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are
32 Kbytes of data cache and zero bytes of data RAM.

6.3.2 Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1
(Control Register). See Chapter 7, “Configuration”, for a description of this register and others.

Equation 6-1 shows code that enables the data and mini-data caches. Note that the MMU must be
enabled to use the data cache.

6.3.3 Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data
cache. Refer to Table 7-12, “Cache Functions” on page 7-87 for a listing of the commands. These
global invalidate commands have no effect on lines locked in the data cache. Locked lines must be
unlocked before they can be invalidated. This is accomplished by the Unlock Data Cache
command found in Table 7-14, “Cache Lockdown Functions” on page 7-90.

Example 6-1. Enabling the Data Cache

enableDCache:

MCR p15, 0, r0, c7, c10, 4; Drain pending data operations...

; (see Section 7.2.8, “Register 7: Cache Functions”)

MRC p15, 0, r0, c1, c0, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)

MCR p15, 0, r0, c1, c0, 0; And update the Control register

70 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

6.3.3.1 Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the
line-allocate data cache operation, which allocates a line into the data cache. This allocation evicts
any cache dirty data back to external memory. Example 6-2 shows how data cache can be cleaned.

The line-allocate operation does not require physical memory to exist at the virtual address
specified by the instruction, since it does not generate a load/fill request to external memory. Also,
the line-allocate operation does not set the 32 bytes of data associated with the line to any known
value. Reading this data will produce unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software must clean
this cache by reading 2 Kbytes of contiguous unused data into it. This data must be unused and
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is
marked as mini Data Cache cacheable (see Section 2.3.2).

The time it takes to execute a global clean operation depends on the number of dirty lines in cache.

Example 6-2. Global Clean Operation

; Global Clean/Invalidate THE DATA CACHE
; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation
; R0 is the loop count; Iterate 1024 times which is the number of lines in the
; data cache

;; Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.
;;

MACRO ALLOCATE Rx

MCR P15, 0, Rx, C7, C2, 5

ENDM

MOV R0, #1024

LOOP1:

ALLOCATE R1 ; Allocate a line at the virtual address

; specified by R1.

ADD R1, R1, #32 ; Increment the address in R1 to the next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP1

;

;Clean the Mini-data Cache

; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; R0 is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV R0, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increment to next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP2

;

; Invalidate the data cache and mini-data cache

MCR P15, 0, R0, C7, C6, 0

;

Developer’s Manual January, 2004 71

Intel XScale® Core Developer’s Manual
Data Cache

6.4 Re-configuring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it
is invalidated. Once a line is locked into the data cache it is no longer available for cache allocation
on a line fill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum
data RAM size is 28 Kbytes for the 32 Kbytes cache and 12 Kbytes for the 16 Kbytes cache.

Hardware does not support locking lines into the mini-data cache; any attempt to do this will
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the
application. One method is used to lock data that resides in external memory into the data cache
and the other method is used to re-configure lines in the data cache as data RAM. Locking data
from external memory into the data cache is useful for lookup tables, constants, and any other data
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when
an application needs scratch memory (bigger than the register file can provide) for frequently used
variables. These variables may be strewn across memory, making it advantageous for software to
pack them into data RAM memory.

Code examples for these two applications are shown in Example 6-3 on page 6-72 and Example
6-4 on page 6-73. The difference between these two routines is that Example 6-3 on page 6-72
actually requests the entire line of data from external memory and Example 6-4 on page 6-73 uses
the line-allocate operation to lock the tag into the cache. No external memory request is made,
which means software can map any unallocated area of memory as data RAM. However, the
line-allocate operation does validate the target address with the MMU, so system software must
ensure that the memory has a valid descriptor in the page table.

Another item to note in Example 6-4 on page 6-73 is that the 32 bytes of data located in a newly
allocated line in the cache must be initialized by software before it can be read. The line allocate
operation does not initialize the 32 bytes and therefore reading from that line will produce
unpredictable results.

In both examples, the code drains the pending loads before and after locking data. This step ensures
that outstanding loads do not end up in the wrong place -- either unintentionally locked into the
cache or mistakenly left out in the proverbial cold (not locked into the nice warm cache with their
brethren). Note also that a drain operation has been placed after the operation that locks the tag into
the cache. This drains ensures predictable results if a programmer tries to lock more than 28 lines
in a set; the tag will get allocated in this case but not locked into the cache.

72 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

Example 6-3. Locking Data into the Data Cache

; R1 contains the virtual address of a region of memory to lock,

; configured with C=1 and B=1

; R0 is the number of 32-byte lines to lock into the data cache. In this

; example 16 lines of data are locked into the cache.

; MMU and data cache are enabled prior to this code.

MACRO DRAIN

MCR P15, 0, R0, C7, C10, 4 ; drain pending loads and stores

ENDM

DRAIN

MOV R2, #0x1

MCR P15,0,R2,C9,C2,0 ; Put the data cache in lock mode

CPWAIT

MOV R0, #16

LOOP1:

MCR P15,0,R1,C7,C10,1 ; Write back the line if it’s dirty in the cache

MCR P15,0,R1, C7,C6,1 ; Flush/Invalidate the line from the cache

LDR R2, [R1], #32 ; Load and lock 32 bytes of data located at [R1]

; into the data cache. Post-increment the address

; in R1 to the next cache line.
SUBS R0, R0, #1; Decrement loop count

BNE LOOP1

; Turn off data cache locking

MOV R2, #0x0

MCR P15,0,R2,C9,C2,0 ; Take the data cache out of lock mode.

CPWAIT

Developer’s Manual January, 2004 73

Intel XScale® Core Developer’s Manual
Data Cache

Example 6-4. Creating Data RAM

; R1 contains the virtual address of a region of memory to configure as data RAM,

; which is aligned on a 32-byte boundary.

; MMU is configured so that the memory region is cacheable.

; R0 is the number of 32-byte lines to designate as data RAM. In this example 16

; lines of the data cache are re-configured as data RAM.

; The inner loop is used to initialize the newly allocated lines

; MMU and data cache are enabled prior to this code.

MACRO ALLOCATE Rx

MCR P15, 0, Rx, C7, C2, 5

ENDM

MACRO DRAIN

MCR P15, 0, R0, C7, C10, 4 ; drain pending loads and stores

ENDM

DRAIN

MOV R4, #0x0

MOV R5, #0x0

MOV R2, #0x1

MCR P15,0,R2,C9,C2,0 ; Put the data cache in lock mode

CPWAIT

MOV R0, #16

LOOP1:

ALLOCATE R1 ; Allocate and lock a tag into the data cache at

; address [R1].

; initialize 32 bytes of newly allocated line

DRAIN

STRD R4, [R1],#8 ;

STRD R4, [R1],#8 ;

STRD R4, [R1],#8 ;

STRD R4, [R1],#8 ;

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP1

; Turn off data cache locking

DRAIN ; Finish all pending operations

MOV R2, #0x0

MCR P15,0,R2,C9,C2,0; Take the data cache out of lock mode.

CPWAIT

74 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

Tags can be locked into the data cache by enabling the data cache lock mode bit located in
coprocessor 15, register 9. (See Table 7-14, “Cache Lockdown Functions” on page 7-90 for the
exact command.) Once enabled, any new lines allocated into the data cache will be locked down.

Note that the PLD instruction will not affect the cache contents if it encounters an error while executing.
For this reason, system software should ensure the memory address used in the PLD is correct. If this
cannot be ascertained, replace the PLD with a LDR instruction that targets a scratch register.

Lines are locked into a set starting at way0 and may progress up to way 27; which set a line gets
locked into depends on the set index of the virtual address of the request. Figure 6-3, “Locked Line
Effect on Round Robin Replacement” on page 6-74 is an example of where lines of code may be
locked into the cache along with how the round-robin pointer is affected.

Software can lock down data located at different memory locations. This may cause some sets to
have more locked lines than others as shown in Figure 6-3.

Lines are unlocked in the data cache by performing an unlock operation. See Section 7.2.10,
“Register 9: Cache Lock Down” on page 7-90 for more information about locking and unlocking
the data cache.

Before locking, the programmer must ensure that no part of the target data range is already resident in
the cache. The core will not refetch such data, which will result in it not being locked into the cache.
If there is any doubt as to the location of the targeted memory data, the cache should be cleaned and
invalidated to prevent this scenario. If the cache contains a locked region which the programmer
wishes to lock again, then the cache must be unlocked before being cleaned and invalidated.

Figure 6-3. Locked Line Effect on Round Robin Replacement

way 0
way 1

way 7
way 8

way 22
way 23

way 30
way 31

set 1 set 31
Lo

ck
ed

set 0

Lo
ck

ed

set 2

Lo
ck

ed

...

...
...

...

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only ways 28-31 available for replacement
set 31: all 32 ways available for round robin replacement

Developer’s Manual January, 2004 75

Intel XScale® Core Developer’s Manual
Data Cache

6.5 Write Buffer/Fill Buffer Operation and Control

See Section 1.3.2, “Terminology and Acronyms” on page 1-19 for a definition of coalescing.

The write buffer is always enabled which means stores to external memory will be buffered. The
K bit in the Auxiliary Control Register (CP15, register 1) is a global enable/disable for allowing
coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C,
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to
external memory. Program correctness is maintained in this case by comparing all store requests
with all the valid entries in the fill buffer.

The write buffer and fill buffer support a drain operation, such that before the next instruction
executes, all the core data requests to external memory have completed. Note that an ASSP may
also include operations external to the core in the drain operation. (Refer to the Intel XScale® core
implementation option section in the ASSP architecture specification for more details.) See
Table 7-12, “Cache Functions” on page 7-87 for the exact command.

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X all 0) will
cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes. For details on
this operation, see the description of Drain Write Buffer in Section 7.2.8, “Register 7: Cache
Functions” on page 7-87.

76 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Data Cache

This Page Intentionally Left Blank

Developer’s Manual January, 2004 77

Intel XScale® Core Developer’s Manual
Configuration

Configuration 7

This chapter describes the System Control Coprocessor (CP15) and coprocessor 14 (CP14). CP15
configures the MMU, caches, buffers and other system attributes. CP14 contains the performance
monitor registers, clock and power management registers and the debug registers.

7.1 Overview

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause
an undefined instruction exception.

All CP14 registers can be accessed through MRC and MCR coprocessor instructions. LDC and
STC coprocessor instructions can only access the clock and power management registers, and the
debug registers. The performance monitoring registers can’t be accessed by LDC and STC
because CRm != 0x0, which can’t be expressed by LDC or STC. Access to all registers is allowed
only in privileged mode. Any access to CP14 in user mode will cause an undefined instruction
exception.

Coprocessors, CP15 and CP14, on the Intel XScale® core do not support access via CDP, MRRC,
or MCRR instructions. An attempt to access these coprocessors with these instructions will result
in an undefined instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after execution.
A software sequence is available for those wishing to determine when this update occurs and can
be found in Section 2.3.3, “Additions to CP15 Functionality” on page 2-31.

The Intel XScale® core includes an extra level of virtual address translation in the form of a PID
(Process ID) register and associated logic. For a detailed description of this facility, see
Section 7.2.13, “Register 13: Process ID” on page 7-91. Privileged code needs to be aware of this
facility because, when interacting with CP15, some addresses are modified by the PID and others
are not. An address that has yet to be modified by the PID (“PIDified”) is known as a virtual
address (VA). An address that has been through the PID logic, but not translated into a physical
address, is a modified virtual address (MVA).

78 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

The format of MRC and MCR is shown in Table 7-1.

The Intel XScale® core implements CP15, CP14 and CP0 coprocessors, which is specified by
cp_num. CP0 supports instructions specific for DSP and is described in Chapter 2, “Programming
Model.” Refer to the Intel XScale® core implementation option section of the ASSP architecture
specification to find out what other coprocessors, if any, are supported in the ASSP.

Unless otherwise noted, unused bits in coprocessor registers have unpredictable values when read.
For compatibility with future implementations, software should not rely on the values in those bits.

Table 7-1. MRC/MCR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 opcode_1 n CRn Rd cp_num opcode_2 1 CRm

Bits Description Notes

31:28 cond - ARM* condition codes -

23:21 opcode_1 - Reserved Should be programmed to zero for future
compatibility

20
n - Read or write coprocessor register

0 = MCR
1 = MRC

-

19:16 CRn - specifies which coprocessor register -

15:12 Rd - General Purpose Register, R0..R15 -

11:8 cp_num - coprocessor number

The Intel XScale® core defines three
coprocessors:

0b1111 = CP15
0b1110 = CP14
0x0000 = CP0
NOTE: Refer to the Intel XScale® core

implementation option section of the
ASSP architecture specification to see
if there are any other coprocessors
defined by the ASSP.

7:5 opcode_2 - Function bits
This field should be programmed to zero for
future compatibility unless a value has been
specified in the command.

3:0 CRm - Function bits
This field should be programmed to zero for
future compatibility unless a value has been
specified in the command.

Developer’s Manual January, 2004 79

Intel XScale® Core Developer’s Manual
Configuration

The format of LDC and STC for CP14 is shown in Table 7-2. LDC and STC follow the
programming notes in the ARM Architecture Reference Manual. Note that access to CP15 with
LDC and STC will cause an undefined exception and accesses to all other coprocessors is defined
in the Intel XScale® core implementation option section of the ASSP architecture specification.

LDC and STC transfer a single 32-bit word between a coprocessor register and memory. These
instructions do not allow the programmer to specify values for opcode_1, opcode_2, or Rm; those
fields implicitly contain zero, which means the performance monitoring registers are not
accessible.

Table 7-2. LDC/STC Format when Accessing CP14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U N W L Rn CRd cp_num 8_bit_word_offset

Bits Description Notes

31:28 cond - ARM* condition codes -

24:23,21
P, U, W - specifies 1 of 3 addressing modes
identified by addressing mode 5 in the ARM
Architecture Reference Manual.

-

22 N - should be 0 for CP14 coprocessors. Setting
this bit to 1 has will have an undefined effect.

20
L - Load or Store

0 = STC
1 = LDC

-

19:16 Rn - specifies the base register -

15:12 CRd - specifies the coprocessor register -

11:8 cp_num - coprocessor number

The Intel XScale® core defines the following:

0b1111 = Undefined Exception
0b1110 = CP14
NOTE: Refer to the Intel XScale® core

implementation option section of the
ASSP architecture specification to find
out the meaning of the other
encodings.

7:0 8-bit word offset -

80 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.2 CP15 Registers

Table 7-3 lists the CP15 registers implemented in the Intel XScale® core.

Table 7-3. CP15 Registers

Register
(CRn) Opc_1 CRm Opc_2 Access Description

0 0 0 0 Read / Write-Ignored ID

0 0 0 1 Read / Write-Ignored Cache Type

1 0 0 0 Read / Write Control

1 0 0 1 Read / Write Auxiliary Control

2 0 0 0 Read / Write Translation Table Base

3 0 0 0 Read / Write Domain Access Control

4 - - - Unpredictable Reserved

5 0 0 0 Read / Write Fault Status

6 0 0 0 Read / Write Fault Address

7 0 Variesa

a. The value varies depending on the specified function. Refer to the register description for a list of values.

Variesa Read-unpredictable / Write Cache Operations

8 0 Variesa Variesa Read-unpredictable / Write TLB Operations

9 0 Variesa Variesa Variesa Cache Lock Down

10 0 Variesa Variesa Read-unpredictable / Write TLB Lock Down

11 - 12 - - - Unpredictable Reserved

13 0 0 0 Read / Write Process ID (PID)

14 0 Variesa 0 Read / Write Breakpoint Registers

15 0 1 0 Read / Write Coprocessor Access

Developer’s Manual January, 2004 81

Intel XScale® Core Developer’s Manual
Configuration

7.2.1 Register 0: ID & Cache Type Registers

Register 0 houses two read-only register that are used for part identification: an ID register and a
cache type register.

The ID Register is selected when opcode_2=0. This register returns the code for the ASSP, where a
portion of it is defined by the ASSP. Refer to the Intel XScale® core implementation option section
of the ASSP architecture specification for the exact encoding.

The Cache Type Register is selected when opcode_2=1 and describes the cache configuration of
the core.

Table 7-4. ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 Core
Gen

Core
Revision Product Number Product

Revision

reset value: As Shown

Bits Access Description

31:24 Read / Write Ignored Implementation trademark
(0x69 = ‘i’= Intel Corporation)

23:16 Read / Write Ignored Architecture version = ARM* Version 5TE

15:13 Read / Write Ignored

Intel XScale® core Generation

0b001 = XSC1
0b010 = XSC2

This field reflects a specific set of architecture features
supported by the core. If new features are
added/deleted/modified this field will change. This allows
software, that is not dependent on ASSP features, to
target code at a specific core generation.

The difference between XSC1 and XSC2 is:

• the performance monitoring facility (Chapter 8,
“Performance Monitoring”)

• size of the JTAG instruction register (Appendix B,
“Test Features”)

12:10 Read / Write Ignored

Core Revision:

This field reflects revisions of core generations.
Differences may include errata that dictate different
operating conditions, software work-around, etc.

9:4 Read / Write Ignored Product Number (Defined by the ASSP)

3:0 Read / Write Ignored Product Revision (Defined by the ASSP)

82 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

Table 7-5. Cache Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 0 0 Dsize 1 0 1 0 1 0 0 0 0 Isize 1 0 1 0 1 0

reset value: As Shown

Bits Access Description

31:29 Read-as-Zero / Write Ignored Reserved

28:25 Read / Write Ignored
Cache class = 0b0101
The caches support locking, write back and round-robin
replacement. They do not support address by index.

24 Read / Write Ignored Harvard Cache

23:21 Read-as-Zero / Write Ignored Reserved

20:18 Read / Write Ignored
Data Cache Size (Dsize)

0b101 = 16 KB
0b110 = 32 KB

17:15 Read / Write Ignored Data cache associativity = 0b101 = 32-way

14 Read-as-Zero / Write Ignored Reserved

13:12 Read / Write Ignored Data cache line length = 0b10 = 8 words/line

11:9 Read-as-Zero / Write Ignored Reserved

8:6 Read / Write Ignored
Instruction cache size (Isize)

0b101 = 16KB
0b110 = 32 KB

5:3 Read / Write Ignored Instruction cache associativity = 0b101 = 32-way

2 Read-as-Zero / Write Ignored Reserved

1:0 Read / Write Ignored Instruction cache line length = 0b10 = 8 words/line

Developer’s Manual January, 2004 83

Intel XScale® Core Developer’s Manual
Configuration

7.2.2 Register 1: Control & Auxiliary Control Registers

Register 1 is made up of two registers, one that is compliant with ARM Version 5TE and referred
by opcode_2 = 0x0, and the other which is specific to the core is referred by opcode_2 = 0x1. The
latter is known as the Auxiliary Control Register.

The Exception Vector Relocation bit (bit 13 of the ARM control register) allows the vectors to be
mapped into high memory rather than their default location at address 0. This bit is readable and
writable by software. If the MMU is enabled, the exception vectors will be accessed via the usual
translation method involving the PID register (see Section 7.2.13, “Register 13: Process ID” on
page 7-91) and the TLBs. To avoid automatic application of the PID to exception vector accesses,
software may relocate the exceptions to high memory.

Table 7-6. ARM* Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V I Z 0 R S B 1 1 1 1 C A M

reset value: writable bits set to 0

Bits Access Description

31:14 Read-Unpredictable /
Write-as-Zero Reserved

13 Read / Write
Exception Vector Relocation (V).

0 = Base address of exception vectors is 0x0000,0000
1 = Base address of exception vectors is 0xFFFF,0000

12 Read / Write
Instruction Cache Enable/Disable (I)

0 = Disabled
1 = Enabled

11 Read / Write
Branch Target Buffer Enable (Z)
0 = Disabled
1 = Enabled

10 Read-as-Zero / Write-as-Zero Reserved

9 Read / Write

ROM Protection (R)
This selects the access checks performed by the memory
management unit. See the ARM Architecture Reference
Manual for more information.

8 Read / Write

System Protection (S)
This selects the access checks performed by the memory
management unit. See the ARM Architecture Reference
Manual for more information.

7 Read / Write
Big/Little Endian (B)

0 = Little-endian operation
1 = Big-endian operation

6:3 Read-as-One / Write-as-One = 0b1111

2 Read / Write
Data cache enable/disable (C)

0 = Disabled
1 = Enabled

1 Read / Write
Alignment fault enable/disable (A)

0 = Disabled
1 = Enabled

0 Read / Write
Memory management unit enable/disable (M)

0 = Disabled
1 = Enabled

84 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

The mini-data cache attribute bits, in the Auxiliary Control Register, are used to control the
allocation policy for the mini-data cache and whether it will use write-back caching or
write-through caching.

Note: The configuration of the mini-data cache should be setup before any data access is made that may
be cached in the mini-data cache. Once data is cached, software must ensure that the mini-data
cache has been cleaned and invalidated before the mini-data cache attributes can be changed.

Table 7-7. Auxiliary Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MD P K

reset value: writable bits set to 0

Bits Access Description

31:6 Read-Unpredictable /
Write-as-Zero Reserved

5:4 Read / Write

Mini Data Cache Attributes (MD)

All configurations of the Mini-data cache are cacheable,
stores are buffered in the write buffer and stores will be
coalesced in the write buffer as long as coalescing is
globally enable (bit 0 of this register).

0b00 = Write back, Read allocate
0b01 = Write back, Read/Write allocate
0b10 = Write through, Read allocate
0b11 = Unpredictable

3:2 Read-Unpredictable /
Write-as-Zero Reserved

1 Read / Write

Page Table Memory Attribute (P) This field is defined by
the ASSP. Refer to the Intel XScale® core implementation
option section of the ASSP architecture specification for
more information.

0 Read / Write

Write Buffer Coalescing Disable (K)

This bit globally disables the coalescing of all stores in the
write buffer no matter what the value of the Cacheable
and Bufferable bits are in the page table descriptors.

0 = Enabled
1 = Disabled

Developer’s Manual January, 2004 85

Intel XScale® Core Developer’s Manual
Configuration

7.2.3 Register 2: Translation Table Base Register

7.2.4 Register 3: Domain Access Control Register

7.2.5 Register 4: Reserved

Register 4 is reserved. Reading and writing this register yields unpredictable results.

Table 7-8. Translation Table Base Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Translation Table Base

reset value: unpredictable

Bits Access Description

31:14 Read / Write Translation Table Base - Physical address of the base of
the first-level table

13:0 Read-unpredictable / Write-as-Zero Reserved

Table 7-9. Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

reset value: unpredictable

Bits Access Description

31:0 Read / Write
Access permissions for all 16 domains - The meaning
of each field can be found in the ARM Architecture
Reference Manual.

86 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.2.6 Register 5: Fault Status Register

The Fault Status Register (FSR) indicates which fault has occurred, which could be either a
prefetch abort or a data abort. Bit 10 extends the encoding of the status field for prefetch aborts and
data aborts. The definition of the extended status field is found in Section 2.3.4, “Event
Architecture” on page 2-32. Bit 9 indicates that a debug event occurred and the exact source of the
event is found in the debug control and status register (CP14, register 10). When bit 9 is set, the
domain and extended status field are undefined.

Upon entry into the prefetch abort or data abort handler, hardware will update this register with the
source of the exception. Software is not required to clear these fields.

7.2.7 Register 6: Fault address Register

Table 7-10. Fault Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X D 0 Domain Status

reset value: unpredictable

Bits Access Description

31:11 Read-unpredictable / Write-as-Zero Reserved

10 Read / Write

Status Field Extension (X)

This bit is used to extend the encoding of the Status field,
when there is a prefetch abort and when there is a data
abort. The definition of this field can be found in
Section 2.3.4, “Event Architecture” on page 2-32

9 Read / Write

Debug Event (D)

This flag indicates a debug event has occurred and that
the cause of the debug event is found in the MOE field of
the debug control register (CP14, register 10)

8 Read-as-zero / Write-as-Zero = 0

7:4 Read / Write Domain - Specifies which of the 16 domains was being
accessed when a data abort occurred

3:0 Read / Write Status - Type of data access being attempted

Table 7-11. Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault Virtual Address

reset value: unpredictable

Bits Access Description

31:0 Read / Write Fault Virtual Address - Contains the MVA of the data
access that caused the memory abort

Developer’s Manual January, 2004 87

Intel XScale® Core Developer’s Manual
Configuration

7.2.8 Register 7: Cache Functions

This register should be accessed as write-only. Reads from this register, as with an MRC, have an
undefined effect.

The Drain Write Buffer function not only drains the write buffer but also drains the fill buffer.The
core does not check permissions on addresses supplied for cache or TLB functions. Because only
privileged software may execute these functions, full accessibility is assumed. Cache functions will
not generate any of the following:

• translation faults

• domain faults

• permission faults

The invalidate instruction cache line command does not invalidate the BTB. If software invalidates
a line from the instruction cache and modifies the same location in external memory, it needs to
invalidate the BTB also. Not invalidating the BTB in this case may cause unpredictable results.

Disabling/enabling a cache has no effect on contents of the cache: valid data stays valid, locked
items remain locked. All operations defined in Table 7-12 work regardless of whether the cache is
enabled or disabled.

Since the Clean DCache Line function reads from the data cache, it is capable of generating a
parity fault. The other operations will not generate parity faults.

The line-allocate command allocates a tag into the data cache specified by bits [31:5] of Rd. If a
valid dirty line (with a different MVA) already exists at this location it will be evicted. The 32 bytes
of data associated with the newly allocated line are not initialized and therefore will generate
unpredictable results if read.

This command may be used for cleaning the entire data cache on a context switch and also when
re-configuring portions of the data cache as data RAM. In both cases, Rd is a virtual address that
maps to some non-existent physical memory. When creating data RAM, software must initialize
the data RAM before read accesses can occur. Specific uses of these commands can be found in
Chapter 6, “Data Cache”.

Table 7-12. Cache Functions

Function opcode_2 CRm Data Instruction

Invalidate I&D cache & BTB 0b000 0b0111 Ignored MCR p15, 0, Rd, c7, c7, 0

Invalidate I cache & BTB 0b000 0b0101 Ignored MCR p15, 0, Rd, c7, c5, 0

Invalidate I cache line 0b001 0b0101 MVA MCR p15, 0, Rd, c7, c5, 1

Invalidate D cache 0b000 0b0110 Ignored MCR p15, 0, Rd, c7, c6, 0

Invalidate D cache line 0b001 0b0110 MVA MCR p15, 0, Rd, c7, c6, 1

Clean D cache line 0b001 0b1010 MVA MCR p15, 0, Rd, c7, c10, 1

Drain Write (& Fill) Buffer 0b100 0b1010 Ignored MCR p15, 0, Rd, c7, c10, 4

Invalidate Branch Target Buffer 0b110 0b0101 Ignored MCR p15, 0, Rd, c7, c5, 6

Allocate Line in the Data Cache 0b101 0b0010 MVA MCR p15, 0, Rd, c7, c2, 5

88 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

Other items to note about the line-allocate command are:

• It forces all pending memory operations to complete.

• Bits [31:5] of Rd is used to specific the virtual address of the line to allocated into the data
cache.

• If the targeted cache line is already resident, this command has no effect.

• This command cannot be used to allocate a line in the mini Data Cache.

• The newly allocated line is not marked as “dirty” so it will never get evicted. However, if a
valid store is made to that line it will be marked as “dirty” and will get written back to external
memory if another line is allocated to the same cache location. This eviction will produce
unpredictable results.

To avoid this situation, the line-allocate operation should only be used if one of the following
can be guaranteed:

— The virtual address associated with this command is not one that will be generated during
normal program execution. This is the case when line-allocate is used to clean/invalidate
the entire cache.

— The line-allocate operation is used only on a cache region destined to be locked. When the
region is unlocked, it must be invalidated before making another data access.

Developer’s Manual January, 2004 89

Intel XScale® Core Developer’s Manual
Configuration

7.2.9 Register 8: TLB Operations

Disabling/enabling the MMU has no effect on the contents of either TLB: valid entries stay valid,
locked items remain locked. All operations defined in Table 7-13 work regardless of whether the
TLB is enabled or disabled.

This register should be accessed as write-only. Reads from this register, as with an MRC, have an
undefined effect.

Table 7-13. TLB Functions

Function opcode_2 CRm Data Instruction

Invalidate I&D TLB 0b000 0b0111 Ignored MCR p15, 0, Rd, c8, c7, 0

Invalidate I TLB 0b000 0b0101 Ignored MCR p15, 0, Rd, c8, c5, 0

Invalidate I TLB entry 0b001 0b0101 MVA MCR p15, 0, Rd, c8, c5, 1

Invalidate D TLB 0b000 0b0110 Ignored MCR p15, 0, Rd, c8, c6, 0

Invalidate D TLB entry 0b001 0b0110 MVA MCR p15, 0, Rd, c8, c6, 1

90 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.2.10 Register 9: Cache Lock Down

Register 9 is used for locking down entries into the instruction cache and data cache. (The protocol
for locking down entries can be found in Chapter 6, “Data Cache”.)

Table 7-14 shows the command for locking down entries in the instruction and data cache. The
entry to lock in the instruction cache is specified by the virtual address in Rd. The data cache
locking mechanism follows a different procedure than the instruction cache. The data cache is
placed in lock down mode such that all subsequent fills to the data cache result in that line being
locked in, as controlled by Table 7-15.

Lock/unlock operations on a disabled cache have an undefined effect.

Read and write access is allowed to the data cache lock register bit[0]. All other accesses to register
9 should be write-only; reads, as with an MRC, have an undefined effect.

Table 7-14. Cache Lockdown Functions

Function opcode_2 CRm Data Instruction

Fetch and Lock I cache line 0b000 0b0001 MVA MCR p15, 0, Rd, c9, c1, 0

Unlock Instruction cache 0b001 0b0001 Ignored MCR p15, 0, Rd, c9, c1, 1

Read data cache lock register 0b000 0b0010 Read lock mode
value MRC p15, 0, Rd, c9, c2, 0

Write data cache lock register 0b000 0b0010 Set/Clear lock
mode MCR p15, 0, Rd, c9, c2, 0

Unlock Data Cache 0b001 0b0010 Ignored MCR p15, 0, Rd, c9, c2, 1

Table 7-15. Data Cache Lock Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L

reset value: writable bits set to 0

Bits Access Description

31:1 Read-unpredictable / Write-as-Zero Reserved

0 Read / Write

Data Cache Lock Mode (L)

0 = No locking occurs
1 = Any fill into the data cache while this bit is set gets

locked in

Developer’s Manual January, 2004 91

Intel XScale® Core Developer’s Manual
Configuration

7.2.11 Register 10: TLB Lock Down

Register 10 is used for locking down entries into the instruction TLB, and data TLB. (The protocol
for locking down entries can be found in Chapter 3, “Memory Management”.) Lock/unlock
operations on a TLB when the MMU is disabled have an undefined effect.

This register should be accessed as write-only. Reads from this register, as with an MRC, have an
undefined effect.

Table 7-16 shows the command for locking down entries in the instruction TLB, and data TLB.
The entry to lock is specified by the virtual address in Rd.

7.2.12 Register 11-12: Reserved

These registers are reserved. Reading and writing them yields unpredictable results.

7.2.13 Register 13: Process ID

The Intel XScale® core supports remapping of virtual addresses through a Process ID (PID) register.
This remapping occurs before the instruction cache, instruction TLB, data cache and data TLB are
accessed. The PID register controls when virtual addresses are remapped and to what value.

The PID register is a 7-bit value that replaces bits 31:25 of the virtual address when they are zero.
This effectively remaps the address to one of 128 “slots” in the 4 Gbytes of address space. If
bits 31:25 are not zero, no remapping occurs. This feature is useful for operating system
management of processes that may map to the same virtual address space. In those cases, the
virtually mapped caches on the core would not require invalidating on a process switch.

Table 7-16. TLB Lockdown Functions

Function opcode_2 CRm Data Instruction

Translate and Lock I TLB entry 0b000 0b0100 MVA MCR p15, 0, Rd, c10, c4, 0

Translate and Lock D TLB entry 0b000 0b1000 MVA MCR p15, 0, Rd, c10, c8, 0

Unlock I TLB 0b001 0b0100 Ignored MCR p15, 0, Rd, c10, c4, 1

Unlock D TLB 0b001 0b1000 Ignored MCR p15, 0, Rd, c10, c8, 1

Table 7-17. Accessing Process ID

Function opcode_2 CRm Instruction

Read Process ID Register 0b000 0b0000 MRC p15, 0, Rd, c13, c0, 0

Write Process ID Register 0b000 0b0000 MCR p15, 0, Rd, c13, c0, 0

Table 7-18. Process ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Process ID

reset value: 0x0000,0000

Bits Access Description

31:25 Read / Write Process ID - This field is used for remapping the virtual
address when bits 31-25 of the virtual address are zero.

24:0 Read-as-Zero / Write-as-Zero Reserved - Should be programmed to zero for future
compatibility

92 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.2.13.1 The PID Register Affect On Addresses

All addresses generated and used by User Mode code are eligible for being “PIDified” as described
in the previous section. Privileged code, however, must be aware of certain special cases in which
address generation does not follow the usual flow.

The PID register is not used to remap the virtual address when accessing the Branch Target Buffer
(BTB). Any writes to the PID register invalidate the BTB, which prevents any virtual addresses
from being double mapped between two processes.

• A breakpoint address (see Section 7.2.14, “Register 14: Breakpoint Registers” on page 7-93)
must be expressed as an MVA when written to the breakpoint register. This means the value of the
PID must be combined appropriately with the address before it is written to the breakpoint
register. All virtual addresses in translation descriptors (see Chapter 3, “Memory Management”)
are MVAs.

Developer’s Manual January, 2004 93

Intel XScale® Core Developer’s Manual
Configuration

7.2.14 Register 14: Breakpoint Registers

The Intel XScale® core contains two instruction breakpoint address registers (IBCR0 and IBCR1),
one data breakpoint address register (DBR0), one configurable data mask/address register (DBR1),
and one data breakpoint control register (DBCON).

Refer to Chapter 9, “Software Debug” for more information on these features of the Intel XScale®
core.

Table 7-19. Accessing the Debug Registers

Function opcode_2 CRm Instruction

Access Instruction Breakpoint
Control Register 0 (IBCR0) 0b000 0b1000 MRC p15, 0, Rd, c14, c8, 0 ; read

MCR p15, 0, Rd, c14, c8, 0 ; write

Access Instruction Breakpoint
Control Register 1(IBCR1) 0b000 0b1001 MRC p15, 0, Rd, c14, c9, 0 ; read

MCR p15, 0, Rd, c14, c9, 0 ; write

Access Data Breakpoint Address
Register (DBR0) 0b000 0b0000 MRC p15, 0, Rd, c14, c0, 0 ; read

MCR p15, 0, Rd, c14, c0, 0 ; write

Access Data Mask/Address
Register (DBR1) 0b000 0b0011 MRC p15, 0, Rd, c14, c3, 0 ; read

MCR p15, 0, Rd, c14, c3, 0 ; write

Access Data Breakpoint Control
Register (DBCON) 0b000 0b0100 MRC p15, 0, Rd, c14, c4, 0 ; read

MCR p15, 0, Rd, c14, c4, 0 ; write

94 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.2.15 Register 15: Coprocessor Access Register

This register is selected when opcode_2 = 0 and CRm = 1.

This register controls access rights to all the coprocessors in the system except for CP15 and CP14.
Both CP15 and CP14 can only be accessed in privilege mode. This register is accessed with an
MCR or MRC with the CRm field set to 1.

This register controls access to CP0 and other coprocessors (CP1 through CP13) that may exist in
an ASSP. (See the Intel XScale® core implementation option section of the ASSP architecture
specification for a list of coprocessors that may have been implemented.) A typical use for this
register is for an operating system to control resource sharing among applications. Initially, all
applications are denied access to shared resources by clearing the appropriate coprocessor bit in the
Coprocessor Access Register. An application may request the use of a shared resource (e.g., the
accumulator in CP0) by issuing an access to the resource, which will result in an undefined
exception. The operating system may grant access to this coprocessor by setting the appropriate bit
in the Coprocessor Access Register and return to the application where the access is retried.

Sharing resources among different applications requires a state saving mechanism. Two
possibilities are:

• The operating system, during a context switch, could save the state of the coprocessor if the
last executing process had access rights to the coprocessor.

• The operating system, during a request for access, saves off the old coprocessor state and saves
it with last process to have access to it.

Under both scenarios, the OS needs to restore state when a request for access is made. This means
the OS has to maintain a list of what processes are modifying CP0 and their associated state.

Example 7-1. Disallowing access to CP0

;; The following code clears bit 0 of the CPAR.

;; This will cause the processor to fault if software

;; attempts to access CP0.

LDR R0, =0x3FFE ; bit 0 is clear

MCR P15, 0, R0, C15, C1, 0 ; move to CPAR

CPWAIT ; wait for effect

Developer’s Manual January, 2004 95

Intel XScale® Core Developer’s Manual
Configuration

Table 7-20. Coprocessor Access Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0
C
P
1
3

C
P
1
2

C
P
1
1

C
P
1
0

C
P
9

C
P
8

C
P
7

C
P
6

C
P
5

C
P
4

C
P
3

C
P
2

C
P
1

C
P
0

reset value: 0x0000,0000

Bits Access Description

31:16 Read-unpredictable / Write-as-Zero Reserved - Should be programmed to zero for future
compatibility

15:14 Read-as-Zero/Write-as-Zero Reserved - Should be programmed to zero for future
compatibility

13:1 Read / Write

Coprocessor Access Rights-
Each bit in this field corresponds to the access rights for
each coprocessor. Refer to the Intel XScale® core
implementation option section of the ASSP architecture
specification to find out which, if any, coprocessors exist
and for the definition of these bits.

0 Read / Write

Coprocessor Access Rights-
This bit corresponds to the access rights for CP0.

0 = Access denied. Any attempt to access the
corresponding coprocessor will generate an
undefined exception.

1 = Access allowed. Includes read and write accesses.

96 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.3 CP14 Registers

CP14 contains software debug registers, clock and power management registers and the
performance monitor registers.

All other registers are reserved in CP14. Reading and writing them yields unpredictable results.

7.3.1 Performance Monitoring Registers

There are two variants of the performance monitoring facility; the number, location and definition
of the registers are different between them. Software can determine which variant it is running on
by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See Table 7-4, “ID
Register” on page 7-81 for more details.) A CoreGen value of 0x1 is referred to as XSC1 and a
value of 0x2 is referred to as XSC2. The main difference between the two is that XSC1 has two
32-bit performance counters while XSC2 has four 32-bit performance counters.

7.3.1.1 XSC1 Performance Monitoring Registers

The performance monitoring unit in XSC1 contains a control register (PMNC), a clock counter
(CCNT) and two event counters (PMN0 and PMN1).The format of these registers can be found in
Chapter 8, “Performance Monitoring”, along with a description on how to use the performance
monitoring facility.

Opcode_2 and CRm should be zero.

Table 7-21. Accessing the XSC1 Performance Monitoring Registers

Description CRn
Register#

CRm
Register# Instruction

(PMNC) Performance Monitor Control
Register 0b0000 0b0000 Read: MRC p14, 0, Rd, c0, c0, 0

Write: MCR p14, 0, Rd, c0, c0, 0

(CCNT) Clock Counter Register 0b0001 0b0000 Read: MRC p14, 0, Rd, c1, c0, 0
Write: MCR p14, 0, Rd, c1, c0, 0

(PMN0) Performance Count Register 0 0b0010 0b0000 Read: MRC p14, 0, Rd, c2, c0, 0
Write: MCR p14, 0, Rd, c2, c0, 0

(PMN1) Performance Count Register 1 0b0011 0b0000 Read: MRC p14, 0, Rd, c3, c0, 0
Write: MCR p14, 0, Rd, c3, c0, 0

Developer’s Manual January, 2004 97

Intel XScale® Core Developer’s Manual
Configuration

7.3.1.2 XSC2 Performance Monitoring Registers

The performance monitoring unit in XSC2 contains a control register (PMNC), a clock counter
(CCNT), interrupt enable register (INTEN), overflow flag register (FLAG), event selection register
(EVTSEL) and four event counters (PMN0 through PMN3). The format of these registers can be
found in Chapter 8, “Performance Monitoring”, along with a description on how to use the
performance monitoring facility.

Opcode_2 should be zero on all accesses.

These registers can’t be accessed by LDC and STC coprocessor instructions.

Table 7-22. Accessing the XSC2 Performance Monitoring Registers

Description CRn
Register#

CRm
Register# Instruction

(PMNC) Performance Monitor Control
Register 0b0000 0b0001 Read: MRC p14, 0, Rd, c0, c1, 0

Write: MCR p14, 0, Rd, c0, c1, 0

(CCNT) Clock Counter Register 0b0001 0b0001 Read: MRC p14, 0, Rd, c1, c1, 0
Write: MCR p14, 0, Rd, c1, c1, 0

(INTEN) Interrupt Enable Register 0b0100 0b0001 Read: MRC p14, 0, Rd, c4, c1, 0
Write: MCR p14, 0, Rd, c4, c1, 0

(FLAG) Overflow Flag Register 0b0101 0b0001 Read: MRC p14, 0, Rd, c5, c1, 0
Write: MCR p14, 0, Rd, c5, c1, 0

(EVTSEL) Event Selection Register 0b1000 0b0001 Read: MRC p14, 0, Rd, c8, c1, 0
Write: MCR p14, 0, Rd, c8, c1, 0

(PMN0) Performance Count Register 0 0b0000 0b0010 Read: MRC p14, 0, Rd, c0, c2, 0
Write: MCR p14, 0, Rd, c0, c2, 0

(PMN1) Performance Count Register 1 0b0001 0b0010 Read: MRC p14, 0, Rd, c1, c2, 0
Write: MCR p14, 0, Rd, c1, c2, 0

(PMN2) Performance Count Register 2 0b0010 0b0010 Read: MRC p14, 0, Rd, c2, c2, 0
Write: MCR p14, 0, Rd, c2, c2, 0

(PMN3) Performance Count Register 3 0b0011 0b0010 Read: MRC p14, 0, Rd, c3, c2, 0
Write: MCR p14, 0, Rd, c3, c2, 0

98 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

7.3.2 Clock and Power Management Registers

These registers contain functions for managing the core clock and power.

Power management modes are supported through the PWRMODE Register (CRn = 0x7, CRm =
0x0). The function and definition of these modes is defined by the ASSP. The user should refer to
the Intel XScale® core implementation option section of the ASSP architecture specification for
specifics on the use of these registers.

To enter any of these modes, write the appropriate data to the PWRMODE register. Software may
read this register, but since software only runs during ACTIVE mode, it will always read zeroes
from the M field.

Software can change core clock frequency by writing to the CCLKCFG register (CRn = 0x6, CRm
= 0x0). This function informs the clocking unit (located external to the core) to change core clock
frequency. Software can read CCLKCFG to determine current operating frequency. Exact
definition of this register can be found in the Intel XScale® core implementation option section of
the ASSP architecture specification.

Table 7-23. PWRMODE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M

reset value: writable bits set to 0

Bits Access Description

31:4 Read-unpredictable / Write-as-Zero Reserved

3:0 Read / Write
Mode (M)
0 = ACTIVE
All other values are defined by the ASSP

Table 7-24. Clock and Power Management

Function Data Instruction

Power Mode Function
(Defined by ASSP) Defined by ASSP MCR p14, 0, Rd, c7, c0, 0

Read CCLKCFG ignored MRC p14, 0, Rd, c6, c0, 0

Write CCLKCFG CCLKCFG value MCR p14, 0, Rd, c6, c0, 0

Table 7-25. CCLKCFG Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCLKCFG

reset value: unpredictable

Bits Access Description

31:4 Read-unpredictable / Write-as-Zero Reserved

3:0 Read / Write
Core Clock Configuration (CCLKCFG)
This field is used to configure the core clock frequency
and is defined by the ASSP.

Developer’s Manual January, 2004 99

Intel XScale® Core Developer’s Manual
Configuration

7.3.3 Software Debug Registers

Software debug is supported by address breakpoint registers (Coprocessor 15, register 14), serial
communication over the JTAG interface and a trace buffer. Registers 8, 9 and 14 are used for the
serial interface, register 10 is for general control and registers 11 through 13 support a 256 entry
trace buffer. These registers are explained in more detail in Chapter 9, “Software Debug”.

Opcode_2 and CRm should be zero.

Table 7-26. Accessing the Debug Registers

Function CRn (Register #) Instruction

Transmit Debug Register (TX) 0b1000 MCR p14, 0, Rd, c8, c0, 0

Receive Debug Register (RX) 0b1001 MRC p14, 0, Rd, c9, c0, 0

Debug Control and Status Register (DBGCSR) 0b1010 MCR p14, 0, Rd, c10, c0, 0
MRC p14, 0, Rd, c10, c0, 0

Trace Buffer Register (TBREG) 0b1011 MRC p14, 0, Rd, c11, c0, 0

Checkpoint 0 Register (CHKPT0) 0b1100 MCR p14, 0, Rd, c12, c0, 0
MRC p14, 0, Rd, c12, c0, 0

Checkpoint 1 Register (CHKPT1) 0b1101 MCR p14, 0, Rd, c13, c0, 0
MRC p14, 0, Rd, c13, c0, 0

Transmit and Receive Debug Control Register 0b1110 MCR p14, 0, Rd, c14, c0, 0
MRC p14, 0, Rd, c14, c0, 0

100 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Configuration

This Page Intentionally Left Blank

Developer’s Manual January, 2004 101

Intel XScale® Core Developer’s Manual
Performance Monitoring

Performance Monitoring 8

This chapter describes the performance monitoring facility of the Intel XScale® core. The events
that are monitored can provide performance information for compiler writers, system application
developers and software programmers.

There are two variants of the performance monitoring facility; the number, location and definition
of the registers are different between them. Software can determine which variant it is running on
by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See Table 7-4, “ID
Register” on page 7-81 for more details.) A CoreGen value of 0x1 is referred to as XSC1 and a
value of 0x2 is referred to as XSC2. The main difference between the two is that XSC1 has two
32-bit performance counters while XSC2 has four 32-bit performance counters.

8.1 Overview

The Intel XScale® core hardware provides two or four 32-bit performance counters that allow
unique events to be monitored simultaneously. In addition, the Intel XScale® core implements a
32-bit clock counter that can be used in conjunction with the performance counters; its main
purpose is to count the number of core clock cycles which is useful in measuring total execution
time.

The Intel XScale® core can monitor either occurrence events or duration events. When counting
occurrence events, a counter is incremented each time a specified event takes place and when
measuring duration, a counter counts the number of processor clocks that occur while a specified
condition is true. If any of the counters overflow, an interrupt request will occur if it’s enabled.
(What happens to the interrupt request is definable by the ASSP, which typically contains an
interrupt controller that handles priority, masking, steering to FIQ or IRQ, etc. Refer to the Intel
XScale® core implementation option section of the ASSP architecture specification for more
details.) Each counter has its own interrupt request enable. The counters continue to monitor events
even after an overflow occurs, until disabled by software.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the Intel XScale® core clock counter can be used to
measure the executing time of an application. This information combined with a duration event can
feedback a percentage of time the event occurred with respect to overall execution time.

All of the performance monitoring registers are accessible through Coprocessor 14 (CP14). Access
is allowed in privileged mode only. Note that these registers can’t be accessed with LDC or STC
coprocessor instructions.

102 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.2 XSC1 Register Description (2 counter variant)

Table 8-1 contains details on accessing these registers with MRC and MCR coprocessor
instructions.

8.2.1 Clock Counter (CCNT; CP14 - Register 1)

The format of CCNT is shown in Table 8-6. The clock counter is reset to ‘0’ by Performance
Monitor Control Register (PMNC) or can be set to a predetermined value by directly writing to it.
It counts core clock cycles. When CCNT reaches its maximum value 0xFFFF,FFFF, the next clock
cycle will cause it to roll over to zero and set the overflow flag (bit 6) in PMNC. An IRQ or FIQ
will be reported if it is enabled via bit 6 in the PMNC register.

Table 8-1. XSC1 Performance Monitoring Registers

Description CRn
Register#

CRm
Register# Instruction

(PMNC) Performance Monitor Control
Register 0b0000 0b0000 Read: MRC p14, 0, Rd, c0, c0, 0

Write: MCR p14, 0, Rd, c0, c0, 0

(CCNT) Clock Counter Register 0b0001 0b0000 Read: MRC p14, 0, Rd, c1, c0, 0
Write: MCR p14, 0, Rd, c1, c0, 0

(PMN0) Performance Count Register 0 0b0010 0b0000 Read: MRC p14, 0, Rd, c2, c0, 0
Write: MCR p14, 0, Rd, c2, c0, 0

(PMN1) Performance Count Register 1 0b0011 0b0000 Read: MRC p14, 0, Rd, c3, c0, 0
Write: MCR p14, 0, Rd, c3, c0, 0

Table 8-2. Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit clock counter - Reset to ‘0’ by PMNC register.
When the clock counter reaches its maximum value
0xFFFF,FFFF, the next cycle will cause it to roll over to
zero and generate an IRQ or FIQ if enabled.

Developer’s Manual January, 2004 103

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.2.2 Performance Count Registers (PMN0 - PMN1; CP14 -
Register 2 and 3, Respectively)

There are two 32-bit event counters; their format is shown in Table 8-7. The event counters are
reset to ‘0’ by the PMNC register or can be set to a predetermined value by directly writing to
them. When an event counter reaches its maximum value 0xFFFF,FFFF, the next event it needs to
count will cause it to roll over to zero and set the overflow flag (bit 8 or 9) in PMNC. An IRQ or
FIQ interrupt will be reported if it is enabled via bit 4 or 5 in the PMNC register.

8.2.3 Extending Count Duration Beyond 32 Bits

To increase the monitoring duration, software can extend the count duration beyond 32 bits by
counting the number of overflow interrupts each 32-bit counter generates. This can be done in the
interrupt service routine (ISR) where an increment to some memory location every time the
interrupt occurs will enable longer durations of performance monitoring. This does intrude upon
program execution but is negligible, since the ISR execution time is in the order of tens of cycles
compared to the number of cycles it took to generate an overflow interrupt (232).

8.2.4 Performance Monitor Control Register (PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:

• controls which events PMN0 and PMN1 will monitor

• detects which counter overflowed

• enables/disables interrupt reporting

• extends CCNT counting by six more bits (cycles between counter rollover = 238)

• resets all counters to zero

• and enables the entire mechanism

Table 8-8 shows the format of the PMNC register.

Table 8-3. Performance Monitor Count Register (PMN0 and PMN1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit event counter - Reset to ‘0’ by PMNC register.
When an event counter reaches its maximum value
0xFFFF,FFFF, the next event it needs to count will cause
it to roll over to zero and generate an IRQ interrupt if
enabled.

104 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

Table 8-4. Performance Monitor Control Register (CP14, register 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

evtCount1 evtCount0 flag inten D C P E

reset value: E and inten are 0, others unpredictable

Bits Access Description

31:28 Read-unpredictable / Write-as-0 Reserved

27:20 Read / Write
Event Count1 - identifies the source of events that
PMN1 counts. See Table 8-12 for a description of the
values this field may contain.

19:12 Read / Write
Event Count0 - identifies the source of events that
PMN0 counts. See Table 8-12 for a description of the
values this field may contain.

11 Read-unpredictable / Write-as-0 Reserved

10:8 Read / Write

Overflow/Interrupt Flag - identifies which counter
overflowed

Bit 10 = clock counter overflow flag
Bit 9 = performance counter 1 overflow flag
Bit 8 = performance counter 0 overflow flag

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

7 Read-unpredictable / Write-as-0 Reserved

6:4 Read / Write

Interrupt Enable - used to enable/disable interrupt
reporting for each counter

Bit 6 = clock counter interrupt enable

0 = disable interrupt
1 = enable interrupt

Bit 5 = performance counter 1 interrupt enable

0 = disable interrupt
1 = enable interrupt

Bit 4 = performance counter 0 interrupt enable

0 = disable interrupt
1 = enable interrupt

3 Read / Write
Clock Counter Divider (D) -

0 = CCNT counts every processor clock cycle
1 = CCNT counts every 64th processor clock cycle

2 Read-unpredictable / Write
Clock Counter Reset (C) -

0 = no action
1 = reset the clock counter to ‘0x0’

1 Read-unpredictable / Write
Performance Counter Reset (P) -

0 = no action
1 = reset both performance counters to ‘0x0’

0 Read / Write
Enable (E) -

0 = all 3 counters are disabled
1 = all 3 counters are enabled

Developer’s Manual January, 2004 105

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.2.4.1 Managing PMNC

The following are a few notes about controlling the performance monitoring mechanism:

• An interrupt will be reported when a counter’s overflow flag is set and its associated interrupt
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears
the overflow flag by writing a one to the flag that is set. Note that the product specific interrupt
unit and the CPSR must have enabled the interrupt in order for software to receive it.

• The counters continue to record events even after they overflow.

106 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3 XSC2 Register Description (4 counter variant)

Table 8-5 contains details on accessing these registers with MRC and MCR coprocessor
instructions.

8.3.1 Clock Counter (CCNT)

The format of CCNT is shown in Table 8-6. The clock counter is reset to ‘0’ by setting bit 2 in the
Performance Monitor Control Register (PMNC) or can be set to a predetermined value by directly
writing to it. It counts core clock cycles. When CCNT reaches its maximum value 0xFFFF,FFFF,
the next clock cycle will cause it to roll over to zero and set the overflow flag (bit 0) in FLAG. An
interrupt request will occur if it is enabled via bit 0 in INTEN.

Table 8-5. Performance Monitoring Registers

Description CRn
Register#

CRm
Register# Instruction

(PMNC) Performance Monitor Control
Register 0b0000 0b0001 Read: MRC p14, 0, Rd, c0, c1, 0

Write: MCR p14, 0, Rd, c0, c1, 0

(CCNT) Clock Counter Register 0b0001 0b0001 Read: MRC p14, 0, Rd, c1, c1, 0
Write: MCR p14, 0, Rd, c1, c1, 0

(INTEN) Interrupt Enable Register 0b0100 0b0001 Read: MRC p14, 0, Rd, c4, c1, 0
Write: MCR p14, 0, Rd, c4, c1, 0

(FLAG) Overflow Flag Register 0b0101 0b0001 Read: MRC p14, 0, Rd, c5, c1, 0
Write: MCR p14, 0, Rd, c5, c1, 0

(EVTSEL) Event Selection Register 0b1000 0b0001 Read: MRC p14, 0, Rd, c8, c1, 0
Write: MCR p14, 0, Rd, c8, c1, 0

(PMN0) Performance Count Register 0 0b0000 0b0010 Read: MRC p14, 0, Rd, c0, c2, 0
Write: MCR p14, 0, Rd, c0, c2, 0

(PMN1) Performance Count Register 1 0b0001 0b0010 Read: MRC p14, 0, Rd, c1, c2, 0
Write: MCR p14, 0, Rd, c1, c2, 0

(PMN2) Performance Count Register 2 0b0010 0b0010 Read: MRC p14, 0, Rd, c2, c2, 0
Write: MCR p14, 0, Rd, c2, c2, 0

(PMN3) Performance Count Register 3 0b0011 0b0010 Read: MRC p14, 0, Rd, c3, c2, 0
Write: MCR p14, 0, Rd, c3, c2, 0

Table 8-6. Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit clock counter - Reset to ‘0’ by PMNC register.
When the clock counter reaches its maximum value
0xFFFF,FFFF, the next cycle will cause it to roll over to
zero and generate an interrupt request if enabled.

Developer’s Manual January, 2004 107

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.2 Performance Count Registers (PMN0 - PMN3)

There are four 32-bit event counters; their format is shown in Table 8-7. The event counters are
reset to ‘0’ by setting bit 1 in the PMNC register or can be set to a predetermined value by directly
writing to them. When an event counter reaches its maximum value 0xFFFF,FFFF, the next event it
needs to count will cause it to roll over to zero and set its corresponding overflow flag
(bit 1,2,3 or 4) in FLAG. An interrupt request will be generated if its corresponding interrupt enable
(bit 1,2,3 or 4) is set in INTEN.

Table 8-7. Performance Monitor Count Register (PMN0 - PMN3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event Counter

reset value: unpredictable

Bits Access Description

31:0 Read / Write

32-bit event counter - Reset to ‘0’ by PMNC register.
When an event counter reaches its maximum value
0xFFFF,FFFF, the next event it needs to count will cause
it to roll over to zero and generate an interrupt request if
enabled.

108 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.3 Performance Monitor Control Register (PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:

• contains the PMU ID

• extends CCNT counting by six more bits (cycles between counter rollover = 238)

• resets all counters to zero

• and enables the entire mechanism

Table 8-8 shows the format of the PMNC register.

Table 8-8. Performance Monitor Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID D C P E

reset value: E = 0, ID = 0x14, others unpredictable

Bits Access Description

31:24 Read / Write Ignored
Performance Monitor Identification (ID) -

XSC2 = 0x14

23:4 Read-unpredictable / Write-as-0 Reserved

3 Read / Write
Clock Counter Divider (D) -

0 = CCNT counts every processor clock cycle
1 = CCNT counts every 64th processor clock cycle

2 Read-unpredictable / Write
Clock Counter Reset (C) -

0 = no action
1 = reset the clock counter to ‘0x0’

1 Read-unpredictable / Write
Performance Counter Reset (P) -

0 = no action
1 = reset all performance counters to ‘0x0’

0 Read / Write
Enable (E) -

0 = all counters are disabled
1 = all counters are enabled

Developer’s Manual January, 2004 109

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.4 Interrupt Enable Register (INTEN)

Each counter can generate an interrupt request when it overflows. INTEN enables interrupt
requesting for each counter.

Table 8-9. Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
3

P
2

P
1

P
0 C

reset value: [4:0] = 0b00000, others unpredictable

Bits Access Description

31:5 Read-unpredictable / Write-as-0 Reserved

4 Read / Write
PMN3 Interrupt Enable (P3) -

0 = disable interrupt
1 = enable interrupt

3 Read / Write
PMN2 Interrupt Enable (P2) -

0 = disable interrupt
1 = enable interrupt

2 Read / Write
PMN1 Interrupt Enable (P1) -

0 = disable interrupt
1 = enable interrupt

1 Read / Write
PMN0 Interrupt Enable (P0) -

0 = disable interrupt
1 = enable interrupt

0 Read / Write
CCNT Interrupt Enable (C) -

0 = disable interrupt
1 = enable interrupt

110 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.5 Overflow Flag Status Register (FLAG)

FLAG identifies which counter has overflowed and also indicates an interrupt has been requested if
the overflowing counter’s corresponding interrupt enable bit (contained within INTEN) is asserted.
An overflow is cleared by writing a ‘1’ to the overflow bit.

Table 8-10. Overflow Flag Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
3

P
2

P
1

P
0 C

reset value: [4:0] = 0b00000, others unpredictable

Bits Access Description

31:5 Read-unpredictable / Write-as-0 Reserved

4 Read / Write

PMN3 Overflow Flag (P3) -

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

3 Read / Write

PMN2 Overflow Flag (P2) -

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

2 Read / Write

PMN1 Overflow Flag (P1) -

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

1 Read / Write

PMN0 Overflow Flag (P0) -

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

0 Read / Write

CCNT Overflow Flag (C) -

Read Values:

0 = no overflow
1 = overflow has occurred

Write Values:

0 = no change
1 = clear this bit

Developer’s Manual January, 2004 111

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.6 Event Select Register (EVTSEL)

EVTSEL is used to select events for PMN0, PMN1, PMN2 and PMN3. Refer to Table 8-12,
“Performance Monitoring Events” on page 8-113 for a list of possible events.

Table 8-11. Event Select Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

evtCount3 evtCount2 evtCount1 evtCount0

reset value: unpredictable

Bits Access Description

31:24 Read / Write

Event Count 3 (evtCount3) -

Identifies the source of events that PMN3 counts. See
Table 8-12 for a description of the values this field may
contain.

23:16 Read / Write

Event Count 2 (evtCount2) -

Identifies the source of events that PMN2 counts. See
Table 8-12 for a description of the values this field may
contain.

15:8 Read / Write

Event Count 1 (evtCount1) -

Identifies the source of events that PMN1 counts. See
Table 8-12 for a description of the values this field may
contain.

7:0 Read / Write

Event Count 0 (evtCount0) -

Identifies the source of events that PMN0 counts. See
Table 8-12 for a description of the values this field may
contain.

112 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.3.7 Managing the Performance Monitor

The following are a few notes about controlling the performance monitoring mechanism:

• An interrupt request will be generated when a counter’s overflow flag is set and its associated
interrupt enable bit is set in INTEN. The interrupt request will remain asserted until software
clears the overflow flag by writing a one to the flag that is set. (Note that the product specific
interrupt unit and the CPSR must have enabled the interrupt in order for software to receive it.)
The interrupt request can also be deasserted by clearing the corresponding interrupt enable bit.
Disabling the facility (PMNC.E) doesn’t deassert the interrupt request.

• The counters continue to record events even after they overflow.

• To change an event for a performance counter, first disable the facility (PMNC.E) and then
modify EVTSEL. Not doing so will cause unpredictable results.

• Simultaneously resetting and disabling the counter will cause unpredictable results. To disable
an event for a performance counter and reset the event counter, first disable the facility
(PMNC.E) and then reset the counter.

• To increase the monitoring duration, software can extend the count duration beyond 32 bits by
counting the number of overflow interrupts each 32-bit counter generates. This can be done in
the interrupt service routine (ISR) where an increment to some memory location every time
the interrupt occurs will enable longer durations of performance monitoring. This does intrude
upon program execution but is negligible, since the ISR execution time is in the order of tens
of cycles compared to the number of cycles it took to generate an overflow interrupt (232).

• Power can be saved by selecting event 0xFF for any unused event counter. This only applies
when other event counters are in use. When the performance monitor is not used at all
(PMNC.E = 0x0), hardware ensures minimal power consumption.

Developer’s Manual January, 2004 113

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.4 Performance Monitoring Events

Table 8-12 lists events that may be monitored. Each of the Performance Monitor Count Registers
can count any listed event. Software selects which event is counted by each PMNx register by
programming the evtCountx fields.

Table 8-12. Performance Monitoring Events

Event Number
(evtCountx) Event Definition

0x0 Instruction cache miss requires fetch from external memory.

0x1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an
ITLB miss. This event will occur every cycle in which the condition is present.

0x2 Stall due to a data dependency. This event will occur every cycle in which the condition is
present.

0x3 Instruction TLB miss.

0x4 Data TLB miss.

0x5 Branch instruction executed, branch may or may not have changed program flow. (Counts
only B and BL instructions, in both ARM and Thumb mode.)

0x6 Branch mispredicted. (Counts only B and BL instructions, in both ARM and Thumb mode.)

0x7 Instruction executed.

0x8 Stall because the data cache buffers are full. This event will occur every cycle in which the
condition is present.

0x9 Stall because the data cache buffers are full. This event will occur once for each contiguous
sequence of this type of stall.

0xA Data cache access, not including Cache Operations (defined in Section 7.2.8)

0xB Data cache miss, not including Cache Operations (defined in Section 7.2.8)

0xC Data cache write-back. This event occurs once for each 1/2 line (four words) that are
written back from the cache.

0xD

Software changed the PC. All ‘b’, ‘bl’, ‘blx’, ‘mov[s] pc, Rm’, ‘ldm Rn, {Rx, pc}’, ‘ldr pc, [Rm]’,
pop {pc} will be counted. An ‘mcr p<cp>, 0,pc, ...’, will not. The count also does not
increment when an event occurs and the PC changes to the event address, e.g., IRQ, FIQ,
SWI, etc.

0x10 through
0x17

Defined by ASSP. See the Intel XScale® core implementation option section of the ASSP
architecture specification for more details.

0xFF Power saving event. This event deactivates the corresponding PMU event counter

all others Reserved, unpredictable results

114 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

Some typical combinations of counted events are listed in this section and summarized in
Table 8-13. In this section, we call such an event combination a mode.

Note: PMN0 and PMN1 were used for illustration purposes only. Given there are four event counters,
more elaborate combination of events could be constructed. For example, one performance run
could select 0xA, 0xB, 0xC, 0x9 events from which data cache performance statistics could be
gathered (like hit rates, number of writebacks per data cache miss, and number of times the data
cache buffers fill up per request).

Table 8-13. Some Common Uses of the PMU

Mode evtCount0 evtCount1

Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)

Data Cache Efficiency 0xA (Dcache access) 0xB (DCache miss)

Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)

Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)

Stall/Writeback Statistics 0x2 (data stall) 0xC (DCache writeback)

Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)

Data TLB Efficiency 0xA (Dcache access) 0x4 (DTLB miss)

Developer’s Manual January, 2004 115

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.4.1 Instruction Cache Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions
fetched from the instruction cache that were never executed. This can happen if a branch
instruction changes the program flow; the instruction cache may retrieve the next sequential
instructions after the branch, before it receives the target address of the branch.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at a time.

Statistics derived from these two events:

• Instruction cache miss-rate. This is derived by dividing PMN1 by PMN0.

• The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT
was used to measure total execution time.

8.4.2 Data Cache Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and LDM will each count as several accesses to the data cache depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not
contribute to this count. See Section 7.2.8 for a description of these operations.

The statistic derived from these two events is:

• Data cache miss-rate. This is derived by dividing PMN1 by PMN0.

8.4.3 Instruction Fetch Latency Mode

PMN0 accumulates the number of cycles when the instruction-cache is not able to deliver an
instruction to the core due to an instruction-cache miss or instruction-TLB miss. This event means
that the processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at a time. This is the same event as measured in instruction cache efficiency mode.

Statistics derived from these two events:

• The average number of cycles the processor stalled waiting for an instruction fetch from
external memory to return. This is calculated by dividing PMN0 by PMN1. If the average is
high then the core may be starved of the external bus.

• The percentage of total execution cycles the processor stalled waiting on an instruction fetch
from external memory to return. This is calculated by dividing PMN0 by CCNT, which was
used to measure total execution time.

116 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.4.4 Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncachable accesses. For every
memory request that the Data Cache receives from the processor core a buffer is speculatively
allocated in case an external memory request is required or temporary storage is needed for an
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How
often the Data Cache stalls depends on the performance of the bus external to the core and what the
memory access latency is for Data Cache miss requests to external memory. If the core memory
access latency is high, possibly due to starvation, these Data Cache buffers will become full. This
performance monitoring mode is provided to see if the core is being starved of the external bus,
which will effect the performance of the application running on the core.

PMN0 accumulates the number of clock cycles the processor is being stalled due to this condition
and PMN1 monitors the number of times this condition occurs.

Statistics derived from these two events:

• The average number of cycles the processor stalled on a data-cache access that may overflow
the data-cache buffers. This is calculated by dividing PMN0 by PMN1. This statistic lets you
know if the duration event cycles are due to many requests or are attributed to just a few
requests. If the average is high then the Intel XScale® core may be starved of the external bus.

• The percentage of total execution cycles the processor stalled because a Data Cache request
buffer was not available. This is calculated by dividing PMN0 by CCNT, which was used to
measure total execution time.

8.4.5 Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available,
the Intel XScale® core stalls in order to preserve the correct data dependencies. PMN0 counts the
number of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the
following dependencies cause such a stall penalty:

• Load-use penalty: attempting to use the result of a load before the load completes. To avoid the
penalty, software should delay using the result of a load until it’s available. This penalty shows
the latency effect of data-cache access.

• Multiply/Accumulate-use penalty: attempting to use the result of a multiply or
multiply-accumulate operation before the operation completes. Again, to avoid the penalty,
software should delay using the result until it’s available.

• ALU use penalty: there are a few isolated cases where back to back ALU operations may
result in one cycle delay in the execution. These cases are defined in Chapter 10,
“Performance Considerations”.

PMN1 counts the number of writeback operations emitted by the data cache. These writebacks
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as
the result of clean operation (CP15, register 7).

Statistics derived from these two events:

• The percentage of total execution cycles the processor stalled because of a data dependency.
This is calculated by dividing PMN0 by CCNT, which was used to measure total execution
time. Often a compiler can reschedule code to avoid these penalties when given the right
optimization switches.

• Total number of data writeback requests to external memory can be derived solely with PMN1.

Developer’s Manual January, 2004 117

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.4.6 Instruction TLB Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions
that were translated by the instruction TLB and never executed. This can happen if a branch
instruction changes the program flow; the instruction TLB may translate the next sequential
instructions after the branch, before it receives the target address of the branch.

PMN1 counts the number of instruction TLB table-walks, which occurs when there is a TLB miss.
If the instruction TLB is disabled PMN1 will not increment.

Statistics derived from these two events:

• Instruction TLB miss-rate. This is derived by dividing PMN1 by PMN0.

• The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT
was used to measure total execution time.

8.4.7 Data TLB Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and LDM will each count as several accesses to the data TLB depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMN1 counts the number of data TLB table-walks, which occurs when there is a TLB miss. If the
data TLB is disabled PMN1 will not increment.

The statistic derived from these two events is:

• Data TLB miss-rate. This is derived by dividing PMN1 by PMN0.

118 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.5 Multiple Performance Monitoring Run Statistics

There may be times when the number of events to be monitored exceed the number of counters. In
this case, multiple performance monitoring runs can be done, capturing different events from each
run. For example, the first run could monitor the events associated with instruction cache
performance and the second run could monitor the events associated with data cache performance.
By combining the results, statistics like total number of memory requests could be derived.

Developer’s Manual January, 2004 119

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.6 Examples

The same example is shown below for both variants (XSC1 and XSC2).

8.6.1 XSC1 Example (2 counter variant)

In this example, the events selected with the Instruction Cache Efficiency mode are monitored and
CCNT is used to measure total execution time. Sampling time ends when PMN0 overflows which
will generate an IRQ interrupt.

Counter overflow can be dealt with in the IRQ interrupt service routine as shown below:

As an example, assume the following values in CCNT, PMN0, PMN1 and PMNC:

In the contrived example above, the instruction cache had a miss-rate of 5% and CPI was 2.4.

Example 8-1. Configuring the Performance Monitor

; Configure PMNC with the following values:

; evtCount0 = 7, evtCount1 = 0instruction cache efficiency

; inten = 0x7set all counters to trigger an interrupt on

 overflow

; C = 1 reset CCNT register

; P = 1 reset PMN0 and PMN1 registers

; E = 1 enable counting

MOV R0,#0x7777

MCR P14,0,R0,C0,c0,0; write R0 to PMNC

; Counting begins

Example 8-2. Interrupt Handling

IRQ_INTERRUPT_SERVICE_ROUTINE:

; Assume that performance counting interrupts are the only IRQ in the system

MRC P14,0,R1,C0,c0,0; read the PMNC register

BIC R2,R1,#1 ; clear the enable bit

MCR P14,0,R2,C0,c0,0; clear interrupt flag and disable counting

MRC P14,0,R3,C1,c0,0; read CCNT register

MRC P14,0,R4,C2,c0,0; read PMN0 register

MRC P14,0,R5,C3,c0,0; read PMN1 register

<process the results>

SUBS PC,R14,#4 ; return from interrupt

Example 8-3. Computing the Results

; Assume CCNT overflowed

CCNT = 0x0000,0020 ;Overflowed and continued counting

Number of instructions executed = PMN0 = 0x6AAA,AAAA

Number of instruction cache miss requests = PMN1 = 0x0555,5555

Instruction Cache miss-rate = 100 * PMN1/PMN0 = 5%

CPI = (CCNT + 2^32)/Number of instructions executed = 2.4 cycles/instruction

120 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Monitoring

8.6.2 XSC2 Example (4 counter variant)

In this example, the events selected with the Instruction Cache Efficiency mode are monitored and
CCNT is used to measure total execution time. Sampling time ends when PMN0 overflows which
will generate an IRQ interrupt.

Counter overflow can be dealt with in the IRQ interrupt service routine as shown below:

As an example, assume the following values in CCNT, PMN0, PMN1 and PMNC:

In the contrived example above, the instruction cache had a miss-rate of 5% and CPI was 2.4.

Example 8-4. Configuring the Performance Monitor

; Configure the performance monitor with the following values:

; EVTSEL.evtCount0 = 7, EVTSEL.evtCount1 = 0 instruction cache efficiency

; INTEN.inten = 0x7 set all counters to trigger an interrupt on overflow

; PMNC.C = 1 reset CCNT register

; PMNC.P = 1 reset PMN0 and PMN1 registers

; PMNC.E = 1 enable counting

MOV R0,#0x700

MCR P14,0,R0,C8,c1,0 ; setup EVTSEL

MOV R0,#0x7

MCR P14,0,R0,C4,c1,0 ; setup INTEN

MCR P14,0,R0,C0,c1,0 ; setup PMNC, reset counters & enable

; Counting begins

Example 8-5. Interrupt Handling

IRQ_INTERRUPT_SERVICE_ROUTINE:

; Assume that performance counting interrupts are the only IRQ in the system

MRC P14,0,R1,C0,c1,0 ; read the PMNC register

BIC R2,R1,#1 ; clear the enable bit, preserve other bits in PMNC

MCR P14,0,R2,C0,c1,0 ; disable counting

MRC P14,0,R3,C1,c1,0 ; read CCNT register

MRC P14,0,R4,C0,c2,0 ; read PMN0 register

MRC P14,0,R5,C1,c2,0 ; read PMN1 register

<process the results>

SUBS PC,R14,#4 ; return from interrupt

Example 8-6. Computing the Results

; Assume CCNT overflowed

CCNT = 0x0000,0020 ;Overflowed and continued counting

Number of instructions executed = PMN0 = 0x6AAA,AAAA

Number of instruction cache miss requests = PMN1 = 0x0555,5555

Instruction Cache miss-rate = 100 * PMN1/PMN0 = 5%

CPI = (CCNT + 2^32)/Number of instructions executed = 2.4 cycles/instruction

Developer’s Manual January, 2004 121

Intel XScale® Core Developer’s Manual
Software Debug

Software Debug 9

This chapter describes the software debug and related features implemented in Elkhart, namely:

• debug modes, registers and exceptions.

• a serial debug communication link via the JTAG interface.

• a trace buffer.

• a mechanism and process for loading the instruction cache through JTAG.

9.1 Definitions

debug handler: Debug handler is the event handler that runs on Elkhart, when a debug event
occurs.

debugger: The debugger is software that runs on a host system outside of Elkhart.

9.2 Debug Registers

CP15 Registers
CRn = 14; CRm = 8: instruction breakpoint register 0 (IBCR0)
CRn = 14; CRm = 9: instruction breakpoint register 1 (IBCR1)
CRn = 14; CRm = 0: data breakpoint register 0 (DBR0)
CRn = 14; CRm = 3: data breakpoint register 1 (DBR1)
CRn = 14; CRm = 4: data breakpoint control register (DBCON)

CP15 registers are accessible using MRC and MCR. CRn and CRm specify the register to access.
The opcode_1 and opcode_2 fields are not used and should be set to 0.

CP14 Registers
CRn = 8; CRm = 0: TX Register (TX)
CRn = 9; CRm = 0: RX Register (RX)
CRn = 10; CRm = 0: Debug Control and Status Register (DCSR)
CRn = 11; CRm = 0: Trace Buffer Register (TBREG)
CRn = 12; CRm = 0: Checkpoint Register 0 (CHKPT0)
CRn = 13; CRm = 0: Checkpoint Register 1 (CHKPT1)
CRn = 14; CRm = 0: TXRX Control Register (TXRXCTRL)

CP14 registers are accessible using MRC, MCR, LDC and STC (CDP to any CP14 registers will
cause an undefined instruction trap). CRn and CRm specify the register to access. The opcode_1
and opcode_2 fields are not used and should be set to 0.

Software access to all debug registers must be done from a privileged mode. User mode access will
generate an undefined instruction exception. Specifying registers which do not exist has
unpredictable results.

The TX and RX registers, certain bits in the TXRXCTRL register, and certain bits in the DCSR can
be accessed by a debugger through the JTAG interface.

122 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.3 Introduction

The Elkhart debug unit, when used with a debugger application, allows software running on an
Elkhart target to be debugged. The debug unit allows the debugger to stop program execution and
re-direct execution to a debug handling routine. Once program execution has stopped, the debugger
can examine or modify processor state, co-processor state, or memory. The debugger can then
restart execution of the application.

On Elkhart, one of two debug modes can be used:

• Halt Mode

• Monitor Mode

9.3.1 Halt Mode

When the debug unit is configured for Halt Mode, the reset vector is overloaded to serve as the
debug vector. A new processor mode, DEBUG mode (CPSR[4:0] = 0x15), is added to allow debug
exceptions to be handled similarly to other types of ARM* exceptions.

When a debug exception occurs, the processor switches to debug mode and redirects execution to a
debug handler, via the reset vector. After the debug handler begins execution, the debugger can
communicate with the debug handler to examine or alter processor state or memory through the
JTAG interface.

The debug handler can be downloaded and locked directly into the instruction cache through JTAG
so external memory is not required to contain debug handler code.

9.3.2 Monitor Mode

In Monitor Mode, debug exceptions are handled like ARM prefetch aborts or ARM data aborts,
depending on the cause of the exception.

When a debug exception occurs, the processor switches to abort mode and branches to a debug
handler using the pre-fetch abort vector or data abort vector. The debugger then communicates with
the debug handler to access processor state or memory contents.

Developer’s Manual January, 2004 123

Intel XScale® Core Developer’s Manual
Software Debug

9.4 Debug Control and Status Register (DCSR)

The DCSR register is the main control register for the debug unit. Table 9-1 shows the format of
the register. The DCSR register can be accessed in privileged modes by software running on the
core or by a debugger through the JTAG interface. Refer to Section 9.11.1, “SELDCSR JTAG
Register” for details about accessing DCSR through JTAG.

Table 9-1. Debug Control and Status Register (DCSR) (Sheet 1 of 2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GE H B TF TI TD TA TS TU TR SA MOE M E

Bits Access Description Reset Value TRST Value

31 SW Read / Write
JTAG Read-Only

Global Enable (GE)

0: disables all debug functionality
1: enables all debug functionality

0 unchanged

30 SW Read Only
JTAG Read / Write

Halt Mode (H)

0: Monitor Mode
1: Halt Mode

unchanged 0

29 SW Read-Only
JTAG Read-Only

SOC Break (B)

Value of SOC break core input
undefined undefined

28:24 Read-undefined / Write-As-Zero Reserved undefined undefined

23 SW Read Only
JTAG Read / Write Trap FIQ (TF) unchanged 0

22 SW Read Only
JTAG Read / Write Trap IRQ (TI) unchanged 0

21 Read-undefined / Write-As-Zero Reserved undefined undefined

20 SW Read Only
JTAG Read / Write Trap Data Abort (TD) unchanged 0

19 SW Read Only
JTAG Read / Write Trap Prefetch Abort (TA) unchanged 0

18 SW Read Only
JTAG Read / Write Trap Software Interrupt (TS) unchanged 0

17 SW Read Only
JTAG Read / Write Trap Undefined Instruction (TU) unchanged 0

16 SW Read Only
JTAG Read / Write Trap Reset (TR) unchanged 0

124 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.4.1 Global Enable Bit (GE)

The Global Enable bit disables and enables all debug functionality (except the reset vector trap).
Following a processor reset, this bit is clear so all debug functionality is disabled. When debug
functionality is disabled, the BKPT instruction becomes a noop and external debug breaks,
hardware breakpoints, and non-reset vector traps are ignored.

9.4.2 Halt Mode Bit (H)

The Halt Mode bit configures the debug unit for either Halt Mode or Monitor Mode.

9.4.3 SOC Break (B)

Reading the SOC Break bit returns the value of the SOC break input into the Intel XScale® core1.

15:6 Read-undefined / Write-As-Zero Reserved undefined undefined

5 SW Read / Write
JTAG Read-Only Sticky Abort (SA) 0 unchanged

4:2 SW Read / Write
JTAG Read-Only

Method Of Entry (MOE)

000: Processor Reset
001: Instruction Breakpoint Hit
010: Data Breakpoint Hit
011: BKPT Instruction Executed
100: External Debug Event (JTAG Debug
Break or SOC Debug Break)
101: Vector Trap Occurred
110: Trace Buffer Full Break
111: Reserved

0b000 unchanged

1 SW Read / Write
JTAG Read-Only

Trace Buffer Mode (M)

0: wrap-around mode
1: fill-once mode

0 unchanged

0 SW Read / Write
JTAG Read-Only

Trace Buffer Enable (E)

0: Disabled
1: Enabled

0 unchanged

Table 9-1. Debug Control and Status Register (DCSR) (Sheet 2 of 2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GE H B TF TI TD TA TS TU TR SA MOE M E

Bits Access Description Reset Value TRST Value

1. Use of the SOC break input to the core (used to generate SOC debug breaks) is product specific and is targeted towards chips that need
system-on-a-chip debug capabilities. Refer to the ASSP architecture specification for more information.

Developer’s Manual January, 2004 125

Intel XScale® Core Developer’s Manual
Software Debug

9.4.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR)

The Vector Trap bits allow instruction breakpoints to be set on exception vectors without using up
any of the breakpoint registers. When a bit is set, it acts as if an instruction breakpoint was set up
on the corresponding exception vector. A debug exception is generated before the instruction in the
exception vector executes.

Software running on Elkhart must set the Global Enable bit and the debugger must set the Halt
Mode bit and the appropriate vector trap bit through JTAG to set up a non-reset vector trap.

To set up a reset vector trap, the debugger sets the Halt Mode bit and reset vector trap bit through
JTAG. The Global Enable bit does not effect the reset vector trap. A reset vector trap can be set up
before or during a processor reset. When processor reset is de-asserted, a debug exception occurs
before the instruction in the reset vector executes.

9.4.5 Sticky Abort Bit (SA)

The Sticky Abort bit is only valid in Halt Mode. It indicates a data abort occurred within the
Special Debug State (see Section 9.5.1, “Halt Mode”). Since Special Debug State disables all
exceptions, a data abort exception does not occur. However, the processor sets the Sticky Abort bit
to indicate a data abort was detected. The debugger can use this bit to determine if a data abort was
detected during the Special Debug State. The sticky abort bit must be cleared by the debug handler
before exiting the debug handler.

9.4.6 Method of Entry Bits (MOE)

The Method of Entry bits specify the cause of the most recent debug exception. When multiple
exceptions occur in parallel, the processor places the highest priority exception (based on the
priorities in Table 9-2) in the MOE field.

9.4.7 Trace Buffer Mode Bit (M)

The Trace Buffer Mode bit selects one of two trace buffer modes:

• Wrap-around mode - Trace buffer fills up and wraps around until a debug exception occurs.

• Fill-once mode - The trace buffer automatically generates a debug exception (trace buffer full
break) when it becomes full.

9.4.8 Trace Buffer Enable Bit (E)

The Trace Buffer Enable bit enables and disables the trace buffer. Both DCSR.e and DCSR.ge must
be set to enable the trace buffer. The processor automatically clears this bit to disable the trace
buffer when a debug exception occurs. For more details on the trace buffer refer to Section 9.12,
“Trace Buffer”.

126 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.5 Debug Exceptions

A debug exception causes the processor to re-direct execution to a debug event handling routine.
The Elkhart debug architecture defines the following debug exceptions:

• instruction breakpoint

• data breakpoint

• software breakpoint

• external debug break

• exception vector trap

• trace-buffer full break

• SOC debug break

When a debug exception occurs, the processor’s actions depend on whether the debug unit is
configured for Halt Mode or Monitor Mode.

Table 9-2 shows the priority of debug exceptions relative to other processor exceptions.

Table 9-2. Event Priority

Event Priority

Reset 1 (highest)

Vector Trap 2

data abort (precise) 3

data bkpt 4

data abort (imprecise) 5

external debug break, trace-buffer full,
SOC debug break 6

FIQ 7

IRQ 8

instruction breakpoint 9

pre-fetch abort 10

undef, SWI, software Bkpt 11

Developer’s Manual January, 2004 127

Intel XScale® Core Developer’s Manual
Software Debug

9.5.1 Halt Mode

The debugger turns on Halt Mode through the JTAG interface by scanning in a value that sets the
bit in DCSR. The debugger turns off Halt Mode through JTAG, either by scanning in a new DCSR
value or by a TRST. Processor reset does not effect the value of the Halt Mode bit.

When Halt Mode is active, the processor uses the reset vector as the debug vector. The debug
handler and exception vectors can be downloaded directly into the instruction cache, to intercept
the default vectors and reset handler, or they can be resident in external memory. Downloading into
the instruction cache allows a system with memory problems, or no external memory, to be
debugged. Refer top Section 9.14, “Downloading Code in the Instruction Cache” on page 9-154 for
details about downloading code into the instruction cache.

During Halt Mode, software running on Elkhart cannot access DCSR, or any of hardware
breakpoint registers, unless the processor is in Special Debug State (SDS), described below.

When a debug exception occurs during Halt Mode, or an SOC debug break occurs in Monitor
Mode, the processor takes the following actions:

• disables the trace buffer

• sets DCSR.moe encoding

• processor enters a Special Debug State (SDS)

• R14_DBG is updated as follows:

• SPSR_dbg = CPSR

• CPSR[4:0] = 0b10101 (DEBUG mode)

• CPSR[5] = 0

• CPSR[6] = 1

• CPSR[7] = 1

• PC = 0x0 or 0xFFFF0000

The FSR.D bit, which is set for all Monitor Mode debug exceptions (including SOC debug breaks),
is unaffected by debug exceptions during Halt Mode.

Table 9-3. Halt Mode R14_DBG Updating

Debug Exception Type
DBG_r14 Value

ARM Mode Thumb Mode

Data Breakpoint PC of breakpointed memory instruction + 8 PC of breakpointed memory instruction + 6

Instruction Breakpoint,
SW Breakpoint PC of breakpointed instruction + 4 PC of breakpointed instruction + 4

Vector Trap PC of trapped exception vector + 4 NA

Trace Buffer Full Break,
SOC Debug Break,
External Debug Break

PC of next instruction to execute + 4 PC of next instruction to execute + 4

128 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

Following a debug exception, the processor switches to debug mode and enters SDS, which allows
the following special functionality:

• All events are disabled. SWI or undefined instructions have unpredictable results. The
processor ignores pre-fetch aborts, FIQ and IRQ (SDS disables FIQ and IRQ regardless of the
enable values in the CPSR). The processor reports data aborts detected during SDS by setting
the Sticky Abort bit in the DCSR, but does not generate an exception (processor also sets up
FSR and FAR as it normally would for a data abort).

• Normally, during Halt Mode, software cannot write the hardware breakpoint registers or the
DCSR. However, during the SDS, software has write access to the breakpoint registers (see
Section 9.6, “HW Breakpoint Resources”) and the DCSR (see Table 9-1, “Debug Control and
Status Register (DCSR)” on page 9-123).

• The IMMU is disabled. In Halt Mode, since the debug handler would typically be downloaded
directly into the IC, it would not be appropriate to do TLB accesses or translation walks, since
there may not be any external memory or if there is, the translation table or TLB may not
contain a valid mapping for the debug handler code. To avoid these problems, the processor
internally disables the IMMU during SDS.

• The PID is disabled for instruction fetches. This prevents fetches of the debug handler code
from being remapped to a different address than where the code was downloaded.

The SDS remains in effect regardless of the processor mode. This allows the debug handler to
switch to other modes, maintaining SDS functionality. Entering user mode may cause
unpredictable behavior. The processor exits SDS following a CPSR restore operation.

When exiting, the debug handler should use:

subs pc, lr, #4

This restores CPSR, turns off all of SDS functionality, and branches to the target instruction.

Developer’s Manual January, 2004 129

Intel XScale® Core Developer’s Manual
Software Debug

9.5.2 Monitor Mode

In Monitor Mode, the processor handles debug exceptions like normal ARM exceptions, except for
SOC debug breaks, which are handled like Halt Mode exceptions. If debug functionality is enabled
and the processor is in Monitor Mode, debug exceptions cause either a data abort or a pre-fetch abort.

The following debug exceptions cause data aborts:

• data breakpoint

• external debug break

• trace-buffer full break

The following debug exceptions cause pre-fetch aborts:

• instruction breakpoint

• BKPT instruction

The processor ignores vector traps during Monitor Mode.

When an exception occurs in Monitor Mode, the processor takes the following actions:

• disables the trace buffer

• sets DCSR.moe encoding

• sets FSR[9]

• R14_DBG is updated as follows:

• SPSR_abt = CPSR

• CPSR[4:0] = 0b10111 (ABORT mode)

• CPSR[5] = 0

• CPSR[6] = unchanged

• CPSR[7] = 1

• PC = 0xC or 0xFFFF000C (for Prefetch Aborts),
PC = 0x10 or 0xFFFF0010 (for Data Aborts)

During abort mode, external debug breaks and trace buffer full breaks are internally pended. When
the processor exits abort mode, either through a CPSR restore or a write directly to the CPSR, the
pended debug breaks will immediately generate a debug exception. Any pending debug breaks are
cleared out when any type of debug exception occurs. Note that SOC debug breaks are not pended
during abort mode; they are handled immediately when detected.

When exiting, the debug handler should do a CPSR restore operation that branches to the next
instruction to be executed in the program under debug.

Table 9-4. Monitor Mode R14_DBG Updating

Debug Exception Type
DBG_r14 Value

ARM mode Thumb mode

Data Breakpoint PC of breakpointed memory instruction + 8 PC of breakpointed memory instruction + 6

Instruction Breakpoint,
SW Breakpoint PC of breakpointed instruction + 4 PC of breakpointed instruction + 4

Trace Buffer Full Break,
External Debug Break PC of next instruction to execute + 4 PC of next instruction to execute + 4

130 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.6 HW Breakpoint Resources

The Elkhart debug architecture defines two instruction and two data breakpoint registers, denoted
IBCR0, IBCR1, DBR0, and DBR1.

The instruction and data address breakpoint registers are 32-bit registers. The instruction
breakpoint causes a break before execution of the target instruction. The data breakpoint causes a
break after the memory access has been issued.

In this section Modified Virtual Address (MVA) refers to the virtual address ORed with the PID.
Refer to Section 7.2.13, “Register 13: Process ID” on page 7-91 for more details on the PID. The
processor does not OR the PID with the specified breakpoint address prior to doing address
comparison. This must be done by the programmer and written to the breakpoint register as the
MVA. This applies to data and instruction breakpoints.

9.6.1 Instruction Breakpoints

The Debug architecture defines two instruction breakpoint registers (IBCR0 and IBCR1). The
format of these registers is shown in Table 9-5, “Instruction Breakpoint Address and Control
Register (IBCRx)”. In ARM mode, the upper 30 bits contain a word aligned MVA to break on. In
Thumb mode, the upper 31 bits contain a half-word aligned MVA to break on. In both modes, bit 0
enables and disables that instruction breakpoint register. Enabling instruction breakpoints while
debug is globally disabled (DCSR.ge=0) may result in unpredictable behavior.

An instruction breakpoint will generate a debug exception before the instruction at the address
specified in the ICBR executes. When an instruction breakpoint occurs, the processor sets the
DBCR.moe bits to 0b001.

Software must disable the breakpoint before exiting the handler. This allows the breakpointed
instruction to execute after the exception is handled.

Single step execution is accomplished using the instruction breakpoint registers and must be
completely handled in software (either on the host or by the debug handler).

Table 9-5. Instruction Breakpoint Address and Control Register (IBCRx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IBCRx E

reset value: unpredictable address, disabled

Bits Access Description

31:1 Read / Write
Instruction Breakpoint MVA

in ARM* mode, IBCRx[1] is ignored

0 Read / Write
IBCRx Enable (E) -

0 = Breakpoint disabled
1 = Breakpoint enabled

Developer’s Manual January, 2004 131

Intel XScale® Core Developer’s Manual
Software Debug

9.6.2 Data Breakpoints

The Elkhart debug architecture defines two data breakpoint registers (DBR0, DBR1). The format
of the registers is shown in Table 9-6.

DBR0 is a dedicated data address breakpoint register. DBR1 can be programmed for 1 of 2
operations:

• data address mask

• second data address breakpoint

The DBCON register controls the functionality of DBR1, as well as the enables for both DBRs.
DBCON also controls what type of memory access to break on.

Table 9-6. Data Breakpoint Register (DBRx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBRx

reset value: unpredictable

Bits Access Description

31:0 Read / Write

DBR0: Data Breakpoint MVA

DBR1:
Data Address Mask OR
Data Breakpoint MVA

Table 9-7. Data Breakpoint Controls Register (DBCON)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M E1 E0

reset value: 0x00000000

Bits Access Description

31:9 Read-as-Zero / Write-ignored Reserved

8 Read / Write
DBR1 Mode (M) -
0: DBR1 = Data Address Breakpoint
1: DBR1 = Data Address Mask

7:4 Read-as-Zero / Write-ignored Reserved

3:2 Read / Write

DBR1 Enable (E1) -

When DBR1 = Data Address Breakpoint
0b00: DBR1 disabled
0b01: DBR1 enabled, Store only
0b10: DBR1 enabled, Any data access, load or store
0b11: DBR1 enabled, Load only

When DBR1 = Data Address Mask this field has no effect

1:0 Read / Write

DBR0 Enable (E0) -
0b00: DBR0 disabled
0b01: DBR0 enabled, Store only
0b10: DBR0 enabled, Any data access, load or store
0b11: DBR0 enabled, Load only

132 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

When DBR1 is programmed as a data address mask, it is used in conjunction with the address in
DBR0. The bits set in DBR1 are ignored by the processor when comparing the address of a
memory access with the address in DBR0. Using DBR1 as a data address mask allows a range of
addresses to generate a data breakpoint. When DBR1 is selected as a data address mask, it is
unaffected by the E1 field of DBCON. The mask is used only when DBR0 is enabled.

When DBR1 is programmed as a second data address breakpoint, it functions independently of
DBR0. In this case, the DBCON.E1 controls DBR1.

A data breakpoint is triggered if the memory access matches the access type and the address of any
byte within the memory access matches the address in DBRx. For example, LDR triggers a
breakpoint if DBCON.E0 is 0b10 or 0b11, and the address of any of the 4 bytes accessed by the
load matches the address in DBR0.

The processor does not trigger data breakpoints for the PLD instruction or any CP15, register
7,8,9,or 10 functions. Any other type of memory access can trigger a data breakpoint. For data
breakpoint purposes the SWP and SWPB instructions are treated as stores - they will not cause a
data breakpoint if the breakpoint is set up to break on loads only and an address match occurs.

On unaligned memory accesses, breakpoint address comparison is done on a word-aligned address
(aligned down to word boundary).

When a memory access triggers a data breakpoint, the breakpoint is reported after the access is
issued. The memory access will not be aborted by the processor. The actual timing of when the
access completes with respect to the start of the debug handler depends on the memory
configuration.

On a data breakpoint, the processor generates a debug exception and re-directs execution to the
debug handler before the next instruction executes. The processor reports the data breakpoint by
setting the DCSR.MOE to 0b010. The link register of a data breakpoint is always PC (of the next
instruction to execute) + 4, regardless of whether the processor is configured for Monitor Mode or
Halt Mode.

When setting a data breakpoint, the DBR registers should only be programmed while that data
breakpoint register is disabled. Programming the DBR registers while they are enabled, may result
in unpredictable behavior.

Developer’s Manual January, 2004 133

Intel XScale® Core Developer’s Manual
Software Debug

9.7 Software Breakpoints

Mnemonics: BKPT (See ARM Architecture Reference Manual, ARMv5T)

Operation: If DCSR[31] = 0, BKPT is a nop;
If DCSR[31] =1, BKPT causes a debug exception

The processor handles the software breakpoint as described in Section 9.5, “Debug Exceptions” on
page 9-126.

134 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.8 Transmit/Receive Control Register (TXRXCTRL)

Communications between the debug handler and debugger are controlled through handshaking bits
that ensures the debugger and debug handler make synchronized accesses to TX and RX. The
debugger side of the handshaking is accessed through the DBGTX (Section 9.11.2, “DBGTX JTAG
Register”) and DBGRX (Section 9.11.3, “DBGRX JTAG Register”) JTAG Data Registers,
depending on the direction of the data transfer.The debug handler uses separate handshaking bits in
TXRXCTRL register for accessing TX and RX.

The TXRXCTRL register also contains two other bits that support high-speed download. One bit
indicates an overflow condition that occurs when the debugger attempts to write the RX register
before the debug handler has read the previous data written to RX. The other bit is used by the
debug handler as a branch flag during high-speed download.

All of the bits in the TXRXCTRL register are placed such that they can be read directly into the CC
flags in the CPSR with an MRC (with Rd = PC). The subsequent instruction can then conditionally
execute based on the updated CC value

Table 9-8. TX RX Control Register (TXRXCTRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
R

O
V

D
T
R

Bits Access Description Reset
Value

TRST
Value

31
SW Read-only / Write-ignored

JTAG Write-only

RR

RX Register Ready

0 0

30 SW Read / Write
OV

RX overflow sticky flag

0 unchanged

29
SW Read-only/ Write-ignored

JTAG Write-only

D

High-speed download flag

unchanged 0

28
SW Read-only/ Write-ignored

JTAG Write-only

TR

TX Register Ready

0 unchanged

27:0 Read-as-Zero / Write-ignored Reserved undefined undefined

Developer’s Manual January, 2004 135

Intel XScale® Core Developer’s Manual
Software Debug

9.8.1 RX Register Ready Bit (RR)

The debugger and debug handler use the RR bit to synchronize accesses to RX. Normally, the
debugger and debug handler use a handshaking scheme that requires both sides to poll the RR bit.
To support higher download performance for large amounts of data, a high-speed download
handshaking scheme can be used in which only the debug handler polls the RR bit before accessing
the RX register, while the debugger continuously downloads data.

Table 9-9 shows the normal handshaking used to access the RX register.

When data is being downloaded by the debugger, part of the normal handshaking can be bypassed
to allow the download rate to be increased. Table 9-10 shows the handshaking used when the
debugger is doing a high-speed download. Note that before the high-speed download can start,
both the debugger and debug handler must be synchronized, such that the debug handler is
executing a routine that supports the high-speed download.

Although it is similar to the normal handshaking, the debugger polling of RR is bypassed with the
assumption that the debug handler can read the previous data from RX before the debugger can
scan in the new data.

Table 9-9. Normal RX Handshaking

Debugger Actions

Debugger wants to send data to debug handler.

Before writing new data to the RX register, the debugger polls RR through JTAG until the bit is cleared.

After the debugger reads a ‘0’ from the RR bit, it scans data into JTAG to write to the RX register and sets the
valid bit. The write to the RX register automatically sets the RR bit.

Debug Handler Actions

Debug handler is expecting data from the debugger.

The debug handler polls the RR bit until it is set, indicating data in the RX register is valid.

Once the RR bit is set, the debug handler reads the new data from the RX register. The read operation
automatically clears the RR bit.

Table 9-10. High-Speed Download Handshaking States

Debugger Actions

Debugger wants to transfer code into the Elkhart system memory.

Prior to starting download, the debugger must polls RR bit until it is clear. Once the RR bit is clear, indicating
the debug handler is ready, the debugger starts the download.

The debugger scans data into JTAG to write to the RX register with the download bit and the valid bit set.
Following the write to RX, the RR bit and D bit are automatically set in TXRXCTRL.

Without polling of RR to see whether the debug handler has read the data just scanned in, the debugger
continues scanning in new data into JTAG for RX, with the download bit and the valid bit set.

An overflow condition occurs if the debug handler does not read the previous data before the debugger
completes scanning in the new data, (see Section 9.8.2, “Overflow Flag (OV)” for more details on the overflow
condition).

After completing the download, the debugger clears the D bit allowing the debug handler to exit the download
loop.

Debug Handler Actions

Debug is handler in a routine waiting to write data out to memory. The routine loops based on the D bit in
TXRXCTRL.

The debug handler polls the RR bit until it is set. It then reads the Rx register, and writes it out to memory. The
handler loops, repeating these operations until the debugger clears the D bit.

136 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.8.2 Overflow Flag (OV)

The Overflow flag is a sticky flag that is set when the debugger writes to the RX register while the
RR bit is set.

The flag is used during high-speed download to indicate that some data was lost. The assumption
during high-speed download is that the time it takes for the debugger to shift in the next data word
is greater than the time necessary for the debug handler to process the previous data word. So,
before the debugger shifts in the next data word, the handler will be polling for that data.

However, if the handler incurs stalls that are long enough such that the handler is still processing
the previous data when the debugger completes shifting in the next data word, an overflow
condition occurs and the OV bit is set.

Once set, the overflow flag will remain set, until cleared by a write to TXRXCTRL with an MCR.
After the debugger completes the download, it can examine the OV bit to determine if an overflow
occurred. The debug handler software is responsible for saving the address of the last valid store
before the overflow occurred.

9.8.3 Download Flag (D)

The value of the download flag is set by the debugger through JTAG. This flag is used during
high-speed download to replace a loop counter.

The download flag becomes especially useful when an overflow occurs. If a loop counter is used,
and an overflow occurs, the debug handler cannot determine how many data words overflowed.
Therefore the debug handler counter may get out of sync with the debugger - the debugger may
finish downloading the data, but the debug handler counter may indicate there is more data to be
downloaded - this may result in unpredictable behavior of the debug handler.

Using the download flag, the debug handler loops until the debugger clears the flag. Therefore,
when doing a high-speed download, for each data word downloaded, the debugger should set the D
bit.

Developer’s Manual January, 2004 137

Intel XScale® Core Developer’s Manual
Software Debug

9.8.4 TX Register Ready Bit (TR)

The debugger and debug handler use the TR bit to synchronize accesses to the TX register. The
debugger and debug handler must poll the TR bit before accessing the TX register. Table 9-11
shows the handshaking used to access the TX register.

9.8.5 Conditional Execution Using TXRXCTRL

All of the bits in TXRXCTRL are placed such that they can be read directly into the CC flags using
an MCR instruction. To simplify the debug handler, the TXRXCTRL register should be read using
the following instruction:
mrc p14, 0, r15, C14, C0, 0

This instruction will directly update the condition codes in the CPSR. The debug handler can then
conditionally execute based on each CC bit. Table 9-12 shows the mnemonic extension to
conditionally execute based on whether the TXRXCTRL bit is set or clear.

The following example is a code sequence in which the debug handler polls the TXRXCTRL
handshaking bit to determine when the debugger has completed its write to RX and the data is
ready for the debug handler to read.
loop: mrc p14, 0, r15, c14, c0, 0# read the handshaking bit in TXRXCTRL

mrcmi p14, 0, r0, c9, c0, 0 # if RX is valid, read it

bpl loop # if RX is not valid, loop

Table 9-11. TX Handshaking

Debugger Actions

Debugger is expecting data from the debug handler.

Before reading data from the TX register, the debugger polls the TR bit through JTAG until the bit is set. NOTE:
while polling TR, the debugger must scan out the TR bit and the TX register data.

Reading a ‘1’ from the TR bit, indicates that the TX data scanned out is valid

The action of scanning out data when the TR bit is set, automatically clears TR.

Debug Handler Actions

Debug handler wants to send data to the debugger (in response to a previous request).

The debug handler polls the TR bit to determine when the TX register is empty (any previous data has been
read out by the debugger). The handler polls the TR bit until it is clear.

Once the TR bit is clear, the debug handler writes new data to the TX register. The write operation
automatically sets the TR bit.

Table 9-12. TXRXCTRL Mnemonic Extensions

TXRXCTRL bit mnemonic extension to execute if bit set mnemonic extension to execute if bit clear

31 (to N flag) MI PL

30 (to Z flag) EQ NE

29 (to C flag) CS CC

28 (to V flag) VS VC

138 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.9 Transmit Register (TX)

The TX register is the debug handler transmit buffer. The debug handler sends data to the debugger
through this register.

Since the TX register is accessed by the debug handler (using MCR/MRC) and the debugger
(through JTAG), handshaking is required to prevent the debug handler from writing new data
before the debugger reads the previous data.

The TX register handshaking is described in Table 9-11, “TX Handshaking” on page 9-137.

9.10 Receive Register (RX)

The RX register is the receive buffer used by the debug handler to get data sent by the debugger
through the JTAG interface.

Since the RX register is accessed by the debug handler (using MRC) and the debugger (through
JTAG), handshaking is required to prevent the debugger from writing new data to the register
before the debug handler reads the previous data out. The handshaking is described in
Section 9.8.1, “RX Register Ready Bit (RR)”.

Table 9-13. TX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TX

reset value: unpredictable TRST value: unchanged

Bits Access Description

31:0
SW Read / Write

JTAG Read-only
Debug handler writes data to send to debugger

Table 9-14. RX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RX

reset value: unpredictable TRST value: unpredictable

Bits Access Description

31:0
SW Read-only

JTAG Write-only
Software reads to receives data/commands from
debugger

Developer’s Manual January, 2004 139

Intel XScale® Core Developer’s Manual
Software Debug

9.11 Debug JTAG Access

There are four JTAG instructions used by the debugger during software debug: LDIC, SELDCSR,
DBGTX and DBGRX. LDIC is described in Section 9.14, “Downloading Code in the Instruction
Cache”. The other three JTAG instructions are described in this section. SELDCSR, DBGTX and
DBGRX each use a 36-bit shift register to scan in new data and scan out captured data.

9.11.1 SELDCSR JTAG Register

The ‘SELDCSR’ JTAG instruction selects the DCSR JTAG data register. The JTAG opcode is
‘0b0001001’. When the SELDCSR JTAG instruction is in the JTAG instruction register, the
debugger can directly access the Debug Control and Status Register (DCSR). The debugger can
only modify certain bits through JTAG, but can read the entire register.

The SELDCSR instruction also allows the debugger to generate an external debug break and set
the hold_reset signal, which is used when downloading code into the mini instruction cache during
reset.

A Capture_DR loads the current DCSR value into DBG_SR[34:3]. The other bits in DBG_SR are
loaded as shown in Figure 9-1.

A new DCSR value can be scanned into DBG_SR, and the previous value out, during the Shift_DR
state. When scanning in a new DCSR value into the DBG_SR, care must be taken to also set up
DBG_SR[2:1] to prevent undesirable behavior.

Update_DR parallel loads the new DCSR value into the DCSR. All bits defined as JTAG writable
in Table 9-1, “Debug Control and Status Register (DCSR)” on page 9-123 are updated.

A debugger and the debug handler running on Elkhart must synchronize access the DCSR. If one
side writes the DCSR at the same side the other side reads the DCSR, the results are unpredictable.

Figure 9-1. SELDCSR

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031

software read/write

DCSR

TCK

Core CLK

0 0

0

1 0

ignored

hold_reset
ext_dbg_break

140 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.11.1.1 hold_reset

The debugger uses hold_reset when loading code into the instruction cache during a processor
reset. Details about loading code into the instruction cache are in Section 9.14, “Downloading
Code in the Instruction Cache”.

The debugger must set hold_reset before or during assertion of the reset pin. Once hold_reset is set,
the reset pin can be de-asserted, and the processor will internally remain in reset. The debugger can
then load debug handler code into the instruction cache before the processor begins executing any
code.

Once the code download is complete, the debugger must clear hold_reset. This takes the processor
out of reset, and execution begins at the reset vector.

A debugger can set hold_reset in one of 2 ways:

• Either by taking the JTAG state machine into the Capture_DR state, which automatically loads
DBG_SR[1] with ‘1’, then the Exit2 state, followed by the Update_Dr state. This will set the
hold_reset, clear ext_dbg_break, and leave the DCSR unchanged (the DCSR bits captured in
DBG_SR[34:3] are written back to the DCSR on the Update_DR).

• Alternatively, a ‘1’ can be scanned into DBG_SR[1], with the appropriate value scanned in for
the DCSR and ext_dbg_break.

The hold_reset bit can only be cleared by scanning in a ‘0’ to DBG_SR[1] and scanning in the
appropriate values for the DCSR and ext_dbg_break.

9.11.1.2 ext_dbg_break

The ext_dbg_break allows the debugger to asynchronously re-direct execution on the core to a
debug handling routine.

A debugger sets an external debug break by scanning a ‘1’ into DBG_SR[2] (and scanning in the
desired value for the DCSR JTAG writable bits in DBG_SR[34:3]).

Once ext_dbg_break is set, it remains set internally until a debug exception occurs. In Monitor
Mode, external debug breaks detected during abort mode are pended until the processor exits abort
mode. In Halt Mode, external debug breaks detected during SDS are pended until the processor
exits SDS. When an external debug break is detected outside of these two cases, the processor
ceases executing instructions as quickly as possible, clears the internal ext_dbg_break bit, and
branches to the debug handler (Halt Mode) or abort handler (Monitor Mode).

9.11.1.3 DCSR (DBG_SR[34:3])

The JTAG writable bits in the DCSR are updated with the value loaded into DBG_SR[34:3]
following an Update_DR.

Developer’s Manual January, 2004 141

Intel XScale® Core Developer’s Manual
Software Debug

9.11.2 DBGTX JTAG Register

The ‘DBGTX’ JTAG instruction selects the DBGTX JTAG data register. The JTAG opcode for this
instruction is ‘0b0010000’. The debug handler uses the DBGTX data register to send data to the
debugger. A protocol can be setup between the debugger and debug handler to allow the debug handler
to signal an entry into debug mode, and once in debug mode to transmit data requested by the debugger.

A Capture_DR loads the TX register value into DBG_SR[34:3] and TXRXCTRL.TR into
DBG_SR[0]. The other bits in DBG_SR are loaded as shown in Figure 9-1.

The captured TX value is scanned out during the Shift_DR state. Transitioning from Shift_DR
immediately to Capture_DR after capturing a ‘1’ in DBG_SR[0] automatically clears TXRXCTRL.TR.

Data scanned in is ignored on an Update_DR.

9.11.2.1 DBG_SR[0]

DBG_SR[0] is used for part of the synchronization that occurs between the debugger and debug
handler for accessing TX. The debugger polls DBG_SR[0] to determine when the TX register
contains valid data from the debug handler.

A ‘1’ captured in DBG_SR[0] indicates the captured TX data is valid. After capturing valid data, the
debugger must place the JTAG state machine in the Shift_DR state to guarantee that a debugger read
clears TXRXCTRL.TR. A ‘0’ indicates there is no new data from the debug handler in the TX register.

9.11.2.2 TX (DBG_SR[34:3])

DBG_SR[34:3] is updated with the contents of the TX register following an Update_DR.

Note: If DBG_SR[0] is ‘0’ following an Update_DR, the contents of DBG_SR[34:3] are unpredictable.

Figure 9-2. DBGTX

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031
TXRXCTRLTX

Core CLK

software read-only

0 0

0

1

28

set by SW write to TX

cleared by Debugger read

Ignored

software write

TCLK

142 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.11.3 DBGRX JTAG Register

The ‘DBGRX’ JTAG instruction selects the DBGRX JTAG data register. The JTAG opcode for
this instruction is ‘0b0000010’. The debug handler uses the DBGRX data register to receive
information from the debugger. A protocol can be setup between the debugger and debug handler
to allow the handler to identify data values and commands.

The DBGRX data register also contain bits to support high-speed download and to “invalidate” the
contents of the RX register.

A Capture_DR loads the value of TXRXCTRL.RR into DBG_SR[0]. The other bits in DBG_SR
are loaded as shown in Figure 9-3.

The captured data is scanned out during the Shift_DR state. Care must be taken while scanning in
data. While polling TXRXCTRL.RR, incorrectly setting rx_valid or flush_rr may cause
unpredictable behavior following an Update_DR.

Following an Update_DR the scanned in data takes effect.

Figure 9-3. DBGRX

TDOTDI

DBG_SR

Capture_DR

Update_DR

1233435

031

software read

TXRXCTRL

RX

TCK

Core CLK

software read/write

0 0

0

1

3031 29

RX
Write
Logic

flush_rr
hs_download

TXRXCTRL.RR

set TXRXCTRL.RR

cleared by SW read of RX
set by Debugger Write

undefined

enable

set overflow
rx_valid

cleared by flush_rr

Developer’s Manual January, 2004 143

Intel XScale® Core Developer’s Manual
Software Debug

9.11.3.1 RX Write Logic

The RX write logic (Figure 9-3) serves the following functions:

1) RX Write Enable: The RX register only gets updated when rx_valid is set and is unaffected
if rx_valid is clear or an overflow occurs. In particular, when the debugger is polling
DBG_SR[0], as long as rx_valid is 0, Update_DR does not modify RX.

2) Set TXRXCTRL.RR: When the debugger writes new data to RX, TXRXCTRL.RR is
automatically set signalling to the debug handler that the RX register contains valid data.

3) Set TXRXCTRL.OV: When the debugger scans in a value with rx_valid set and
TXRXCTRL.RR is already set, the TXRXCTRL.OV is automatically set. For instance, during
high-speed download, the debugger does not poll to see if the handler has read the previous
data. If the debug handler stalls long enough, the debugger may try to write a new data to RX
before the handler has read the previous data. When this condition is occurs, the RX write
logic sets TXRXCTRL.OV and blocks the write to the RX register.

9.11.3.2 DBG_SR[0]

DBG_SR[0] is used for part of the synchronization that occurs between the debugger and debug
handler for accessing RX. The debugger polls DBG_SR[0] to determine when the handler has read
the previous data from RX, and it is safe to write new data.

A ‘1’ read in DBG_SR[0] indicates that the RX register contains valid data which has not yet been
read by the debug handler. A ‘0’ indicates it is safe for the debugger to write new data to the RX
register.

9.11.3.3 flush_rr

The flush_rr bit allows the debugger to flush any previous data written to RX. Setting flush_rr
clears TXRXCTRL.RR.

9.11.3.4 hs_download

The hs_download bit is provided for use during high speed download. This bit is written directly to
TXRXCTRL.D. The debugger can use this bit to improve performance when downloading a block
of code or data to the Elkhart system memory.

A protocol can be setup between the debugger and debug handler using this bit. For example, while
this bit is set, the debugger can continuously download new data without polling TXRXCTRL.RR.
The debug handler uses TXRXCTRL.D as a branch flag to loop while there is more data to come.
The debugger clears this bit to indicate the end of the block and allow the debug handler to exit its
loop.

Using hs_download as a branch flags eliminates the need for a loop counter in the debug handler
code. This avoids the problem were the debugger’s loop counter is out of synchronization with the
debug handler’s counter because of overflow conditions that may have occurred.

9.11.3.5 RX (DBG_SR[34:3])

DBG_SR[34:3] is written to RX following an Update_DR when the RX Write Logic enables the
RX register to be updated.

144 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.11.3.6 rx_valid

The debugger sets the rx_valid bit to indicate the data scanned into DBG_SR[34:3] is valid data to
be written to RX. When this bit is set, the data scanned into the DBG_SR will be written to RX
following an Update_DR. If rx_valid is not set Update_DR does not affect RX.

This bit does not affect the actions of the flush_rr or hs_download bits.

Developer’s Manual January, 2004 145

Intel XScale® Core Developer’s Manual
Software Debug

9.12 Trace Buffer

The 256 entry trace buffer provides the ability to capture control flow information to be used for
debugging an application. Two modes are supported:

1. The buffer fills up completely and generates a debug exception. Then SW empties the buffer.

2. The buffer fills up and wraps around until it is disabled. Then SW empties the buffer.

9.12.1 Trace Buffer Registers

CP14 contains three registers (see Table 9-15) for use with the trace buffer. These CP14 registers
are accessible using MRC, MCR, LDC and STC (CDP to any CP14 registers will cause an
undefined instruction trap). The CRn and CRm fields specify the register to access. The opcode_1
and opcode_2 fields are not used and should be set to 0.

Any access to the trace buffer registers in User mode will cause an undefined instruction exception.
Specifying registers which do not exist has unpredictable results.

Table 9-15. CP 14 Trace Buffer Register Summary

CRn CRm Register Name

11 0 Trace Buffer Register (TBREG)

12 0 Checkpoint 0 Register (CHKPT0)

13 0 Checkpoint 1 Register (CHKPT1)

146 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.12.1.1 Checkpoint Registers

When the debugger reconstructs a trace history, it is required to start at the oldest trace buffer entry
and construct a trace going forward. In fill-once mode and wrap-around mode when the buffer does
not wrap around, the trace can be reconstructed by starting from the point in the code where the
trace buffer was first enabled.

The difficulty occurs in wrap-around mode when the trace buffer wraps around at least once. In this
case the debugger gets a snapshot of the last N control flow changes in the program, where N <=
size of buffer. The debugger does not know the starting address of the oldest entry read from the
trace buffer. The checkpoint registers provide reference addresses to help reduce this problem.

The two checkpoint registers (CHKPT0, CHKPT1) on Elkhart provide the debugger with two
reference addresses to use for re-constructing the trace history.

When the trace buffer is enabled, reading and writing to either checkpoint register has
unpredictable results. When the trace buffer is disabled, writing to a checkpoint register sets the
register to the value written. Reading the checkpoint registers returns the value of the register.

In normal usage, the checkpoint registers are used to hold target addresses of specific entries in the
trace buffer. Only direct and indirect entries get checkpointed. Exception and roll-over messages
are never checkpointed. When an entry is checkpointed, the processor sets bit 6 of the message
byte to indicate this (refer to Table 9-18, “Message Byte Formats”)

When the trace buffer contains only one checkpointed entry, the corresponding checkpoint register
is CHKPT0. When the trace buffer wraps around, two entries will typically be checkpointed,
usually about half a buffers length apart. In this case, the first (oldest) checkpointed entry read from
the trace buffer corresponds to CHKPT1, the second checkpointed entry corresponds to CHKPT0.

Although the checkpoint registers are provided for wrap-around mode, they are still valid in
fill-once mode.

Table 9-16. Checkpoint Register (CHKPTx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHKPTx

reset value: Unpredictable

Bits Access Description

31:0 Read/Write
CHKPTx:

target address for corresponding entry in trace buffer

Developer’s Manual January, 2004 147

Intel XScale® Core Developer’s Manual
Software Debug

9.12.1.2 Trace Buffer Register (TBREG)

The trace buffer is read through TBREG, using MRC and MCR. Software should only read the
trace buffer when it is disabled. Reading the trace buffer while it is enabled, may cause
unpredictable behavior of the trace buffer. Writes to the trace buffer have unpredictable results.
Reading the trace buffer returns the oldest byte in the trace buffer in the least significant byte of
TBREG. The byte is either a message byte or one byte of the 32 bit address associated with an
indirect branch message.Table 9-17 shows the format of the trace buffer register.

Table 9-17. TBREG Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

reset value: unpredictable

Bits Access Description

31:8 Read-as-Zero/Write-ignored Reserved

7:0 Read / Write-unpredictable Message Byte or Address Byte

148 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.13 Trace Buffer Entries

Trace buffer entries consist of either one or five bytes. Most entries are one byte messages
indicating the type of control flow change. The target address of the control flow change
represented by the message byte is either encoded in the message byte (like for exceptions) or can
be determined by looking at the instruction word (like for direct branches). Indirect branches
require five bytes per entry. One byte is the message byte identifying it as an indirect branch. The
other four bytes make up the target address of the indirect branch. The following sections describe
the trace buffer entries in detail.

9.13.1 Message Byte

There are two message formats, (exception and non-exception) as shown in Figure 9-4.

Table 9-18 shows all of the possible trace messages.

Figure 9-4. Message Byte Formats

07

VM C C C CV V

07

MM C C C CM M

Exception Format Non-exception Format

M = Message Type Bit
VVV = exception vector[4:2]
CCCC = Incremental Word Count

MMMM = Message Type Bits
CCCC = Incremental Word Count

Table 9-18. Message Byte Formats

Message Name Message Byte Type Message Byte format # address bytes

Exception exception 0b0VVV CCCC 0

Direct Brancha

a. Direct branches include ARM and THUMB bl, b

non-exception 0b1000 CCCC 0

Checkpointed Direct Brancha non-exception 0b1100 CCCC 0

Indirect Branchb

b. Indirect branches include ARM ldm, ldr, and dproc to PC; ARM and THUMB bx, blx(1) and blx(2); and THUMB pop.

non-exception 0b1001 CCCC 4

Checkpointed Indirect Branchb non-exception 0b1101 CCCC 4

Roll-over non-exception 0b1111 1111 0

Developer’s Manual January, 2004 149

Intel XScale® Core Developer’s Manual
Software Debug

9.13.1.1 Exception Message Byte

When any kind of exception occurs, an exception message is placed in the trace buffer. In an
exception message byte, the message type bit (M) is always 0.

The vector exception (VVV) field is used to specify bits[4:2] of the vector address (offset from the
base of default or relocated vector table). The vector allows the debugger to identify which
exception occurred.

The incremental word count (CCCC) is the instruction count since the last control flow change (not
including the current instruction for undef, SWI, and pre-fetch abort). The instruction count
includes instructions that were executed and conditional instructions that were not executed due to
the condition of the instruction not matching the CC flags.

A count value of 0 indicates that 0 instructions executed since the last control flow change and the
current exception. For example, if a branch is immediate followed by a SWI, a direct branch
exception message (for the branch) is followed by an exception message (for the SWI) in the trace
buffer. The count value in the exception message will be 0, meaning that 0 instructions executed
after the last control flow change (the branch) and before the current control flow change (the
SWI). Instead of the SWI, if an IRQ was handled immediately after the branch (before any other
instructions executed), the count would still be 0, since no instructions executed after the branch
and before the interrupt was handled.

A count of 0b1111 indicates that 15 instructions executed between the last branch and the
exception. In this case, an exception was either caused by the 16th instruction (if it is an undefined
instruction exception, pre-fetch abort, or SWI) or handled before the 16th instruction executed (for
FIQ, IRQ, or data abort).

Note: there is a special case for the count field related to precise data aborts. For a precise data
abort on a load to the PC (LDR or LDM), the count is consistent with the above description (i.e.
aborting instruction is not counted). For all other precise data aborts, the instruction that causes the
data abort is included in the count value of the exception message.

150 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.13.1.2 Non-exception Message Byte

Non-exception message bytes are used for direct branches, indirect branches, and rollovers.

In a non-exception message byte, the 4-bit message type field (MMMM) specifies the type of
message (refer to Table 9-18).

The incremental word count (CCCC) is the instruction count since the last control flow change
(excluding the current branch). The instruction count includes instructions that were executed and
conditional instructions that were not executed due to the condition of the instruction not matching
the CC flags. In the case of back-to-back branches the word count would be 0 indicating that no
instructions executed after the last branch and before the current one.

A rollover message is used to keep track of long traces of code that do not have control flow
changes. The rollover message means that 16 instructions have executed since the last message
byte was written to the trace buffer.

If the incremental counter reaches its maximum value of 15, a rollover message is written to the
trace buffer following the next instruction (which will be the 16th instruction to execute). This is
shown in Example 9-1. The count in the rollover message is 0b1111, indicating that 15 instructions
have executed after the last branch and before the current non-branch instruction that caused the
rollover message.

If the 16th instruction is a branch (direct or indirect), the appropriate branch message is placed in
the trace buffer instead of the roll-over message. The incremental counter is still set to 0b1111,
meaning 15 instructions executed between the last branch and the current branch.

Example 9-1. Rollover Messages Examples

count = 5
BL label1
count = 0
MOV
count = 1
MOV
count = 2
MOV
...

count = 14
MOV
count = 15
MOV
count = 0

rollover message placed in trace buffer after 16th instruction executes
count = 0b1111

branch message placed in trace buffer after branch executes
count = 0b0101

Developer’s Manual January, 2004 151

Intel XScale® Core Developer’s Manual
Software Debug

9.13.1.3 Address Bytes

Only indirect branch entries contain address bytes in addition to the message byte. Indirect branch
entries always have four address bytes indicating the target of that indirect branch. When reading
the trace buffer the MSB of the target address is read out first; the LSB is the fourth byte read out;
and the indirect branch message byte is the fifth byte read out. The byte organization of the indirect
branch message is shown in Figure 9-5.

Figure 9-5. Indirect Branch Entry Address Byte Organization

target[31:24]

target[23:16]

target[15:8]

target[7:0]

indirect br msg

Trace buffer is read by
software in this
direction. The message
byte is always the last of
the 5 bytes in the entry
to be read.

152 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.13.2 Trace Buffer Usage

The Elkhart trace buffer is 256 bytes in length. The first byte read from the buffer represents the
oldest trace history information in the buffer. The last (256th) byte read represents the most recent
entry in the buffer. The last byte read from the buffer will always be a message byte. This provides
the debugger with a starting point for parsing the entries out of the buffer. Because the debugger
needs the last byte as a starting point when parsing the buffer, the entire trace buffer must be read
(256 bytes on Elkhart) before the buffer can be parsed. Figure 9-6 is a high level view of the trace
buffer.

The trace buffer must be initialized prior to its initial usage, then again prior to each subsequent
usage. Initialization is done be reading the entire trace buffer. The process of reading the trace
buffer also clears it out (all entries are set to 0b0000 0000), so when the trace buffer has been used
to capture a trace, the process of reading the captured trace data also re-initializes the trace buffer
for its next usage.

The trace buffer can be used to capture a trace up to a processor reset. A processor reset disables
the trace buffer, but the contents are unaffected. The trace buffer captures a trace up to the
processor reset.

The trace buffer does not capture reset events or debug exceptions.

Since the trace buffer is cleared out before it is used, all entries are initially 0b0000 0000. In
fill-once mode, these 0’s can be used to identify the first valid entry in the trace buffer. In wrap
around mode, in addition to identifying the first valid entry, these 0 entries can be used to
determine whether a wrap around occurred.

Figure 9-6. High Level View of Trace Buffer

target[7:0]

1001 CCCC (indirect)

1000 CCCC (direct)

1100 CCCC (direct)

. . .

1111 1111 (roll-over)

target[31:24]

target[23:16]

target[15:8]

target[7:0]

1101 CCCC (indirect)

1000 CCCC (direct)

1111 1111 (roll-over)

1000 CCCC (direct)
last byte read

(most recent entry)

first byte read
(oldest entry)

CHKPT1
CHKPT0

Developer’s Manual January, 2004 153

Intel XScale® Core Developer’s Manual
Software Debug

As the trace buffer is read, the oldest entries are read first. Reading a series of 5 (or more)
consecutive “0b0000 0000” entries in the oldest entries indicates that the trace buffer has not
wrapped around and the first valid entry will be the first non-zero entry read out.

Reading 4 or less consecutive “0b0000 0000” entries requires a bit more intelligence in the
debugger. The debugger must determine whether these 0’s are part of the address of an indirect
branch message, or whether they are part of the “0b0000 0000” that the trace buffer was initialized
with. If the first non-zero message byte is an indirect branch message, then these 0’s are part of the
address since the address is always read before the indirect branch message (see Section 9.13.1.3,
“Address Bytes”). If the first non-zero entry is any other type of message byte, then these 0’s
indicate that the trace buffer has not wrapped around and that first non-zero entry is the start of the
trace.

If the oldest entry from the trace buffer is non-zero, then the trace buffer has either wrapped around
or just filled up.

Once the trace buffer has been read and parsed, the debugger should re-create the trace history
from oldest trace buffer entry to latest. Trying to re-create the trace going backwards from the latest
trace buffer entry may not work in most cases, because once a branch message is encountered, it
may not be possible to determine the source of the branch.

In fill-once mode, the return from the debug handler to the application should generate an indirect
branch message. The address placed in the trace buffer will be that of the target application
instruction. Using this as a starting point, re-creating a trace going forward in time should be
straightforward.

In wrap around mode, the debugger should use the checkpoint registers and address bytes from
indirect branch entries to re-create the trace going forward. The drawback is that some of the oldest
entries in the trace buffer may be untraceable, depending on where the earliest checkpoint (or
indirect branch entry) is located. The best case is when the oldest entry in the trace buffer was
checkpointed, so the entire trace buffer can be used to re-create the trace. The worst case is when
the first checkpoint is in the middle of the trace buffer and no indirect branch messages exist before
this checkpoint. In this case, the debugger would have to start at its known address (the first
checkpoint) which is half way through the buffer and work forward from there.

154 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.14 Downloading Code in the Instruction Cache

On Elkhart, a mini instruction cache, physically separate1 from the main instruction cache can be
used as an on-chip instruction RAM. A debugger can download code directly into either instruction
cache through JTAG. In addition to downloading code, several cache functions are supported.

Elkhart supports loading the instruction cache during reset and dynamically (without resetting the
core). Loading the instruction cache during normal program execution requires a strict
handshaking protocol between software running on Elkhart and the debugger.

In the remainder of this section the term ‘instruction cache’ applies to either main or mini
instruction cache.

9.14.1 Mini Instruction Cache Overview

The mini instruction cache is a smaller version of the main instruction cache. The size of the mini
instruction cache is proportional to that of the main instruction cache:

A version of the core with a 32KB main instruction cache will have a 2KB mini instruction cache.
A version of the core with a 16KB main instruction cache will have a 1KB mini instruction cache.

Refer to the Intel XScale® core implementation option section of the Application Specific Standard
Product (ASSP) architecture specification for more details the cache size supported by the ASSP.

The mini instruction cache is a 2-way set associative cache. The 2KB version has 32 sets, the 1KB
version has 16 sets. The line size is 8 words. The cache uses the round-robin replacement policy.

The mini instruction cache is virtually addressed and addresses may be remapped by the PID.
However, since the debug handler executes in Special Debug State, address translation and PID
remapping are turned off. For application code, accesses to the mini instruction cache use the
normal address translation and PID mechanisms.

Normal application code is never cached in the mini instruction cache on an instruction fetch. The
only way to get code into the mini instruction cache is through the JTAG LDIC function. Code
downloaded into the mini instruction cache is essentially locked - it cannot be overwritten by
application code running on Elkhart. However, it is not locked against code downloaded through
the JTAG LDIC functions.

Application code can invalidate a line in the mini instruction cache using a CP15 Invalidate IC line
function to an address that hits in the mini instruction cache. However, a CP15 global invalidate IC
function does not affect the mini instruction cache.

The mini instruction cache can be globally invalidated through JTAG by the LDIC Invalidate IC
function or by a processor reset when the processor is not in HALT or LDIC mode. A single line in
the mini instruction cache can be invalidated through JTAG by the LDIC Invalidate IC-line
function.

1. A cache line fill from external memory will never be written into the mini-instruction cache. The only way to load a code into the
mini-instruction cache is through JTAG.

Developer’s Manual January, 2004 155

Intel XScale® Core Developer’s Manual
Software Debug

9.14.2 LDIC JTAG Command

The LDIC JTAG instruction selects the JTAG data register for loading code into the instruction
cache. The JTAG opcode for this instruction is ‘00111’. The LDIC instruction must be in the JTAG
instruction register in order to load code directly into the instruction cache through JTAG.

9.14.3 LDIC JTAG Data Register

The LDIC JTAG Data Register is selected when the LDIC JTAG instruction is in the JTAG IR. An
external host can load and invalidate lines in the instruction cache through this data register.

The data loaded into LDIC_SR1 during a Capture_DR is unpredictable.

All LDIC functions and data consists of 33 bit packets which are scanned into LDIC_SR1 during
the Shift_DR state.

Update_DR parallel loads LDIC_SR1 into LDIC_REG which is then synchronized with the
Elkhart clock and loaded into the LDIC_SR2. Once data is loaded into LDIC_SR2, the LDIC State
Machine turns on and serially shifts the contents if LDIC_SR2 to the instruction cache.

Note that there is a delay from the time of the Update_DR to the time the entire contents of
LDIC_SR2 have been shifted to the instruction cache. Removing the LDIC JTAG instruction from
the JTAG IR before the entire contents of LDIC_SR2 are sent to the instruction cache, will result in
unpredictable behavior. Therefore, following the Update_DR for the last LDIC packet, the LDIC
instruction must remain in the JTAG IR for a minimum of 15 TCKs. This ensures the last packet is
correctly sent to the instruction cache.

Figure 9-7. LDIC JTAG Data Register Hardware

TDOTDI

Capture_DR

Update_DR

12332

TCK

Core CLK

0

1232 0

unpredictable

LDIC_SR1

To Instruction Cache

LDIC_REG

1232 0LDIC_SR2

LDIC
State Machine

156 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.14.4 LDIC Cache Functions

Elkhart supports four cache functions that can be executed through JTAG. Two functions allow an
external host to download code into the main instruction cache or the mini instruction cache
through JTAG. Two additional functions are supported to allow lines to be invalidated in the
instruction cache. The following table shows the cache functions supported through JTAG.

Invalidate IC line invalidates the line in the instruction cache containing specified virtual address.
If the line is not in the cache, the operation has no effect. It does not take any data arguments.

Invalidate Mini IC1 will invalidate the entire mini instruction cache. It does not effect the main
instruction cache. It does not require a virtual address or any data arguments.

Load Main IC and Load Mini IC write one line of data (8 ARM instructions) into the specified
instruction cache at the specified virtual address. Load Main IC has been deprecated on the Intel
XScale® core. A debugger should only load code into the mini instruction cache.

Each cache function is downloaded through JTAG in 33 bit packets. Figure 9-8 shows the packet
formats for each of the JTAG cache functions. Invalidate IC Line and Invalidate Mini IC each
require 1 packet. Load Main IC and Load Mini IC each require 9 packets.

Table 9-19. LDIC Cache Functions

Function Encoding
 Arguments

Address # Data Words

Invalidate IC Line 0b000 VA of line to invalidate 0

Invalidate Mini IC 0b001 - 0

Load Main IC 0b010 VA of line to load 8

Load Mini IC 0b011 VA of line to load 8

RESERVED 0b100-0b111 - -

1. The LDIC Invalidate Mini IC function does not invalidate the BTB (like the CP15 Invalidate IC function) so software must do this manually
where appropriate.

Developer’s Manual January, 2004 157

Intel XScale® Core Developer’s Manual
Software Debug

All packets are 33 bits in length. Bits [2:0] of the first packet specify the function to execute. For
functions that require an address, bits[32:6] of the first packet specify an 8-word aligned address
(Packet1[32:6] = VA[31:5]). For Load Main IC and Load Mini IC, 8 additional data packets are
used to specify 8 ARM instructions to be loaded into the target instruction cache. Bits[31:0] of the
data packets contain the data to download. Bit[32] of each data packet is the value of the parity for
the data in that packet.

As shown in Figure 9-8, the first bit shifted in TDI is bit 0 of the first packet. After each 33-bit
packet, the host must take the JTAG state machine into the Update_DR state. After the host does an
Update_DR and returns the JTAG state machine back to the Shift_DR state, the host can
immediately begin shifting in the next 33-bit packet.

Figure 9-8. Format of LDIC Cache Functions

25

0 0

31

Invalidate IC Line

x 0x x . . .Invalidate Mini IC

VA[31:5]

Load Main IC

VA[31:5]

.

.

.

Data Word 0

Data Word 7

Load Mini IC

and

(CMD = 0b010)

(CMD = 0b011)

- indicates first

- indicates last

bit shifted in

bit shifted in

0 00

0 00 0

0

0 0 0 CMD

32

0

1

2531 032

2531 032

P

P

158 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.14.5 Loading Instruction Cache During Reset

Code can be downloaded into the instruction cache through JTAG during a processor reset. This
feature is used during software debug to download the debug handler prior to starting a debug
session. Immediately out of reset, the downloaded handler can intercept the reset vector and turn
control of the system to the debugger. The debugger can then initialize the system as necessary and
begin the application program.

In general, any code downloaded into the instruction cache through JTAG, must be downloaded to
addresses that are not already valid in the instruction cache. Failure to meet this requirement will
result in unpredictable behavior by the processor. During a processor reset, the instruction cache is
typically invalidated, with the exception of the following cases:

• When LDIC JTAG instruction is loaded in the JTAG IR, neither the mini instruction cache, nor
the main instruction cache are invalidated during reset.

• When the Halt Mode bit is set in the DCSR only the mini instruction cache is prevented from
being invalidated during reset. The main instruction cache is still be invalidated.

The Figure 9-9 shows the actions necessary to download code into the instruction cache during a
cold reset for debug.

Figure 9-9. Code Download During a Cold Reset For Debug

Chip TRST

Core Reset invalidates mini IC

Enter LDIC mode

Halt Mode bit prevents

reset JTAG IR to IDCODE

Set hold_reset bit

Clear hold_reset bit

Chip Reset Pin

Core Reset Signal

de-assert Chip Reset AFTER SELDCSR.keep_rst is set

Reset Vector Trap

SELDCSR.hold_reset

hold_reset keeps core reset asserted

SELDCSR

Set Halt Mode bit

Keep LDIC in IR

Download code

Set Halt Mode bit

generated out of reset

LDIC

Wait N1 TCKs after
Chip Reset de-asserted

for 20 TCKs after
last update_dr

(Internal)

SELDCSR.halt_mode

SELDCSR.trap_reset

SELDCSR SELDCSR DBGTXIDCODE

Read ID Reg value

Set Trap Reset bit

JTAG IR Value
and Debugger
JTAG Actions

Reprogram SELDCSR
Set hold_reset bit
Set Halt Mode bit
Set Trap Reset bit

Set Trap Reset bit

Poll DBGTX to
detect debug break

mini IC from being invalidated

1. The number of TCKs to wait is ASSP specific and can be found in the Implementation options section of
the ASSP architecture specification.

indicates unknown value

Developer’s Manual January, 2004 159

Intel XScale® Core Developer’s Manual
Software Debug

Table 9-20 describes the actions a debugger should take to load code into the mini instruction cache
during reset:

Table 9-20. Steps For Loading Mini Instruction Cache During Reset

Step # Action Notes

1 Assert Chip Reset and Chip TRST
This resets the JTAG IR to IDCODE and clears the Halt Mode
bit in the DCSR, ensuring that the main and mini IC are
invalidated.

2 Read ID Register value

3

Program SELDCSR JTAG register:

Halt Mode=1
Trap Reset=1
hold_reset=1

SELDCSR details can be found in Section 9.11.1.

Depending on ASSP implementation, the Halt Mode bit and
Trap Reset bit may or may not actually be set to the
programmed value. The hold reset bit will be set to the
programmed value.

4 Deassert Chip Reset Internally the core will remain held in reset due to hold_reset
being set.

5 Wait N TCKs

N is a ASSP specific number and can be found in the
Implementations options section of the ASSP architecture
specification. This wait ensures that the core is stable before
proceeding.

6

Program SELDCSR JTAG register:

Halt Mode=1
Trap Reset=1
hold_reset=1

The SELDCSR instruction must be reloaded into the JTAG IR.
Failure to reload the JTAG IR may result in unpredictable
behavior.
Reprogramming of the SELDCSR JTAG register guarantees
that the Halt Mode bit and Trap Reset bit are set before loading
the mini instruction cache.

7
Load LDIC JTAG instruction and
download the debug handler into
mini instruction cache.

Loading into the instruction cache is described in
Section 9.14.4, “LDIC Cache Functions”

8 Clock a minimum of 20 TCKs
before changing the JTAG IR.

The LDIC JTAG instruction must remain in the JTAG instruction
register for at least 20 TCKs following the update_dr for the last
cache line, to ensure that line is correctly loaded into the mini
instruction cache. Changing the JTAG IR within 20 cycles my
result in unpredictable behavior.

9

Program SELDCSR JTAG register:

Halt Mode bit = 1
Trap Reset bit = 1
hold_reset = 0

Clearing the hold_reset bit allows the core to come out of reset
and begin execution from address 0.

10 poll the DBGTX register
Immediately out of reset, a reset vector trap will occur and the
debug handler will begin execution. The debugger must poll
DBGTX to identify when this has happened.

160 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.14.6 Dynamically Loading Instruction Cache After Reset

An debugger can load code into the instruction cache “on the fly” or “dynamically”. This occurs
when the debugger downloads code while the core is not held in reset and is useful for expanding
the functionality of the debug handler.

Since the debug handler is limited to 2KB (or 1KB w/ 16KB version of core), all possible debug
handler functionality cannot fit in the mini instruction cache at one time. The debugger can load
key debug handler functionality into the mini instruction cache during reset and download the less
often used routines as they are needed, outside of reset.

Loading code dynamically into the mini instruction cache requires strict synchronization between
the code running on the core and the debugger. The guidelines for downloading code during
program execution must be followed to ensure proper operation of the processor.

To dynamically download code during software debug, there must be a minimal debug handler
stub, responsible for doing the handshaking with the debugger, resident in the mini instruction
cache. This debug handler stub should be downloaded into the mini instruction cache during
processor reset using the method described in Section 9.14.5.

Figure 9-10 shows a high level view of the actions taken by the host and debug handler during
dynamic code download and Table 9-21 shows the step-by-step process in more detail.

Section 9.14.6.1, “Dynamic Download Synchronization Code” provides the details and describes
the requirements for implementing the handshaking in the debug handler.

Figure 9-10. Downloading Code in IC During Program Execution

DBGRXJTAG IR DBGTX LDIC

wait for handler to signal
download code

signal download

Handler begins execution signal host ready
wait for host to signal

complete to handler

continue execution.

ready to start download

for download
download complete

Debugger Actions

Debug Handler Actions

clock
20 TCKs

Developer’s Manual January, 2004 161

Intel XScale® Core Developer’s Manual
Software Debug

Note: The debug handler polling loop must reside in the instruction cache and execute out of the cache
while doing the synchronization. The processor should not be doing any code fetches to external
memory while code is being downloaded.

Table 9-21. Steps For Dynamically Loading the Mini Instruction Cache

Step #
Action

Notes
Debugger Debug Handler

1 Poll DBGTX

Debugger must poll DBGTX for an indication from the debug handler that it is
safe to begin the download.

Refer to Section 9.11.2, “DBGTX JTAG Register” for details on polling
DBGTX through JTAG.

2 Write TX, When the debug handler gets to a safe section of code, it writes TX, allowing
the debugger to proceed with the download.

3 Poll RX Read Flag The handler then begins polling the RX Ready for an indication the debugger
has completed the download

34 Detect handler
write to TX

When the debugger sees a valid value in TX, it can proceed with the
download into the instruction cache.

5
Load LDIC Instr
and download
code

Debugger loads the LDIC instruction into JTAG IR and downloads code into
the instruction cache.

For each cache line downloaded, the debugger must invalidate the target line
before downloading to that line. Failure to invalidate a line prior to writing it
may cause unpredictable operation by the processor.

Refer to Section 9.14.4, “LDIC Cache Functions” for details on the invalidate
and download functions.

6

clock a minimum
of 20 TCKs before
changing the
JTAG IR.

The LDIC JTAG instruction must remain in the JTAG instruction register for at
least 20 TCKs following the update_dr for the last cache line, to ensure that
line is correctly loaded into the mini instruction cache. Changing the JTAG IR
within 20 cycles my result in unpredictable behavior.

7 Write RX The completes the handshaking allowing the handler to exit its polling loop.
The value written to RX by the debugger is implementation specific.

8 Detect debugger
write to RX

The handler exits is polling loop and depending on the implementation of the
debug handler, can branch to a fixed address where the code was
downloaded or can use the value written to RX be the debugger as the target
address to branch to.

162 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Software Debug

9.14.6.1 Dynamic Download Synchronization Code

The following pieces of code are necessary in the debug handler to implement the synchronization
used during dynamic code download. The pieces must be ordered in the handler as shown below.

Before the download can start, all outstanding instruction fetches must complete.
The MCR invalidate IC by line function serves as a barrier instruction in
the core. All outstanding instruction fetches are guaranteed to complete before
the next instruction executes.

NOTE1: the actual address specified to invalidate is implementation defined, but
must not have any harmful effects.

NOTE2: The placement of the invalidate code is implementation defined, the only
requirement is that it must be placed such that by the time the debugger starts
loading the instruction cache, all outstanding instruction fetches have completed

mov r5, address

mcr p15, 0, r5, c7, c5, 1

The host waits for the debug handler to signal that it is ready for the
code download. This can be done using the TX register access handshaking
protocol. The host polls the TR bit through JTAG until it is set, then begins
the code download. The following MCR does a write to TX, automatically
setting the TR bit.

NOTE: The value written to TX is implementation defined.

mcr p14, 0, r6, c8, c0, 0

The debug handler waits until the download is complete before continuing. The
debugger uses the RX handshaking to signal the debug handler when the download
is complete. The debug handler polls the RR bit until it is set. A debugger write
to RX automatically sets the RR bit, allowing the handler to proceed.

NOTE: The value written to RX by the debugger is implementation defined - it can
be a bogus value signalling the handler to continue or it can be a target address
for the handler to branch to.

loop:

mrc p14, 0, r15, c14, c0, 0 @ handler waits for signal from debugger

bpl loop

mrc p14, 0, r0, c8, c0, 0 @ debugger writes target address to RX

bx r0

In a very simple debug handler stub, the above parts may form the complete handler downloaded
during reset (with some handler entry and exit code). When a debug exception occurs, routines can
be downloaded as necessary. This basically allows the entire handler to be dynamic.

Another possibility is for a more complete debug handler is downloaded during reset. The debug
handler may support some operations, such as read memory, write memory, etc. However, other
operations, such as reading or writing a group of CP register, can be downloaded dynamically. This
method could be used to dynamically download infrequently used debug handler functions, while
the more common operations remain static in the mini-instruction cache.

The Intel Debug Handler is a complete debug handler that implements the more commonly used
functions, and allows less frequently used functions to be dynamically downloaded.

Developer’s Manual January, 2004 163

Intel XScale® Core Developer’s Manual
Performance Considerations

Performance Considerations 10

This chapter describes relevant performance considerations that compiler writers, application
programmers and system designers need to be aware of to efficiently use the Intel XScale® core.
Performance numbers discussed here include interrupt latency, branch prediction, and instruction
latencies.

10.1 Interrupt Latency

Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. The
point at which the assertion begins depends on the ASSP. This number assumes best case
conditions exist when the interrupt is asserted, e.g., the system isn’t waiting on the completion of
some other operation.

A sometimes more useful number to work with is the Maximum Interrupt Latency. This is typically
a complex calculation that depends on what else is going on in the system at the time the interrupt
is asserted. Some examples that can adversely affect interrupt latency are:

• the instruction currently executing could be a 16-register LDM,

• the processor could fault just when the interrupt arrives,

• the processor could be waiting for data from a load, doing a page table walk, etc., and

• high core to system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

• ensuring that the interrupt vector and interrupt service routine are resident in the instruction
cache. This can be accomplished by locking them down into the cache.

• removing or reducing the occurrences of hardware page table walks. This also can be
accomplished by locking down the application’s page table entries into the TLBs, along with
the page table entry for the interrupt service routine.

Refer to the Intel XScale® core implementation option section of the ASSP architecture
specification for more information on interrupt latency.

164 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

10.2 Branch Prediction

The Intel XScale® core implements dynamic branch prediction for the ARM* instructions B and
BL and for the Thumb instruction B. Any instruction that specifies the PC as the destination is
predicted as not taken. For example, an LDR or a MOV that loads or moves directly to the PC will
be predicted not taken and incur a branch latency penalty.

These instructions -- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.)
Once in the branch target buffer, the core dynamically predicts the outcome of these instructions
based on previous outcomes. Table 10-1 shows the branch latency penalty when these instructions
are correctly predicted and when they are not. A penalty of zero for correct prediction means that
the core can execute the next instruction in the program flow in the cycle following the branch.

10.3 Addressing Modes

All load and store addressing modes implemented in the core do not add to the instruction latencies
numbers.

Table 10-1. Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

+0 + 0 Predicted Correctly. The instruction is in the branch target cache and is correctly
predicted.

+4 + 5

Mispredicted. There are three occurrences of branch misprediction, all of which
incur a 4-cycle branch delay penalty.
1. The instruction is in the branch target buffer and is predicted not-taken, but is

actually taken.
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is

actually not-taken

Developer’s Manual January, 2004 165

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4 Instruction Latencies

The latencies for all the instructions are shown in the following sections with respect to their
functional groups: branch, data processing, multiply, status register access, load/store, semaphore,
and coprocessor.

The following section explains how to read these tables.

10.4.1 Performance Terms

• Issue Clock (cycle 0)

The first cycle when an instruction is decoded and allowed to proceed to further stages in the
execution pipeline (i.e., when the instruction is actually issued).

• Cycle Distance from A to B

The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles from the
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is
one cycle.

• Issue Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the
next instruction. The actual number of cycles can be influenced by cache-misses,
resource-dependency stalls, and resource availability conflicts.

• Result Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the
first instruction that can use the result without incurring a resource dependency stall. The
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and
resource availability conflicts

• Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance from the issue clock of the current instruction to the first possible
issue clock of the next instruction assuming best case conditions (i.e., that the issuing of the
next instruction is not stalled due to a resource dependency stall; the next instruction is
immediately available from the cache or memory interface; the current instruction does not
incur resource dependency stalls during execution that can not be detected at issue time; and if
the instruction uses dynamic branch prediction, correct prediction is assumed).

• Minimum Result Latency

The required minimum cycle distance from the issue clock of the current instruction to the
issue clock of the first instruction that can use the result without incurring a resource
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is
not stalled due to a resource dependency stall; the next instruction is immediately available
from the cache or memory interface; and the current instruction does not incur resource
dependency stalls during execution that can not be detected at issue time).

• Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching instruction to the
first possible issue clock of the next instruction. This definition is identical to Minimum Issue
Latency except that the branching instruction has been mispredicted. It is calculated by adding
Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency
penalty number from Table 10-1, which is four cycles.

166 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

• Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction to the
issue clock of the next multiply instruction assuming the second multiply does not incur a data
dependency and is immediately available from the instruction cache or memory interface.

For the following code fragment, here is an example of computing latencies:

Table 10-2 shows how to calculate Issue Latency and Result Latency for each instruction. Looking
at the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction,
ADD, issues on cycle 2, so the Issue Latency for UMLAL is two. From the code fragment, there is
a result dependency between the UMLAL instruction and the SUB instruction. In Table 10-2,
UMLAL starts to issue at cycle 0 and the SUB issues at cycle 5. thus the Result Latency is five.

Example 10-1. Computing Latencies

UMLALr6,r8,r0,r1

ADD r9,r10,r11

SUB r2,r8,r9

MOV r0,r1

Table 10-2. Latency Example

Cycle Issue Executing

0 umlal (1st cycle) --

1 umlal (2nd cycle) umlal

2 add umlal

3 sub (stalled) umlal & add

4 sub (stalled) umlal

5 sub umlal

6 mov sub

7 -- mov

Developer’s Manual January, 2004 167

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.2 Branch Instruction Timings

 (

10.4.3 Data Processing Instruction Timings

Table 10-3. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly
Predicted by the BTB

Minimum Issue Latency with Branch
Misprediction

B 1 5

BL 1 5

Table 10-4. Branch Instruction Timings (Those not predicted by the BTB)

Mnemonic Minimum Issue Latency when
the branch is not taken

Minimum Issue Latency when
the branch is taken

BLX(1) N/A 5

BLX(2) 1 5

BX 1 5

Data Processing Instruction with
PC as the destination Same as Table 10-5 4 + numbers in Table 10-5

LDR PC,<> 2 8

LDM with PC in register list 3 + numrega

a. numreg is the number of registers in the register list including the PC.

10 + max (0, numreg-3)

Table 10-5. Data Processing Instruction Timings

Mnemonic

<shifter operand> is NOT a Shift/Rotate
by Register

<shifter operand> is a Shift/Rotate by
Register OR

<shifter operand> is RRX

Minimum Issue
Latency

Minimum Result
Latencya

a. If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Minimum Issue
Latency

Minimum Result
Latencya

ADC 1 1 2 2

ADD 1 1 2 2

AND 1 1 2 2

BIC 1 1 2 2

CMN 1 1 2 2

CMP 1 1 2 2

EOR 1 1 2 2

MOV 1 1 2 2

MVN 1 1 2 2

ORR 1 1 2 2

RSB 1 1 2 2

RSC 1 1 2 2

SBC 1 1 2 2

SUB 1 1 2 2

TEQ 1 1 2 2

TST 1 1 2 2

168 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.4 Multiply Instruction Timings

Table 10-6. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum
Issue Latency

Minimum Result
Latencya

Minimum Resource
Latency (Throughput)

MLA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4

MUL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4

SMLAL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

SMLALxy N/A N/A 2 RdLo = 2; RdHi = 3 2

SMLAWy N/A N/A 1 3 2

SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

SMULWy N/A N/A 1 3 2

SMULxy N/A N/A 1 2 1

UMLAL

Rs[31:15] = 0x00000
0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

Developer’s Manual January, 2004 169

Intel XScale® Core Developer’s Manual
Performance Considerations

UMULL

Rs[31:15] = 0x00000
0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

a. If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Table 10-7. Multiply Implicit Accumulate Instruction Timings

Mnemonic Rs Value (Early
Termination)

Minimum Issue
Latency

Minimum Result
Latency

Minimum Resource
Latency

(Throughput)

MIA

Rs[31:15] = 0x0000
or

Rs[31:15] = 0xFFFF
1 1 1

Rs[31:27] = 0x0
or

Rs[31:27] = 0xF
1 2 2

all others 1 3 3

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 10-8. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency
(Throughput)

MAR 2 2 2

MRA 1 (RdLo = 2; RdHi = 3)a

a. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.

2

Table 10-6. Multiply Instruction Timings (Sheet 2 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum
Issue Latency

Minimum Result
Latencya

Minimum Resource
Latency (Throughput)

170 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.5 Saturated Arithmetic Instructions
h

10.4.6 Status Register Access Instructions

Table 10-9. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

QADD 1 2

QSUB 1 2

QDADD 1 2

QDSUB 1 2

Table 10-10. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 1 2

MSR 2 (6 if updating mode bits) 1

Developer’s Manual January, 2004 171

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.7 Load/Store Instructions

10.4.8 Semaphore Instructions

Table 10-11. Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base

LDRB 1 3 for load data; 1 for writeback of base

LDRBT 1 3 for load data; 1 for writeback of base

LDRD 1 (+1 if Rd is R12)
3 for Rd; 4 for Rd+1;

1 (+1 if Rd is R12) for writeback of base

LDRH 1 3 for load data; 1 for writeback of base

LDRSB 1 3 for load data; 1 for writeback of base

LDRSH 1 3 for load data; 1 for writeback of base

LDRT 1 3 for load data; 1 for writeback of base

PLD 1 N/A

STR 1 1 for writeback of base

STRB 1 1 for writeback of base

STRBT 1 1 for writeback of base

STRD 2 2 for writeback of base

STRH 1 1 for writeback of base

STRT 1 1 for writeback of base

Table 10-12. Load and Store Multiple Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDMa

a. See Table 10-4 for LDM timings when R15 is in the register list

2 + numregb

b. numreg is the number of registers in the register list

5-18 for load data (4 + numreg for last register
in list; 3 + numreg for 2nd to last register in list;
2 + numreg for all other registers in list);

2+ numreg for writeback of base

STM 2 + numreg 2 + numreg for writeback of base

Table 10-13. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP 5 5

SWPB 5 5

172 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.9 Coprocessor Instructions

10.4.10 Miscellaneous Instruction Timing

Table 10-14. CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRCa

a. MRC to R15 is unpredictable

4 4

MCR 2 N/A

Table 10-15. CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 8 8

MRC to R15 9 9

MCR 8 N/A

LDC 11 N/A

STC 8 N/A

Table 10-16. Exception-Generating Instruction Timings

Mnemonic Minimum latency to first instruction of exception handler

SWI 6

BKPT 6

UNDEFINED 6

Table 10-17. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLZ 1 1

Developer’s Manual January, 2004 173

Intel XScale® Core Developer’s Manual
Performance Considerations

10.4.11 Thumb Instructions

In general, the timing of Thumb instructions are the same as their equivalent ARM instructions,
except for the cases listed below.

• If the equivalent ARM instruction maps to one in Table 10-3, the “Minimum Issue Latency
with Branch Misprediction” goes from 5 to 6 cycles. This is due to the branch latency penalty
(see Table 10-1).

• If the equivalent ARM instruction maps to one in Table 10-4, the “Minimum Issue Latency
when the Branch is Taken” increases by 1 cycle. This is due to the branch latency penalty (see
Table 10-1).

• A Thumb BL instruction when H = 0 will have the same timing as an ARM data processing
instruction.

The mapping of Thumb instructions to ARM instructions can be found in the ARM Architecture
Reference Manual.

174 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Performance Considerations

This Page Intentionally Left Blank

Developer’s Manual January, 2004 175

Intel XScale® Core Developer’s Manual
Optimization Guide

Optimization Guide A

A.1 Introduction

This document contains optimization techniques for achieving the highest performance from the
Intel XScale® core architecture. It is written for developers who are optimizing compilers or
performance analysis tools for Intel XScale® core based processors. It can also be used by
application developers to obtain the best performance from their assembly language code. The
optimizations presented in this chapter are based on the Intel XScale® core, and hence can be
applied to all products that are based on it.

The Intel XScale® core architecture includes a superpipelined RISC architecture with an enhanced
memory pipeline. The Intel XScale® core instruction set is based on ARM V5TE architecture;
however, the core includes new instructions. Code generated for the SA110, SA1100 and SA1110
will execute on Intel XScale® core based processors, however to obtain the maximum performance
of your application code, it should be optimized for the core using the techniques presented in this
document.

A.1.1 About This Guide

This guide considers that you are familiar with the ARM instruction set and the C language. It
consists of the following sections:

Section A.1, “Introduction”. Outlines the contents of this guide.

Section A.2, “The Intel XScale® Core Pipeline”. This chapter provides an overview of the core
pipeline behavior.

Section A.3, “Basic Optimizations”. This chapter outlines basic optimizations that can be applied
to the core.

Section A.4, “Cache and Prefetch Optimizations”. This chapter contains optimizations for efficient
use of caches. Also included are optimizations that take advantage of the prefetch instruction of the
core.

Section A.5, “Instruction Scheduling”. This chapter shows how to optimally schedule code for the
core pipeline.

Section A.6, “Optimizing C Libraries”. This chapter contains information relating to optimizations
for C library routines.

Section A.7, “Optimizations for Size”. This chapter contains optimizations that reduce the size of
the generated code. Thumb optimizations are also included.

176 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2 The Intel XScale® Core Pipeline

One of the biggest differences between the Intel XScale® core and StrongARM processors is the
pipeline. Many of the differences are summarized in Figure A-1. This section provides a brief
description of the structure and behavior of the core pipeline.

A.2.1 General Pipeline Characteristics

While the core pipeline is scalar and single issue, instructions may occupy all three pipelines at
once. Out of order completion is possible. The following sections discuss general pipeline
characteristics.

A.2.1.1. Number of Pipeline Stages

The Intel XScale® core has a longer pipeline (7 stages versus 5 stages) which operates at a much
higher frequency than its predecessors do. This allows for greater overall performance. The longer
core pipeline has several negative consequences, however:

• Larger branch misprediction penalty (4 cycles in the core instead of 1 in StrongARM
Architecture). This is mitigated by dynamic branch prediction.

• Larger load use delay (LUD) - LUDs arise from load-use dependencies. A load-use
dependency gives rise to a LUD if the result of the load instruction cannot be made available
by the pipeline in due time for the subsequent instruction. An optimizing compiler should find
independent instructions to fill the slot following the load.

• Certain instructions incur a few extra cycles of delay on the core as compared to StrongARM
processors (LDM, STM).

• Decode and register file lookups are spread out over 2 cycles in the core, instead of 1 cycle in
predecessors.

Developer’s Manual January, 2004 177

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.1.2. The Intel XScale® Core Pipeline Organization

The Intel XScale® core single-issue superpipeline consists of a main execution pipeline, MAC
pipeline, and a memory access pipeline. These are shown in Figure A-1, with the main execution
pipeline shaded.

Table A-1 gives a brief description of each pipe-stage.

Figure A-1. The Intel XScale® Core RISC Superpipeline

F1 F2 ID RF X1 X2 XWB

M1 M2 Mx

D1 D2 DWB

Main execution pipeline

MAC pipeline

Memory pipeline

Table A-1. Pipelines and Pipe stages

Pipe / Pipestage Description Covered In

Main Execution Pipeline Handles data processing instructions Section A.2.3

IF1/IF2 Instruction Fetch “

ID Instruction Decode “

RF Register File / Operand Shifter “

X1 ALU Execute “

X2 State Execute “

XWB Write-back “

Memory Pipeline Handles load/store instructions Section A.2.4

D1/D2 Data Cache Access “

DWB Data cache writeback “

MAC Pipeline Handles all multiply instructions Section A.2.5

M1-M5 Multiplier stages “

MWB (not shown) MAC write-back - may occur during M2-M5 “

178 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.1.3. Out Of Order Completion

Sequential consistency of instruction execution relates to two aspects: first, to the order in which
the instructions are completed; and second, to the order in which memory is accessed due to load
and store instructions. The Intel XScale® core preserves a weak processor consistency because
instructions may complete out of order, provided that no data dependencies exist.

While instructions are issued in-order, the main execution pipeline, memory, and MAC pipelines
are not lock-stepped, and, therefore, have different execution times. This means that instructions
may finish out of program order. Short ‘younger’ instructions may be finished earlier than long
‘older’ ones. (The term ‘to finish’ is used here to indicate that the operation has been completed
and the result has been written back to the register file.)

A.2.1.4. Register Scoreboarding

In certain situations, the pipeline may need to be stalled because of register dependencies between
instructions. A register dependency occurs when a previous MAC or load instruction is about to
modify a register value that has not been returned to the register file and the current instruction
needs access to the same register. Only the destination of MAC operations and memory loads are
scoreboarded. The destinations of ALU instructions are not scoreboarded.

If no register dependencies exist, the pipeline will not be stalled. For example, if a load operation
has missed the data cache, subsequent instructions that do not depend on the load may complete
independently.

A.2.1.5. Use of Bypassing

The Intel XScale® core pipeline makes extensive use of bypassing to minimize data hazards.
Bypassing allows results forwarding from multiple sources, eliminating the need to stall the
pipeline.

Developer’s Manual January, 2004 179

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.2 Instruction Flow Through the Pipeline

The Intel XScale® core pipeline issues a single instruction per clock cycle. Instruction execution
begins at the F1 pipestage and completes at the WB pipestage.

Although a single instruction may be issued per clock cycle, all three pipelines (MAC, memory,
and main execution) may be processing instructions simultaneously. If there are no data hazards,
then each instruction may complete independently of the others.

Each pipestage takes a single clock cycle or machine cycle to perform its subtask with the
exception of the MAC unit.

A.2.2.1. ARM* V5TE Instruction Execution

Figure A-1 uses arrows to show the possible flow of instructions in the pipeline. Instruction
execution flows from the F1 pipestage to the RF pipestage. The RF pipestage may issue a single
instruction to either the X1 pipestage or the MAC unit (multiply instructions go to the MAC, while
all others continue to X1). This means that M1 or X1 will be idle.

All load/store instructions are routed to the memory pipeline after the effective addresses have been
calculated in X1.

The ARM V5TE bx (branch and exchange) instruction, which is used to branch between ARM and
THUMB code, causes the entire pipeline to be flushed (The bx instruction is not dynamically
predicted by the BTB). If the processor is in Thumb mode, then the ID pipestage dynamically
expands each Thumb instruction into a normal ARM V5TE RISC instruction and execution
resumes as usual.

A.2.2.2. Pipeline Stalls

The progress of an instruction can stall anywhere in the pipeline. Several pipestages may stall for
various reasons. It is important to understand when and how hazards occur in the core pipeline.
Performance degradation can be significant if care is not taken to minimize pipeline stalls.

180 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.3 Main Execution Pipeline

A.2.3.1. F1 / F2 (Instruction Fetch) Pipestages

The job of the instruction fetch stages F1 and F2 is to present the next instruction to be executed to
the ID stage. Several important functional units reside within the F1 and F2 stages, including:

• Branch Target Buffer (BTB)

• Instruction Fetch Unit (IFU)

An understanding of the BTB (See Chapter 5, “Branch Target Buffer”) and IFU are important for
performance considerations. A summary of operation is provided here so that the reader may
understand its role in the F1 pipestage.

• Branch Target Buffer (BTB)

The BTB predicts the outcome of branch type instructions. Once a branch type instruction
reaches the X1 pipestage, its target address is known. If this address is different from the
address that the BTB predicted, the pipeline is flushed, execution starts at the new target
address, and the branch’s history is updated in the BTB.

• Instruction Fetch Unit (IFU)

The IFU is responsible for delivering instructions to the instruction decode (ID) pipestage.
One instruction word is delivered each cycle (if possible) to the ID. The instruction could
come from one of two sources: instruction cache or fetch buffers.

A.2.3.2. ID (Instruction Decode) Pipestage

The ID pipestage accepts an instruction word from the IFU and sends register decode information
to the RF pipestage. The ID is able to accept a new instruction word from the IFU on every clock
cycle in which there is no stall. The ID pipestage is responsible for:

• General instruction decoding (extracting the opcode, operand addresses, destination addresses
and the offset).

• Detecting undefined instructions and generating an exception.

• Dynamic expansion of complex instructions into sequence of simple instructions. Complex
instructions are defined as ones that take more than one clock cycle to issue, such as LDM,
STM, and SWP.

Developer’s Manual January, 2004 181

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.3.3. RF (Register File / Shifter) Pipestage

The main function of the RF pipestage is to read and write to the register file unit, or RFU. It
provides source data to:

• EX for ALU operations

• MAC for multiply operations

• Data Cache for memory writes

• Coprocessor interface

The ID unit decodes the instruction and specifies which registers are accessed in the RFU. Based
upon this information, the RFU determines if it needs to stall the pipeline due to a register
dependency. A register dependency occurs when a previous instruction is about to modify a
register value that has not been returned to the RFU and the current instruction needs to access that
same register. If no dependencies exist, the RFU will select the appropriate data from the register
file and pass it to the next pipestage. When a register dependency does exist, the RFU will keep
track of which register is unavailable and when the result is returned, the RFU will stop stalling the
pipe.

The ARM architecture specifies that one of the operands for data processing instructions as the
shifter operand, where a 32-bit shift can be performed before it is used as an input to the ALU. This
shifter is located in the second half of the RF pipestage.

A.2.3.4. X1 (Execute) Pipestages

The X1 pipestage performs the following functions:

• ALU calculation - the ALU performs arithmetic and logic operations, as required for data
processing instructions and load/store index calculations.

• Determine conditional instruction execution - The instruction’s condition is compared to the
CPSR prior to execution of each instruction. Any instruction with a false condition is
cancelled, and will not cause any architectural state changes, including modifications of
registers, memory, and PSR.

• Branch target determination - If a branch was mispredicted by the BTB, the X1 pipestage
flushes all of the instructions in the previous pipestages and sends the branch target address to
the BTB, which will restart the pipeline

A.2.3.5. X2 (Execute 2) Pipestage

The X2 pipestage contains the program status registers (PSRs). This pipestage selects what is
going to be written to the RFU in the WB cycle: PSRs (MRS instruction), ALU output, or other
items.

A.2.3.6. WB (write-back)

When an instruction has reached the write-back stage, it is considered complete. Changes are
written to the RFU.

182 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.2.4 Memory Pipeline

The memory pipeline consists of two stages, D1 and D2. The data cache unit, or DCU, consists of
the data-cache array, mini-data cache, fill buffers, and writebuffers. The memory pipeline handles
load / store instructions.

A.2.4.1. D1 and D2 Pipestage

Operation begins in D1 after the X1 pipestage has calculated the effective address for load/stores.
The data cache and mini-data cache returns the destination data in the D2 pipestage. Before data is
returned in the D2 pipestage, sign extension and byte alignment occurs for byte and half-word
loads.

A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline

The Multiply-Accumulate (MAC) unit executes the multiply and multiply-accumulate instructions
supported by the core. The MAC implements the 40-bit accumulator register acc0 and handles the
instructions, which transfer its value to and from general-purpose ARM registers.

The following are important characteristics about the MAC:

• The MAC is not truly pipelined, as the processing of a single instruction may require use of the
same datapath resources for several cycles before a new instruction can be accepted. The type
of instruction and source arguments determines the number of cycles required.

• No more than two instructions can occupy the MAC pipeline concurrently.

• When the MAC is processing an instruction, another instruction may not enter M1 unless the
original instruction completes in the next cycle.

• The MAC unit can operate on 16-bit packed signed data. This reduces register pressure and
memory traffic size. Two 16-bit data items can be loaded into a register with one LDR.

• The MAC can achieve throughput of one multiply per cycle when performing a 16 by 32 bit
multiply.

A.2.5.1. Behavioral Description

The execution of the MAC unit starts at the beginning of the M1 pipestage, where it receives two
32-bit source operands. Results are completed N cycles later (where N is dependent on the operand
size) and returned to the register file. For more information on MAC instruction latencies, refer to
Section 10.4, “Instruction Latencies”.

An instruction that occupies the M1 or M2 pipestages will also occupy the X1 and X2 pipestage,
respectively. Each cycle, a MAC operation progresses for M1 to M5. A MAC operation may
complete anywhere from M2-M5. If a MAC operation enters M3-M5, it is considered committed
because it will modify architectural state regardless of subsequent events.

Developer’s Manual January, 2004 183

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3 Basic Optimizations
This chapter outlines optimizations specific to ARM architecture. These optimizations have been
modified to suit the core where needed.

A.3.1 Conditional Instructions
The Intel XScale® core architecture provides the ability to execute instructions conditionally. This
feature combined with the ability of the core instructions to modify the condition codes makes
possible a wide array of optimizations.

A.3.1.1. Optimizing Condition Checks

The Intel XScale® core instructions can selectively modify the state of the condition codes. When
generating code for if-else and loop conditions it is often beneficial to make use of this feature to
set condition codes, thereby eliminating the need for a subsequent compare instruction. Consider
the C code segment:
if (a + b)

Code generated for the if condition without using an add instruction to set condition codes is:

;Assume r0 contains the value a, and r1 contains the value b
add r0,r0,r1
cmp r0, #0

However, code can be optimized as follows making use of add instruction to set condition codes:

;Assume r0 contains the value a, and r1 contains the value b
adds r0,r0,r1

The instructions that increment or decrement the loop counter can also be used to modify the
condition codes. This eliminates the need for a subsequent compare instruction. A conditional
branch instruction can then be used to exit or continue with the next loop iteration.

Consider the following C code segment:

for (i = 10; i != 0; i--)
{

do something;
}

The optimized code generated for the above code segment would look like:

L6:
.
.

subs r3, r3, #1
bne .L6

It is also beneficial to rewrite loops whenever possible so as to make the loop exit conditions check
against the value 0. For example, the code generated for the code segment below will need a
compare instruction to check for the loop exit condition.

for (i = 0; i < 10; i++)
{

do something;
}

If the loop were rewritten as follows, the code generated avoids using the compare instruction to
check for the loop exit condition.

for (i = 9; i >= 0; i--)
{

do something;
}

184 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.1.2. Optimizing Branches

Branches decrease application performance by indirectly causing pipeline stalls. Branch prediction
improves the performance by lessening the delay inherent in fetching a new instruction stream. The
number of branches that can accurately be predicted is limited by the size of the branch target
buffer. Since the total number of branches executed in a program is relatively large compared to the
size of the branch target buffer; it is often beneficial to minimize the number of branches in a
program. Consider the following C code segment.

int foo(int a)

{

if (a > 10)

return 0;

else

return 1;

}

The code generated for the if-else portion of this code segment using branches is:

cmp r0, #10

ble L1

mov r0, #0

b L2

L1:

mov r0, #1

L2:

The code generated above takes three cycles to execute the else part and four cycles for the if-part
assuming best case conditions and no branch misprediction penalties. In the case of the Intel
XScale® core, a branch misprediction incurs a penalty of four cycles. If the branch is mispredicted
50% of the time, and if we consider that both the if-part and the else-part are equally likely to be
taken, on an average the code above takes 5.5 cycles to execute.

.

If we were to use the core to execute instructions conditionally, the code generated for the above
if-else statement is:

cmp r0, #10

movgt r0, #0

movle r0, #1

The above code segment would not incur any branch misprediction penalties and would take three
cycles to execute assuming best case conditions. As can be seen, using conditional instructions
speeds up execution significantly. However, the use of conditional instructions should be carefully
considered to ensure that it does improve performance. To decide when to use conditional
instructions over branches consider the following hypothetical code segment:

if (cond)

if_stmt

else

else_stmt

50
100
--------- 4

3 4+
2

------------+×

 5.5= cycles

Developer’s Manual January, 2004 185

Intel XScale® Core Developer’s Manual
Optimization Guide

Consider that we have the following data:

N1B Number of cycles to execute the if_stmt assuming the use of branch instructions

N2B Number of cycles to execute the else_stmt assuming the use of branch instructions

P1 Percentage of times the if_stmt is likely to be executed

P2 Percentage of times we are likely to incur a branch misprediction penalty

N1C Number of cycles to execute the if-else portion using conditional instructions assuming
the if-condition to be true

N2C Number of cycles to execute the if-else portion using conditional instructions assuming
the if-condition to be false

Once we have the above data, use conditional instructions when:

The following example illustrates a situation in which we are better off using branches over
conditional instructions. Consider the code sample shown below:

cmp r0, #0
bne L1
add r0, r0, #1
add r1, r1, #1
add r2, r2, #1
add r3, r3, #1
add r4, r4, #1
b L2

L1:
sub r0, r0, #1
sub r1, r1, #1
sub r2, r2, #1
sub r3, r3, #1
sub r4, r4, #1

L2:

In the above code sample, the cmp instruction takes 1 cycle to execute, the if-part takes 7 cycles to
execute and the else-part takes 6 cycles to execute. If we were to change the code above so as to
eliminate the branch instructions by making use of conditional instructions, the if-else part would
always take 10 cycles to complete.

If we make the assumptions that both paths are equally likely to be taken and that branches are
mis-predicted 50% of the time, the costs of using conditional execution Vs using branches can be
computed as follows:

Cost of using conditional instructions:

Cost of using branches:

As can be seen, we get better performance by using branch instructions in the above scenario.

N1C
P1
100
---------×

 N2C

100 P1–
100

----------------------×

 N1B

P1
100
---------×

 N2B

100 P1–
100

----------------------×

 P2

100
--------- 4×

 + +≤+

1
50
100
--------- 10×

 50

100
--------- 10×

 + + 11= cycles

1
50
100
--------- 7×

 50

100
--------- 6×

 50

100
--------- 4×

 + + + 9.5= cycles

186 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.1.3. Optimizing Complex Expressions

Conditional instructions should also be used to improve the code generated for complex
expressions such as the C shortcut evaluation feature. Consider the following C code segment:

int foo(int a, int b)
{

if (a != 0 && b != 0)
return 0;

else
return 1;

}

The optimized code for the if condition is:

cmp r0, #0
cmpne r1, #0

Similarly, the code generated for the following C segment

int foo(int a, int b)
{

if (a != 0 || b != 0)
return 0;

else
return 1;

}

is:

cmp r0, #0
cmpeq r1, #0

The use of conditional instructions in the above fashion improves performance by minimizing the
number of branches, thereby minimizing the penalties caused by branch mispredictions. This
approach also reduces the utilization of branch prediction resources.

Developer’s Manual January, 2004 187

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.2 Bit Field Manipulation

The Intel XScale® core shift and logical operations provide a useful way of manipulating bit fields.
Bit field operations can be optimized as follows:

;Set the bit number specified by r1 in register r0
mov r2, #1
orr r0, r0, r2, asl r1

;Clear the bit number specified by r1 in register r0
mov r2, #1
bic r0, r0, r2, asl r1

;Extract the bit-value of the bit number specified by r1 of the
;value in r0 storing the value in r0

mov r1, r0, asr r1
and r0, r1, #1

;Extract the higher order 8 bits of the value in r0 storing
;the result in r1

mov r1, r0, lsr #24

188 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.3 Optimizing the Use of Immediate Values

The Intel XScale® core MOV or MVN instruction should be used when loading an immediate
(constant) value into a register. Please refer to the ARM Architecture Reference Manual for the set
of immediate values that can be used in a MOV or MVN instruction. It is also possible to generate
a whole set of constant values using a combination of MOV, MVN, ORR, BIC, and ADD
instructions. The LDR instruction has the potential of incurring a cache miss in addition to
polluting the data and instruction caches. The code samples below illustrate cases when a
combination of the above instructions can be used to set a register to a constant value:

;Set the value of r0 to 127
mov r0, #127

;Set the value of r0 to 0xfffffefb.
mvn r0, #260

;Set the value of r0 to 257
mov r0, #1
orr r0, r0, #256

;Set the value of r0 to 0x51f
mov r0, #0x1f
orr r0, r0, #0x500

;Set the value of r0 to 0xf100ffff
mvn r0, #0xff, 16
bic r0, r0, #0xe, 8

; Set the value of r0 to 0x12341234
mov r0, #0x8d, 30
orr r0, r0, #0x1, 20
add r0, r0, r0, LSL #16 ; shifter delay of 1 cycle

Note: It is possible to load any 32-bit value into a register using a sequence of four instructions.

Developer’s Manual January, 2004 189

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.4 Optimizing Integer Multiply and Divide

Multiplication by an integer constant should be optimized to make use of the shift operation
whenever possible.

;Multiplication of R0 by 2n

mov r0, r0, LSL #n
;Multiplication of R0 by 2n+1

add r0, r0, r0, LSL #n

Multiplication by an integer constant that can be expressed as can similarly be
optimized as:

;Multiplication of r0 by an integer constant that can be
;expressed as (2n+1)*(2m)

add r0, r0, r0, LSL #n
mov r0, r0, LSL #m

Please note that the above optimization should only be used in cases where the multiply operation
cannot be advanced far enough to prevent pipeline stalls.

Dividing an unsigned integer by an integer constant should be optimized to make use of the shift
operation whenever possible.

;Dividing r0 containing an unsigned value by an integer constant
;that can be represented as 2n

mov r0, r0, LSR #n

Dividing a signed integer by an integer constant should be optimized to make use of the shift
operation whenever possible.

;Dividing r0 containing a signed value by an integer constant
;that can be represented as 2n

mov r1, r0, ASR #31
add r0, r0, r1, LSR #(32 - n)
mov r0, r0, ASR #n

The add instruction would stall for one cycle. The stall can be prevented by filling in another
instruction before add.

2
n

1+()
·

2
m()⋅

190 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.3.5 Effective Use of Addressing Modes

The Intel XScale® core provides a variety of addressing modes that make indexing an array of
objects highly efficient. For a detailed description of these addressing modes please refer to the
ARM Architecture Reference Manual. The following code samples illustrate how various kinds of
array operations can be optimized to make use of these addressing modes:

;Set the contents of the word pointed to by r0 to the value
;contained in r1 and make r0 point to the next word

str r1,[r0], #4
;Increment the contents of r0 to make it point to the next word
;and set the contents of the word pointed to the value contained
;in r1

str r1, [r0, #4]!
;Set the contents of the word pointed to by r0 to the value
;contained in r1 and make r0 point to the previous word

str r1,[r0], #-4
;Decrement the contents of r0 to make it point to the previous
;word and set the contents of the word pointed to the value
;contained in r1

str r1,[r0, #-4]!

Developer’s Manual January, 2004 191

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4 Cache and Prefetch Optimizations

This section considers how to use the various cache memories in all their modes and then examines
when and how to use prefetch to improve execution efficiencies.

A.4.1 Instruction Cache

The Intel XScale® core has separate instruction and data caches. Only fetched instructions are held
in the instruction cache even though both data and instructions may reside within the same memory
space with each other. Functionally, the instruction cache is either enabled or disabled. There is no
performance benefit in not using the instruction cache. The exception is that code, which locks
code into the instruction cache, must itself execute from non-cached memory.

A.4.1.1. Cache Miss Cost

The Intel XScale® core performance is highly dependent on reducing the cache miss rate. Refer to
the Intel XScale® core implementation option section of the ASSP architecture specification for
more information on the cycle penalty associated with cache misses. Note that this cycle penalty
becomes significant when the core is running much faster than external memory. Executing
non-cached instructions severely curtails the processor's performance in this case and it is very
important to do everything possible to minimize cache misses.

A.4.1.2. Round-Robin Replacement Cache Policy

Both the data and the instruction caches use a round robin replacement policy to evict a cache line.
The simple consequence of this is that at sometime every line will be evicted, assuming a
non-trivial program. The less obvious consequence is that predicting when and over which cache
lines evictions take place is very difficult to predict. This information must be gained by
experimentation using performance profiling.

A.4.1.3. Code Placement to Reduce Cache Misses

Code placement can greatly affect cache misses. One way to view the cache is to think of it as 32 sets
of 32 bytes, which span an address range of 1024 bytes. When running, the code maps into 32 blocks
modular 1024 of cache space. Any sets, which are overused, will thrash the cache. The ideal situation
is for the software tools to distribute the code on a temporal evenness over this space.

This is very difficult if not impossible for a compiler to do. Most of the input needed to best
estimate how to distribute the code will come from profiling followed by compiler based two pass
optimizations.

192 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.1.4. Locking Code into the Instruction Cache

One very important instruction cache feature is the ability to lock code into the instruction cache.
Once locked into the instruction cache, the code is always available for fast execution. Another
reason for locking critical code into cache is that with the round robin replacement policy,
eventually the code will be evicted, even if it is a very frequently executed function. Key code
components to consider for locking are:

• Interrupt handlers

• Real time clock handlers

• OS critical code

• Time critical application code

The disadvantage to locking code into the cache is that it reduces the cache size for the rest of the
program. How much code to lock is very application dependent and requires experimentation to
optimize.

Code placed into the instruction cache should be aligned on a 1024 byte boundary and placed
sequentially together as tightly as possible so as not to waste precious memory space. Making the
code sequential also insures even distribution across all cache ways. Though it is possible to choose
randomly located functions for cache locking, this approach runs the risk of landing multiple cache
ways in one set and few or none in another set. This distribution unevenness can lead to excessive
thrashing of the Data and Mini Caches

Developer’s Manual January, 2004 193

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.2 Data and Mini Cache

The Intel XScale® core allows the user to define memory regions whose cache policies can be set
by the user (see Section 6.2.3, “Cache Policies”). Supported policies and configurations are:

• Non Cacheable with no coalescing of memory writes.

• Non Cacheable with coalescing of memory writes.

• Mini-Data cache with write coalescing, read allocate, and write-back caching.

• Mini-Data cache with write coalescing, read allocate, and write-through caching.

• Mini-Data cache with write coalescing, read-write allocate, and write-back caching.

• Data cache with write coalescing, read allocate, and write-back caching.

• Data cache with write coalescing, read allocate, and write-through caching.

• Data cache with write coalescing, read-write allocate, and write-back caching.

To support allocating variables to these various memory regions, the tool chain (compiler,
assembler, linker and debugger), must implement named sections.

The performance of your application code depends on what cache policy you are using for data
objects. A description of when to use a particular policy is described below.

The Intel XScale® core allows dynamic modification of the cache policies at run time, however,
the operation is requires considerable processing time and therefore should not be used by
applications.

If the application is running under an OS, then the OS may restrict you from using certain cache
policies.

A.4.2.1. Non Cacheable Regions

It is recommended that non-cache memory (X=0, C=0, and B=0) be used only if necessary as is
often necessary for I/O devices. Accessing non-cacheable memory is likely to cause the processor
to stall frequently due to the long latency of memory reads.

A.4.2.2. Write-through and Write-back Cached Memory Regions

Write through memory regions generate more data traffic on the bus. Therefore is not recommended
that the write-through policy be used. The write back policy must be used whenever possible.

However, in a multiprocessor environment it will be necessary to use a write through policy if data
is shared across multiple processors. In such a situation all shared memory regions should use write
through policy. Memory regions that are private to a particular processor should use the write back
policy.

194 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.2.3. Read Allocate and Read-write Allocate Memory Regions

Most of the regular data and the stack for your application should be allocated to a read-write
allocate region. It is expected that you will be writing and reading from them often.

Data that is write only (or data that is written to and subsequently not used for a long time) should
be placed in a read allocate region. Under the read-allocate policy if a cache write miss occurs a
new cache line will not be allocated, and hence will not evict critical data from the Data cache.

A.4.2.4. Creating On-chip RAM

Part of the Data cache can be converted into fast on chip RAM. Access to objects in the on-chip
RAM will not incur cache miss penalties, thereby reducing the number of processor stalls.
Application performance can be improved by converting a part of the cache into on chip RAM and
allocating frequently allocated variables to it. Due to the core round robin replacement policy, all
data will eventually be evicted. Therefore to prevent critical or frequently used data from being
evicted it should be allocated to on-chip RAM.

The following variables are good candidates for allocating to the on-chip RAM:

• Frequently used global data used for storing context for context switching.

• Global variables that are accessed in time critical functions such as interrupt service routines.

The on-chip RAM is created by locking a memory region into the Data cache (see Section 6.4,
“Re-configuring the Data Cache as Data RAM” for more details).

When creating the on-chip RAM, care must be taken to ensure that all sets in the on-chip RAM
area of the Data cache have approximately the same number of ways locked, otherwise some sets
will have more ways locked than the others. This uneven allocation will increase the level of
thrashing in some sets and leave other sets under utilized.

For example, consider three arrays arr1, arr2 and arr3 of size 64 bytes each that are being allocated
to the on-chip RAM and consider that the address of arr1 is 0, address of arr2 is 1024, and the
address of arr3 is 2048. All three arrays will be within the same sets, i.e. set0 and set1, as a result
three ways in both sets set0 and set1, will be locked, leaving 29 ways for use by other variables.

This can be overcome by allocating on-chip RAM data in sequential order. In the above example
allocating arr2 to address 64 and arr3 to address 128, allows the three arrays to use only 1 way in
sets 0 through 5.

Developer’s Manual January, 2004 195

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.2.5. Mini-data Cache

The mini-data cache is best used for data structures, which have short temporal lives, and/or cover
vast amounts of data space. Addressing these types of data spaces from the Data cache would
corrupt much if not all of the Data cache by evicting valuable data. Eviction of valuable data will
reduce performance. Placing this data instead in Mini-data cache memory region would prevent
Data cache corruption while providing the benefits of cached accesses.

A prime example of using the mini-data cache would be for caching the procedure call stack. The
stack can be allocated to the mini-data cache so that it’s use does not trash the main dcache. This
would keep local variables from global data.

Following are examples of data that could be assigned to mini-dcache:

• The stack space of a frequently occurring interrupt, the stack is used only during the duration
of the interrupt, which is usually very small.

• Video buffers, these are usual large and can occupy the whole cache.

Over use of the Mini-Data cache will thrash the cache. This is easy to do because the Mini-Data
cache only has two ways per set. For example, a loop which uses a simple statement such as:

for (i=0; I< IMAX; i++)
{

A[i] = B[i] + C[i];
}

Where A, B, and C reside in a mini-data cache memory region and each is array is aligned on a 1K
boundary will quickly thrash the cache.

196 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.2.6. Data Alignment

Cache lines begin on 32-byte address boundaries. To maximize cache line use and minimize cache
pollution, data structures should be aligned on 32 byte boundaries and sized to multiple cache line
sizes. Aligning data structures on cache address boundaries simplifies later addition of prefetch
instructions to optimize performance.

Not aligning data on cache lines has the disadvantage of moving the prefetch address
correspondingly to the misalignment. Consider the following example:

struct {
long ia;
long ib;
long ic;
long id;

} tdata[IMAX];

for (i=0, i<IMAX; i++)
{

PREFETCH(tdata[i+1]);
tdata[i].ia = tdata[i].ib + tdata[i].ic _tdata[i].id];
....
tdata[i].id = 0;

}

In this case if tdata[] is not aligned to a cache line, then the prefetch using the address of
tdata[i+1].ia may not include element id. If the array was aligned on a cache line + 12 bytes, then
the prefetch would halve to be placed on &tdata[i+1].id.

If the structure is not sized to a multiple of the cache line size, then the prefetch address must be
advanced appropriately and will require extra prefetch instructions. Consider the following
example:

struct {
long ia;
long ib;
long ic;
long id;
long ie;

} tdata[IMAX];

ADDRESS preadd = tdata

for (i=0, i<IMAX; i++)
{

PREFETCH(predata+=16);
tdata[I].ia = tdata[I].ib + tdata[I].ic _tdata[I].id] +
tdata[I].ie;
....
tdata[I].ie = 0;

}

In this case, the prefetch address was advanced by size of half a cache line and every other prefetch
instruction is ignored. Further, an additional register is required to track the next prefetch address.

Generally, not aligning and sizing data will add extra computational overhead.

Additional prefetch considerations are discussed in greater detail in following sections.

Developer’s Manual January, 2004 197

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.2.7. Literal Pools

The Intel XScale® core does not have a single instruction that can move all literals (a constant or
address) to a register. One technique to load registers with literals in the core is by loading the
literal from a memory location that has been initialized with the constant or address. These blocks
of constants are referred to as literal pools. See Section A.3, “Basic Optimizations” for more
information on how to do this. It is advantageous to place all the literals together in a pool of
memory known a literal pool. These data blocks are located in the text or code address space so that
they can be loaded using PC relative addressing. However, references to the literal pool area load
the data into the data cache instead of the instruction cache. Therefore it is possible that the literal
may be present in both the data and instruction caches, resulting in waste of space.

For maximum efficiency, the compiler should align all literal pools on cache boundaries and size
each pool to a multiple of 32 bytes (the size of a cache line). One additional optimization would be
group highly used literal pool references into the same cache line. The advantage is that once one
of the literals has been loaded, the other seven will be available immediately from the data cache.

198 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.3 Cache Considerations

A.4.3.1. Cache Conflicts, Pollution and Pressure

Cache pollution occurs when unused data is loaded in the cache and cache pressure occurs when
data that is not temporal to the current process is loaded into the cache. For an example, see
Section A.4.4.2., “Prefetch Loop Scheduling” below.

A.4.3.2. Memory Page Thrashing

Memory page thrashing occurs because of the nature of SDRAM. SDRAMs are typically divided
into 4 banks. Each bank can have one selected page where a page address size for current memory
components is often defined as 4k. Memory lookup time or latency time for a selected page address
is currently 2 to 3 bus clocks. Thrashing occurs when subsequent memory accesses within the same
memory bank access different pages. The memory page change adds 3 to 4 bus clock cycles to
memory latency. This added delay extends the prefetch distance correspondingly making it more
difficult to hide memory access latencies. This type of thrashing can be resolved by placing the
conflicting data structures into different memory banks or by paralleling the data structures such
that the data resides within the same memory page. It is also extremely important to insure that
instruction and data sections are in different memory banks, or they will continually trash the
memory page selection.

Developer’s Manual January, 2004 199

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4 Prefetch Considerations

The Intel XScale® core has a true prefetch load instruction (PLD). The purpose of this instruction
is to preload data into the data and mini-data caches. Data prefetching allows hiding of memory
transfer latency while the processor continues to execute instructions. The prefetch is important to
compiler and assembly code because judicious use of the prefetch instruction can enormously
improve throughput performance of the core. Data prefetch can be applied not only to loops but
also to any data references within a block of code. Prefetch also applies to data writing when the
memory type is enabled as write allocate

The Intel XScale® core prefetch load instruction is a true prefetch instruction because the load
destination is the data or mini-data cache and not a register. Compilers for processors which have
data caches, but do not support prefetch, sometimes use a load instruction to preload the data cache.
This technique has the disadvantages of using a register to load data and requiring additional
registers for subsequent preloads and thus increasing register pressure. By contrast, the prefetch
can be used to reduce register pressure instead of increasing it.

The prefetch load is a hint instruction and does not guarantee that the data will be loaded.
Whenever the load would cause a fault or a table walk, then the processor will ignore the prefetch
instruction, the fault or table walk, and continue processing the next instruction. This is particularly
advantageous in the case where a linked list or recursive data structure is terminated by a NULL
pointer. Prefetching the NULL pointer will not fault program flow.

A.4.4.1. Prefetch Distances

Scheduling the prefetch instruction requires understanding the system latency times and system
resources which affect when to use the prefetch instruction. Refer to the Intel XScale® core
implementation option section of the ASSP architecture specification for more information.

A.4.4.2. Prefetch Loop Scheduling

When adding prefetch to a loop which operates on arrays, it may be advantages to prefetch ahead
one, two, or more iterations. The data for future iterations is located in memory by a fixed offset
from the data for the current iteration. This makes it easy to predict where to fetch the data. The
number of iterations to prefetch ahead is referred to as the prefetch scheduling distance. Refer to
the Intel XScale® core implementation option section of the ASSP architecture specification for
more information.

A.4.4.3. Prefetch Loop Limitations

It is not always advantages to add prefetch to a loop. Loop characteristics that limit the use value of
prefetch are discussed below.

A.4.4.4. Compute vs. Data Bus Bound

At the extreme, a loop, which is data bus bound, will not benefit from prefetch because all the
system resources to transfer data are quickly allocated and there are no instructions that can
profitably be executed. On the other end of the scale, compute bound loops allow complete hiding
of all data transfer latencies.

200 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.5. Low Number of Iterations

Loops with very low iteration counts may have the advantages of prefetch completely mitigated. A
loop with a small fixed number of iterations may be faster if the loop is completely unrolled rather
than trying to schedule prefetch instructions.

A.4.4.6. Bandwidth Limitations

Overuse of prefetches can usurp resources and degrade performance. This happens because once
the bus traffic requests exceed the system resource capacity, the processor stalls. The core data
transfer resources are:

4 fill buffers
4 pending buffers
8 half cache line write buffer

SDRAM resources are typically:

4 memory banks
1 page buffer per bank referencing a 4K address range
4 transfer request buffers

Consider how these resources work together. A fill buffer is allocated for each cache read miss. A
fill buffer is also allocated each cache write miss if the memory space is write allocate along with a
pending buffer. A subsequent read to the same cache line does not require a new fill buffer, but
does require a pending buffer and a subsequent write will also require a new pending buffer. A fill
buffer is also allocated for each read to a non-cached memory and a write buffer is needed for each
memory write to non-cached memory that is non-coalescing. Consequently, a STM instruction
listing eight registers and referencing non-cached memory will use eight write buffers assuming
they don’t coalesce and two write buffers if they do coalesce. A cache eviction requires a write
buffer for each dirty bit set in the cache line. The prefetch instruction requires a fill buffer for each
cache line and 0, 1, or 2 write buffers for an eviction.

When adding prefetch instructions, caution must be asserted to insure that the combination of
prefetch and instruction bus requests do not exceed the system resource capacity described above
or performance will be degraded instead of improved. The important points are to spread prefetch
operations over calculations so as to allow bus traffic to free flow and to minimize the number of
necessary prefetches.

Developer’s Manual January, 2004 201

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.7. Cache Memory Considerations

Stride, the way data structures are walked through, can affect the temporal quality of the data and
reduce or increase cache conflicts. The data cache and mini-data caches each have 32 sets of 32
bytes. This means that each cache line in a set is on a modular 1K-address boundary. The caution is
to choose data structure sizes and stride requirements that do not overwhelm a given set causing
conflicts and increased register pressure. Register pressure can be increased because additional
registers are required to track prefetch addresses. The effects can be affected by rearranging data
structure components to use more parallel access to search and compare elements. Similarly
rearranging sections of data structures so that sections often written fit in the same half cache line,
16 bytes for the core, can reduce cache eviction write-backs. On a global scale, techniques such as
array merging can enhance the spatial locality of the data.

As an example of array merging, consider the following code:

int a_array[NMAX];
int b_array[NMAX];
int ix;

for (i=0; i<NMAX]; i++)
{

ix = b[i];
if (a[i] != 0)

ix = a[i];
do_other calculations;

}

In the above code, data is read from both arrays a and b, but a and b are not spatially close. Array
merging can place a and b specially close.

struct {
int a;
int b;

} c_arrays;

int ix;

for (i=0; i<NMAX]; i++)
{

ix = c[i].b;
if (c[i].a != 0)

ix = c[i].a;
do_other_calculations;

}

As an example of rearranging often written to sections in a structure, consider the code sample:

struct employee {
struct employee *prev;
struct employee *next;
float Year2DatePay;
float Year2DateTax;
int ssno;
int empid;
float Year2Date401KDed;
float Year2DateOtherDed;

};

202 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

In the data structure shown above, the fields Year2DatePay, Year2DateTax, Year2Date401KDed,
and Year2DateOtherDed are likely to change with each pay check. The remaining fields however
change very rarely. If the fields are laid out as shown above, assuming that the structure is aligned
on a 32-byte boundary, modifications to the Year2Date fields is likely to use two write buffers
when the data is written out to memory. However, we can restrict the number of write buffers that
are commonly used to 1 by rearranging the fields in the above data structure as shown below:

struct employee {
struct employee *prev;
struct employee *next;
int ssno;
int empid;
float Year2DatePay;
float Year2DateTax;
float Year2Date401KDed;
float Year2DateOtherDed;

};

Developer’s Manual January, 2004 203

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.8. Cache Blocking

Cache blocking techniques, such as strip-mining, are used to improve temporal locality of the data.
Given a large data set that can be reused across multiple passes of a loop, data blocking divides the
data into smaller chunks which can be loaded into the cache during the first loop and then be
available for processing on subsequence loops thus minimizing cache misses and reducing bus
traffic.

As an example of cache blocking consider the following code:

for(i=0; i<10000; i++)
for(j=0; j<10000; j++)

for(k=0; k<10000; k++)
C[j][k] += A[i][k] * B[j][i];

The variable A[i][k] is completely reused. However, accessing C[j][k] in the j and k loops can
displace A[i][j] from the cache. Using blocking the code becomes:

for(i=0; i<10000; i++)
for(j1=0; j<100; j++)

for(k1=0; k<100; k++)
for(j2=0; j<100; j++)

for(k2=0; k<100; k++)
{

j = j1 * 100 + j2;
k = k1 * 100 + k2;
C[j][k] += A[i][k] * B[j][i];

}

A.4.4.9. Prefetch Unrolling

When iterating through a loop, data transfer latency can be hidden by prefetching ahead one or
more iterations. The solution incurs an unwanted side affect that the final interactions of a loop
loads useless data into the cache, polluting the cache, increasing bus traffic and possibly evicting
valuable temporal data. This problem can be resolved by prefetch unrolling. For example consider:

for(i=0; i<NMAX; i++)
{

prefetch(data[i+2]);
sum += data[i];

}

Interactions i-1 and i, will prefetch superfluous data. The problem can be avoid by unrolling the
end of the loop.

for(i=0; i<NMAX-2; i++)
{

prefetch(data[i+2]);
sum += data[i];

}
sum += data[NMAX-2];
sum += data[NMAX-1];

Unfortunately, prefetch loop unrolling does not work on loops with indeterminate iterations.

204 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.10. Pointer Prefetch

Not all looping constructs contain induction variables. However, prefetching techniques can still be
applied. Consider the following linked list traversal example:

while(p) {
do_something(p->data);
p = p->next;

}

The pointer variable p becomes a pseudo induction variable and the data pointed to by p->next can
be prefetched to reduce data transfer latency for the next iteration of the loop. Linked lists should
be converted to arrays as much as possible.

while(p) {
prefetch(p->next);
do_something(p->data);
p = p->next;

}

Recursive data structure traversal is another construct where prefetching can be applied. This is
similar to linked list traversal. Consider the following pre-order traversal of a binary tree:

preorder(treeNode *t) {
if(t) {

process(t->data);
preorder(t->left);
preorder(t->right);

}
}

The pointer variable t becomes the pseudo induction variable in a recursive loop. The data
structures pointed to by the values t->left and t->right can be prefetched for the next iteration of
the loop.

preorder(treeNode *t) {
if(t) {

prefetch(t->right);
prefetch(t->left);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

Note the order reversal of the prefetches in relationship to the usage. If there is a cache conflict and
data is evicted from the cache then only the data from the first prefetch is lost.

Developer’s Manual January, 2004 205

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.11. Loop Interchange

As mentioned earlier, the sequence in which data is accessed affects cache thrashing. Usually, it is
best to access data in a contiguous spatially address range. However, arrays of data may have been
laid out such that indexed elements are not physically next to each other. Consider the following C
code which places array elements in row major order.

for(j=0; j<NMAX; j++)
for(i=0; i<NMAX; i++)
{

prefetch(A[i+1][j]);
sum += A[i][j];

}

In the above example, A[i][j] and A[i+1][j] are not sequentially next to each other. This situation
causes an increase in bus traffic when prefetching loop data. In some cases where the loop
mathematics are unaffected, the problem can be resolved by induction variable interchange. The
above examples becomes:

for(i=0; i<NMAX; i++)
for(j=0; j<NMAX; j++)
{

prefetch(A[i][j+1]);
sum += A[i][j];

}

A.4.4.12. Loop Fusion

Loop fusion is a process of combining multiple loops, which reuse the same data, in to one loop.
The advantage of this is that the reused data is immediately accessible from the data cache.
Consider the following example:
for(i=0; i<NMAX; i++)
{

prefetch(A[i+1], c[i+1], c[i+1]);
A[i] = b[i] + c[i];

}
for(i=0; i<NMAX; i++)
{

prefetch(D[i+1], c[i+1], A[i+1]);
D[i] = A[i] + c[i];

}

The second loop reuses the data elements A[i] and c[i]. Fusing the loops together produces:

for(i=0; i<NMAX; i++)
{

prefetch(D[i+1], A[i+1], c[i+1], b[i+1]);
ai = b[i] + c[i];
A[i] = ai;
D[i] = ai + c[i];

}

206 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.4.4.13. Prefetch to Reduce Register Pressure

Prefetch can be used to reduce register pressure. When data is needed for an operation, then the
load is scheduled far enough in advance to hide the load latency. However, the load ties up the
receiving register until the data can be used. For example:

ldr r2, [r0]
; Process code { not yet cached latency > 60 core clocks }

add r1, r1, r2

In the above case, r2 is unavailable for processing until the add statement. Prefetching the data load
frees the register for use. The example code becomes:

pld [r0] ;prefetch the data keeping r2 available for use
; Process code

ldr r2, [r0]
; Process code {ldr result latency is 3 core clocks}

add r1, r1, r2

With the added prefetch, register r2 can be used for other operations until almost just before it is
needed.

Developer’s Manual January, 2004 207

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5 Instruction Scheduling

This chapter discusses instruction scheduling optimizations. Instruction scheduling refers to the
rearrangement of a sequence of instructions for the purpose of minimizing pipeline stalls. Reducing
the number of pipeline stalls improves application performance. While making this rearrangement,
care should be taken to ensure that the rearranged sequence of instructions has the same effect as
the original sequence of instructions.

A.5.1 Scheduling Loads

On the Intel XScale® core, an LDR instruction has a result latency of 3 cycles assuming the data
being loaded is in the data cache. If the instruction after the LDR needs to use the result of the load,
then it would stall for 2 cycles. If possible, the instructions surrounding the LDR instruction should
be rearranged

to avoid this stall. Consider the following example:

add r1, r2, r3

ldr r0, [r5]

add r6, r0, r1

sub r8, r2, r3

mul r9, r2, r3

In the code shown above, the ADD instruction following the LDR would stall for 2 cycles because
it uses the result of the load. The code can be rearranged as follows to prevent the stalls:

ldr r0, [r5]

add r1, r2, r3

sub r8, r2, r3

add r6, r0, r1

mul r9, r2, r3

Note that this rearrangement may not be always possible. Consider the following example:

cmp r1, #0

addne r4, r5, #4

subeq r4, r5, #4

ldr r0, [r4]

cmp r0, #10

In the example above, the LDR instruction cannot be moved before the ADDNE or the SUBEQ
instructions because the LDR instruction depends on the result of these instructions. Rewrite the
above code to make it run faster at the expense of increasing code size:

cmp r1, #0

ldrne r0, [r5, #4]

ldreq r0, [r5, #-4]

addne r4, r5, #4

subeq r4, r5, #4

cmp r0, #10

The optimized code takes six cycles to execute compared to the seven cycles taken by the
unoptimized version.

208 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

The result latency for an LDR instruction is significantly higher if the data being loaded is not in
the data cache. To minimize the number of pipeline stalls in such a situation the LDR instruction
should be moved as far away as possible from the instruction that uses result of the load. Note that
this may at times cause certain register values to be spilled to memory due to the increase in
register pressure. In such cases, use a preload instruction or a preload hint to ensure that the data
access in the LDR instruction hits the cache when it executes. A preload hint should be used in
cases where we cannot be sure whether the load instruction would be executed. A preload
instruction should be used in cases where we can be sure that the load instruction would be
executed. Consider the following code sample:

; all other registers are in use
sub r1, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #0xf
add r0,r4, r5
ldr r6, [r0]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #0xf

; The value in register r6 is not used after this

In the code sample above, the ADD and the LDR instruction can be moved before the MOV
instruction. Note that this would prevent pipeline stalls if the load hits the data cache. However, if
the load is likely to miss the data cache, move the LDR instruction so that it executes as early as
possible - before the SUB instruction. However, moving the LDR instruction before the SUB
instruction would change the program semantics. It is possible to move the ADD and the LDR
instructions before the SUB instruction if we allow the contents of the register r6 to be spilled and
restored from the stack as shown below:

; all other registers are in use
str r6,[sp, #-4]!
add r0,r4,r5
ldr r6, [r0]
mov r2, r2, LSL #2
orr r9, r9, #0xf
add r8, r6, r8
ldr r6, [sp], #4
add r8, r8, #4
orr r8,r8, #0xf
sub r1, r6, r7
mul r3,r6, r2

; The value in register r6 is not used after this

As can be seen above, the contents of the register r6 have been spilled to the stack and subsequently
loaded back to the register r6 to retain the program semantics. Another way to optimize the code
above is with the use of the preload instruction as shown below:

; all other registers are in use
add r0,r4, r5
pld [r0]
sub r1, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #0xf
ldr r6, [r0]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #0xf

; The value in register r6 is not used after this

Developer’s Manual January, 2004 209

Intel XScale® Core Developer’s Manual
Optimization Guide

The Intel XScale® core has 4 fill-buffers that are used to fetch data from external memory when a
data-cache miss occurs. The core stalls when all fill buffers are in use. This happens when more
than 4 loads are outstanding and are being fetched from memory. As a result, the code written
should ensure that no more than 4 loads are outstanding at the same time. For example, the number
of loads issued sequentially should not exceed 4. Also note that a preload instruction may cause a
fill buffer to be used. As a result, the number of preload instructions outstanding should also be
considered to arrive at the number of loads that are outstanding.

Similarly, the number of write buffers also limits the number of successive writes that can be issued
before the processor stalls. No more than eight stores can be issued. Also note that if the data
caches are using the write-allocate with writeback policy, then a load operation may cause stores to
the external memory if the read operation evicts a cache line that is dirty (modified). The number of
sequential stores may be limited by this fact.

210 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.1.1. Scheduling Load and Store Double (LDRD/STRD)

The Intel XScale® core introduces two new double word instructions: LDRD and STRD. LDRD
loads 64-bits of data from an effective address into two consecutive registers, conversely, STRD
stores 64-bits from two consecutive registers to an effective address. There are two important
restrictions on how these instructions may be used:

• the effective address must be aligned on an 8-byte boundary

• the specified register must be even (r0, r2, etc.).

If this situation occurs, using LDRD/STRD instead of LDM/STM to do the same thing is more
efficient because LDRD/STRD issues in only one/two clock cycle(s), as opposed to LDM/STM
which issues in four clock cycles. Avoid LDRDs targeting R12; this incurs an extra cycle of issue
latency.

The LDRD instruction has a result latency of 3 or 4 cycles depending on the destination register
being accessed (assuming the data being loaded is in the data cache).

add r6, r7, r8
sub r5, r6, r9

; The following ldrd instruction would load values
; into registers r0 and r1

ldrd r0, [r3]
orr r8, r1, #0xf
mul r7, r0, r7

In the code example above, the ORR instruction would stall for 3 cycles because of the 4 cycle
result latency for the second destination register of an LDRD instruction. The code shown above
can be rearranged to remove the pipeline stalls:

; The following ldrd instruction would load values
; into registers r0 and r1

ldrd r0, [r3]
add r6, r7, r8
sub r5, r6, r9
mul r7, r0, r7
orr r8, r1, #0xf

Any memory operation following a LDRD instruction (LDR, LDRD, STR and so on) would stall
for 1 cycle.

; The str instruction below would stall for 1 cycle
ldrd r0, [r3]
str r4, [r5]

Developer’s Manual January, 2004 211

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.1.2. Scheduling Load and Store Multiple (LDM/STM)

LDM and STM instructions have an issue latency of 2-20 cycles depending on the number of
registers being loaded or stored. The issue latency is typically 2 cycles plus an additional cycle for
each of the registers being loaded or stored assuming a data cache hit. The instruction following an
ldm would stall whether or not this instruction depends on the results of the load. A LDRD or
STRD instruction does not suffer from this drawback (except when followed by a memory
operation) and should be used where possible. Consider the task of adding two 64-bit integer
values. Consider that the addresses of these values are aligned on an 8 byte boundary. This can be
achieved using the LDM instructions as shown below:

; r0 contains the address of the value being copied
; r1 contains the address of the destination location

ldm r0, {r2, r3}
ldm r1, {r4, r5}
adds r0, r2, r4
adc r1,r3, r5

If the code were written as shown above, assuming all the accesses hit the cache, the code would
take 11 cycles to complete. Rewriting the code as shown below using LDRD instruction would
take only 7 cycles to complete. The performance would increase further if we can fill in other
instructions after LDRD to reduce the stalls due to the result latencies of the LDRD instructions.

; r0 contains the address of the value being copied
; r1 contains the address of the destination location

ldrd r2, [r0]
ldrd r4, [r1]
adds r0, r2, r4
adc r1,r3, r5

Similarly, the code sequence shown below takes 5 cycles to complete.

stm r0, {r2, r3}
add r1, r1, #1

The alternative version which is shown below would only take 3 cycles to complete.

strd r2, [r0]
add r1, r1, #1

212 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.2 Scheduling Data Processing Instructions

Most core data processing instructions have a result latency of 1 cycle. This means that the current
instruction is able to use the result from the previous data processing instruction. However, the
result latency is 2 cycles if the current instruction needs to use the result of the previous data
processing instruction for a shift by immediate. As a result, the following code segment would
incur a 1 cycle stall for the mov instruction:

sub r6, r7, r8
add r1, r2, r3
mov r4, r1, LSL #2

The code above can be rearranged as follows to remove the 1 cycle stall:

add r1, r2, r3
sub r6, r7, r8
mov r4, r1, LSL #2

All data processing instructions incur a 2 cycle issue penalty and a 2 cycle result penalty when the
shifter operand is a shift/rotate by a register or shifter operand is RRX. Since the next instruction
would always incur a 2 cycle issue penalty, there is no way to avoid such a stall except by
re-writing the assembler instruction. Consider the following segment of code:

mov r3, #10
mul r4, r2, r3
add r5, r6, r2, LSL r3
sub r7, r8, r2

The subtract instruction would incur a 1 cycle stall due to the issue latency of the add instruction as
the shifter operand is shift by a register. The issue latency can be avoided by changing the code as
follows:

mov r3, #10
mul r4, r2, r3
add r5, r6, r2, LSL #10
sub r7, r8, r2

Developer’s Manual January, 2004 213

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.3 Scheduling Multiply Instructions

Multiply instructions can cause pipeline stalls due to either resource conflicts or result latencies.
The following code segment would incur a stall of 0-3 cycles depending on the values in registers
r1, r2, r4 and r5 due to resource conflicts.

mul r0, r1, r2
mul r3, r4, r5

The following code segment would incur a stall of 1-3 cycles depending on the values in registers
r1 and r2 due to result latency.

mul r0, r1, r2
mov r4, r0

Note that a multiply instruction that sets the condition codes blocks the whole pipeline. A 4 cycle
multiply operation that sets the condition codes behaves the same as a 4 cycle issue operation.
Consider the following code segment:

muls r0, r1, r2
add r3, r3, #1
sub r4, r4, #1
sub r5, r5, #1

The add operation above would stall for 3 cycles if the multiply takes 4 cycles to complete. It is
better to replace the code segment above with the following sequence:

mul r0, r1, r2
add r3, r3, #1
sub r4, r4, #1
sub r5, r5, #1
cmp r0, #0

Please refer to Section 10.4, “Instruction Latencies” to get the instruction latencies for various
multiply instructions. The multiply instructions should be scheduled taking into consideration these
instruction latencies.

214 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.4 Scheduling SWP and SWPB Instructions

The SWP and SWPB instructions have a 5 cycle issue latency. As a result of this latency, the
instruction following the SWP/SWPB instruction would stall for 4 cycles. SWP and SWPB
instructions should, therefore, be used only where absolutely needed.

For example, the following code may be used to swap the contents of 2 memory locations:

; Swap the contents of memory locations pointed to by r0 and r1
ldr r2, [r0]
swp r2, [r1]
str r2, [r1]

The code above takes 9 cycles to complete. The rewritten code below, takes 6 cycles to execute:

; Swap the contents of memory locations pointed to by r0 and r1
ldr r2, [r0]
ldr r3, [r1]
str r2, [r1]
str r3, [r0]

Developer’s Manual January, 2004 215

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)

The MRA (MRRC) instruction has an issue latency of 1 cycle, a result latency of 2 or 3 cycles
depending on the destination register value being accessed and a resource latency of 2 cycles.

Consider the code sample:

mra r6, r7, acc0
mra r8, r9, acc0
add r1, r1, #1

The code shown above would incur a 1-cycle stall due to the 2-cycle resource latency of an MRA
instruction. The code can be rearranged as shown below to prevent this stall.

mra r6, r7, acc0
add r1, r1, #1
mra r8, r9, acc0

Similarly, the code shown below would incur a 2 cycle penalty due to the 3-cycle result latency for
the second destination register.

mra r6, r7, acc0
mov r1, r7
mov r0, r6
add r2, r2, #1

The stalls incurred by the code shown above can be prevented by rearranging the code:

mra r6, r7, acc0
add r2, r2, #1
mov r0, r6
mov r1, r7

The MAR (MCRR) instruction has an issue latency, a result latency, and a resource latency of 2
cycles. Due to the 2-cycle issue latency, the pipeline would always stall for 1 cycle following a
MAR instruction. The use of the MAR instruction should, therefore, be used only where
absolutely necessary.

216 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.6 Scheduling the MIA and MIAPH Instructions

The MIA instruction has an issue latency of 1 cycle. The result and resource latency can vary from
1 to 3 cycles depending on the values in the source register.

Consider the following code sample:

mia acc0, r2, r3
mia acc0, r4, r5

The second MIA instruction above can stall from 0 to 2 cycles depending on the values in the
registers r2 and r3 due to the 1 to 3 cycle resource latency.

Similarly, consider the following code sample:

mia acc0, r2, r3
mra r4, r5, acc0

The MRA instruction above can stall from 0 to 2 cycles depending on the values in the registers r2
and r3 due to the 1 to 3 cycle result latency.

The MIAPH instruction has an issue latency of 1 cycle, result latency of 2 cycles and a resource
latency of 2 cycles.

Consider the code sample shown below:

add r1, r2, r3
miaph acc0, r3, r4
miaph acc0, r5, r6
mra r6, r7, acc0
sub r8, r3, r4

The second MIAPH instruction would stall for 1-cycle due to a 2-cycle resource latency. The
MRA instruction would stall for 1-cycle due to a 2-cycle result latency. These stalls can be avoided
by rearranging the code as follows:

miaph acc0, r3, r4
add r1, r2, r3
miaph acc0, r5, r6
sub r8, r3, r4
mra r6, r7, acc0

Developer’s Manual January, 2004 217

Intel XScale® Core Developer’s Manual
Optimization Guide

A.5.7 Scheduling MRS and MSR Instructions

The MRS instruction has an issue latency of 1 cycle and a result latency of 2 cycles. The MSR
instruction has an issue latency of 2 cycles (6 if updating the mode bits) and a result latency of 1
cycle.

Consider the code sample:

mrs r0, cpsr
orr r0, r0, #1
add r1, r2, r3

The ORR instruction above would incur a 1 cycle stall due to the 2-cycle result latency of the
MRS instruction. In the code example above, the ADD instruction can be moved before the ORR
instruction to prevent this stall.

A.5.8 Scheduling CP15 Coprocessor Instructions

The MRC instruction has an issue latency of 1 cycle and a result latency of 3 cycles. The MCR
instruction has an issue latency of 1 cycle.

Consider the code sample:

add r1, r2, r3
mrc p15, 0, r7, C1, C0, 0
mov r0, r7
add r1, r1, #1

The MOV instruction above would incur a 2-cycle latency due to the 3-cycle result latency of the
mrc instruction. The code shown above can be rearranged as follows to avoid these stalls:

mrc p15, 0, r7, C1, C0, 0
add r1, r2, r3
add r1, r1, #1
mov r0, r7

218 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Optimization Guide

A.6 Optimizing C Libraries

Many of the standard C library routines can benefit greatly by being optimized for the core
architecture. The following string and memory manipulation routines should be tuned to obtain the
best performance from the core architecture (instruction selection, cache usage and data prefetch):

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strlen, strncat, strncmp, strpbrk, strrchr, strspn,
strstr, strtok, strxfrm, memchr, memcmp, memcpy, memmove, memset

A.7 Optimizations for Size

For applications such as cell phone software it is necessary to optimize the code for improved
performance while minimizing code size. Optimizing for smaller code size will, in general, lower
the performance of your application. This chapter contains techniques for optimizing for code size
using the core instruction set.

A.7.1 Space/Performance Trade Off

Many optimizations mentioned in the previous chapters improve the performance of ARM code.
However, using these instructions will result in increased code size. Use the following
optimizations to reduce the space requirements of the application code.

A.7.1.1. Multiple Word Load and Store

The LDM/STM instructions are one word long and let you load or store multiple registers at once.
Use the LDM/STM instructions instead of a sequence of loads/stores to consecutive addresses in
memory whenever possible.

A.7.1.2. Use of Conditional Instructions

Using conditional instructions to expand if-then-else statements as described in Section A.3.1,
“Conditional Instructions” will result in increasing the size of the generated code. Therefore, do not
use conditional instructions if application code space requirements are an issue.

A.7.1.3. Use of PLD Instructions

The preload instruction PLD is only a hint, it does not change the architectural state of the
processor. Using or not using them will not change the behavior of your code, therefore, you should
avoid using these instructions when optimizing for space.

Developer’s Manual January, 2004 219

Intel XScale® Core Developer’s Manual
Test Features

Test Features B

This chapter gives a brief overview of the Intel XScale® core JTAG features. The Intel XScale®
core provides a baseline set of features from with the ASSP builds upon. A full description of these
features can be found in the ASSP architecture specification.

B.1 Overview

The Intel XScale® core provides test features compatible with IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1). These features include a TAP controller, a 5 or 7
bit instruction register, and test data registers to support software debug. The size of the instruction
register depends on which variant of the Intel XScale® core is being used. This can be found out by
examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See Table 7-4, “ID
Register” on page 7-81 for more details.) A CoreGen value of 0x1 means the JTAG instruction
register size is 5 bits and a CoreGen value of 0x2 means the JTAG instruction register size is 7 bits.

The Intel XScale® core also provides support for an ASSP defined boundary-scan register, device
ID register, and other data test register specific to ASSP implementation.

To avoid confusion and duplication, the description of these features are in the ASSP architecture
specification.

220 January, 2004 Developer’s Manual

Intel XScale® Core Developer’s Manual
Test Features

This Page Intentionally Left Blank

	Intel XScale® Core
	Introduction 1
	1.1 About This Document
	1.1.1 How to Read This Document
	1.1.2 Other Relevant Documents

	1.2 High-Level Overview of the Intel XScale® Core
	1.2.1 ARM Compatibility
	1.2.2 Features
	Figure 1�1. Architecture Features
	1.2.2.1 Multiply/Accumulate (MAC)
	1.2.2.2 Memory Management
	1.2.2.3 Instruction Cache
	1.2.2.4 Branch Target Buffer
	1.2.2.5 Data Cache
	1.2.2.6 Performance Monitoring
	1.2.2.7 Power Management
	1.2.2.8 Debug
	1.2.2.9 JTAG

	1.3 Terminology and Conventions
	1.3.1 Number Representation
	1.3.2 Terminology and Acronyms

	Programming Model 2
	2.1 ARM Architecture Compatibility
	2.2 ARM Architecture Implementation Options
	2.2.1 Big Endian versus Little Endian
	2.2.2 26-Bit Architecture
	2.2.3 Thumb
	2.2.4 ARM DSP-Enhanced Instruction Set
	2.2.5 Base Register Update

	2.3 Extensions to ARM Architecture
	2.3.1 DSP Coprocessor 0 (CP0)
	2.3.1.1 Multiply With Internal Accumulate Format
	Table 2�1. Multiply with Internal Accumulate Format
	Table 2�2. MIA{<cond>} acc0, Rm, Rs
	Table 2�3. MIAPH{<cond>} acc0, Rm, Rs
	Table 2�4. MIAxy{<cond>} acc0, Rm, Rs

	2.3.1.2 Internal Accumulator Access Format
	Table 2�5. Internal Accumulator Access Format
	Table 2�6. MAR{<cond>} acc0, RdLo, RdHi
	Table 2�7. MRA{<cond>} RdLo, RdHi, acc0

	2.3.2 New Page Attributes
	Table 2�8. First-level Descriptors
	Table 2�9. Second-level Descriptors for Coarse Page Table
	Table 2�10. Second-level Descriptors for Fine Page Table

	2.3.3 Additions to CP15 Functionality
	Example 2�1. CPWAIT: Canonical method to wait for CP15 update

	2.3.4 Event Architecture
	2.3.4.1 Exception Summary
	Table 2�11. Exception Summary

	2.3.4.2 Event Priority
	Table 2�12. Event Priority

	2.3.4.3 Prefetch Aborts
	Table 2�13. Encoding of Fault Status for Prefetch Aborts

	2.3.4.4 Data Aborts
	Table 2�14. Encoding of Fault Status for Data Aborts
	Example 2�2. Shielding Code from Potential Imprecise Aborts

	2.3.4.5 Events from Preload Instructions
	Example 2�3. Speculatively issuing PLD

	2.3.4.6 Debug Events

	Memory Management 3
	3.1 Overview
	3.2 Architecture Model
	3.2.1 Version 4 vs. Version 5
	3.2.2 Memory Attributes
	3.2.2.1 Page (P) Attribute Bit
	3.2.2.2 Cacheable (C), Bufferable (B), and eXtension (X) Bits
	3.2.2.3 Instruction Cache
	3.2.2.4 Data Cache and Write Buffer
	Table 3�1. Data Cache and Buffer Behavior when X = 0
	Table 3�2. Data Cache and Buffer Behavior when X = 1

	3.2.2.5 Details on Data Cache and Write Buffer Behavior
	3.2.2.6 Memory Operation Ordering
	Table 3�3. Memory Operations that Impose a Fence

	3.2.3 Exceptions

	3.3 Interaction of the MMU, Instruction Cache, and Data Cache
	Table 3�4. Valid MMU & Data/mini-data Cache Combinations

	3.4 Control
	3.4.1 Invalidate (Flush) Operation
	3.4.2 Enabling/Disabling
	Example 3�1. Enabling the MMU

	3.4.3 Locking Entries
	Example 3�2. Locking Entries into the Instruction TLB
	Example 3�3. Locking Entries into the Data TLB

	3.4.4 Round-Robin Replacement Algorithm
	Figure 3�1. Example of Locked Entries in TLB

	Instruction Cache 4
	4.1 Overview
	Figure 4�1. Instruction Cache Organization

	4.2 Operation
	4.2.1 Operation When Instruction Cache is Enabled
	4.2.2 Operation When The Instruction Cache Is Disabled
	4.2.3 Fetch Policy
	4.2.4 Round-Robin Replacement Algorithm
	4.2.5 Parity Protection
	Example 4�1. Recovering from an Instruction Cache Parity Error

	4.2.6 Instruction Fetch Latency
	4.2.7 Instruction Cache Coherency

	4.3 Instruction Cache Control
	4.3.1 Instruction Cache State at RESET
	4.3.2 Enabling/Disabling
	Example 4�2. Enabling the Instruction Cache

	4.3.3 Invalidating the Instruction Cache
	Example 4�3. Invalidating the Instruction Cache

	4.3.4 Locking Instructions in the Instruction Cache
	Figure 4�2. Locked Line Effect on Round Robin Replacement
	Example 4�4. Locking Code into the Cache

	4.3.5 Unlocking Instructions in the Instruction Cache

	Branch Target Buffer 5
	5.1 Branch Target Buffer (BTB) Operation
	Figure 5�1. BTB Entry
	Figure 5�2. Branch History
	5.1.1 Reset
	5.1.2 Update Policy

	5.2 BTB Control
	5.2.1 Disabling/Enabling
	5.2.2 Invalidation

	Data Cache 6
	6.1 Overviews
	6.1.1 Data Cache Overview
	Figure 6�1. Data Cache Organization

	6.1.2 Mini-Data Cache Overview
	Figure 6�2. Mini-Data Cache Organization

	6.1.3 Write Buffer and Fill Buffer Overview

	6.2 Data Cache and Mini-Data Cache Operation
	6.2.1 Operation When Caching is Enabled
	6.2.2 Operation When Data Caching is Disabled
	6.2.3 Cache Policies
	6.2.3.1 Cacheability
	6.2.3.2 Read Miss Policy
	6.2.3.3 Write Miss Policy
	6.2.3.4 Write-Back Versus Write-Through

	6.2.4 Round-Robin Replacement Algorithm
	6.2.5 Parity Protection
	6.2.6 Atomic Accesses

	6.3 Data Cache and Mini-Data Cache Control
	6.3.1 Data Memory State After Reset
	6.3.2 Enabling/Disabling
	Example 6�1. Enabling the Data Cache

	6.3.3 Invalidate and Clean Operations
	6.3.3.1 Global Clean and Invalidate Operation
	Example 6�2. Global Clean Operation

	6.4 Re-configuring the Data Cache as Data RAM
	Example 6�3. Locking Data into the Data Cache
	Example 6�4. Creating Data RAM
	Figure 6�3. Locked Line Effect on Round Robin Replacement

	6.5 Write Buffer/Fill Buffer Operation and Control

	Configuration 7
	7.1 Overview
	Table 7�1. MRC/MCR Format�
	Table 7�2. LDC/STC Format when Accessing CP14�

	7.2 CP15 Registers
	Table 7�3. CP15 Registers
	7.2.1 Register 0: ID & Cache Type Registers
	Table 7�4. ID Register�
	Table 7�5. Cache Type Register�

	7.2.2 Register 1: Control & Auxiliary Control Registers
	Table 7�6. ARM* Control Register�
	Table 7�7. Auxiliary Control Register�

	7.2.3 Register 2: Translation Table Base Register
	Table 7�8. Translation Table Base Register

	7.2.4 Register 3: Domain Access Control Register
	Table 7�9. Domain Access Control Register

	7.2.5 Register 4: Reserved
	7.2.6 Register 5: Fault Status Register
	Table 7�10. Fault Status Register�

	7.2.7 Register 6: Fault address Register
	Table 7�11. Fault Address Register

	7.2.8 Register 7: Cache Functions
	Table 7�12. Cache Functions�

	7.2.9 Register 8: TLB Operations
	Table 7�13. TLB Functions

	7.2.10 Register 9: Cache Lock Down
	Table 7�14. Cache Lockdown Functions�
	Table 7�15. Data Cache Lock Register

	7.2.11 Register 10: TLB Lock Down
	Table 7�16. TLB Lockdown Functions

	7.2.12 Register 11-12: Reserved
	7.2.13 Register 13: Process ID
	Table 7�17. Accessing Process ID
	Table 7�18. Process ID Register
	7.2.13.1 The PID Register Affect On Addresses

	7.2.14 Register 14: Breakpoint Registers
	Table 7�19. Accessing the Debug Registers

	7.2.15 Register 15: Coprocessor Access Register
	Example 7�1. Disallowing access to CP0
	Table 7�20. Coprocessor Access Register

	7.3 CP14 Registers
	7.3.1 Performance Monitoring Registers
	7.3.1.1 XSC1 Performance Monitoring Registers
	Table 7�21. Accessing the XSC1 Performance Monitoring Registers

	7.3.1.2 XSC2 Performance Monitoring Registers
	Table 7�22. Accessing the XSC2 Performance Monitoring Registers

	7.3.2 Clock and Power Management Registers
	Table 7�23. PWRMODE Register
	Table 7�24. Clock and Power Management
	Table 7�25. CCLKCFG Register

	7.3.3 Software Debug Registers
	Table 7�26. Accessing the Debug Registers

	Performance Monitoring 8
	8.1 Overview
	8.2 XSC1 Register Description (2 counter variant)
	Table 8�1. XSC1 Performance Monitoring Registers�
	8.2.1 Clock Counter (CCNT; CP14 - Register 1)
	Table 8�2. Clock Count Register (CCNT)

	8.2.2 Performance Count Registers (PMN0 - PMN1; CP14 - Register 2 and 3, Respectively)
	Table 8�3. Performance Monitor Count Register (PMN0 and PMN1)

	8.2.3 Extending Count Duration Beyond 32 Bits
	8.2.4 Performance Monitor Control Register (PMNC)
	Table 8�4. Performance Monitor Control Register (CP14, register 0)�
	8.2.4.1 Managing PMNC

	8.3 XSC2 Register Description (4 counter variant)
	Table 8�5. Performance Monitoring Registers�
	8.3.1 Clock Counter (CCNT)
	Table 8�6. Clock Count Register (CCNT)

	8.3.2 Performance Count Registers (PMN0 - PMN3)
	Table 8�7. Performance Monitor Count Register (PMN0 - PMN3)

	8.3.3 Performance Monitor Control Register (PMNC)
	Table 8�8. Performance Monitor Control Register�

	8.3.4 Interrupt Enable Register (INTEN)
	Table 8�9. Interrupt Enable Register �

	8.3.5 Overflow Flag Status Register (FLAG)
	Table 8�10. Overflow Flag Status Register �

	8.3.6 Event Select Register (EVTSEL)
	Table 8�11. Event Select Register �

	8.3.7 Managing the Performance Monitor

	8.4 Performance Monitoring Events
	Table 8�12. Performance Monitoring Events�
	Table 8�13. Some Common Uses of the PMU
	8.4.1 Instruction Cache Efficiency Mode
	8.4.2 Data Cache Efficiency Mode
	8.4.3 Instruction Fetch Latency Mode
	8.4.4 Data/Bus Request Buffer Full Mode
	8.4.5 Stall/Writeback Statistics
	8.4.6 Instruction TLB Efficiency Mode
	8.4.7 Data TLB Efficiency Mode

	8.5 Multiple Performance Monitoring Run Statistics
	8.6 Examples
	8.6.1 XSC1 Example (2 counter variant)
	Example 8�1. Configuring the Performance Monitor
	Example 8�2. Interrupt Handling
	Example 8�3. Computing the Results

	8.6.2 XSC2 Example (4 counter variant)
	Example 8�4. Configuring the Performance Monitor
	Example 8�5. Interrupt Handling
	Example 8�6. Computing the Results

	Software Debug 9
	9.1 Definitions
	9.2 Debug Registers
	9.3 Introduction
	9.3.1 Halt Mode
	9.3.2 Monitor Mode

	9.4 Debug Control and Status Register (DCSR)
	Table 9�1. Debug Control and Status Register (DCSR) (Sheet 2 of 2)
	9.4.1 Global Enable Bit (GE)
	9.4.2 Halt Mode Bit (H)
	9.4.3 SOC Break (B)
	9.4.4 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR)
	9.4.5 Sticky Abort Bit (SA)
	9.4.6 Method of Entry Bits (MOE)
	9.4.7 Trace Buffer Mode Bit (M)
	9.4.8 Trace Buffer Enable Bit (E)

	9.5 Debug Exceptions
	Table 9�2. Event Priority
	9.5.1 Halt Mode
	Table 9�3. Halt Mode R14_DBG Updating�

	9.5.2 Monitor Mode
	Table 9�4. Monitor Mode R14_DBG Updating�

	9.6 HW Breakpoint Resources
	9.6.1 Instruction Breakpoints
	Table 9�5. Instruction Breakpoint Address and Control Register (IBCRx)

	9.6.2 Data Breakpoints
	Table 9�6. Data Breakpoint Register (DBRx)
	Table 9�7. Data Breakpoint Controls Register (DBCON)

	9.7 Software Breakpoints
	9.8 Transmit/Receive Control Register (TXRXCTRL)
	Table 9�8. TX RX Control Register (TXRXCTRL)
	9.8.1 RX Register Ready Bit (RR)
	Table 9�9. Normal RX Handshaking�
	Table 9�10. High-Speed Download Handshaking States�

	9.8.2 Overflow Flag (OV)
	9.8.3 Download Flag (D)
	9.8.4 TX Register Ready Bit (TR)
	Table 9�11. TX Handshaking�

	9.8.5 Conditional Execution Using TXRXCTRL
	Table 9�12. TXRXCTRL Mnemonic Extensions

	9.9 Transmit Register (TX)
	Table 9�13. TX Register

	9.10 Receive Register (RX)
	Table 9�14. RX Register

	9.11 Debug JTAG Access
	9.11.1 SELDCSR JTAG Register
	Figure 9�1. SELDCSR
	9.11.1.1 hold_reset
	9.11.1.2 ext_dbg_break
	9.11.1.3 DCSR (DBG_SR[34:3])

	9.11.2 DBGTX JTAG Register
	Figure 9�2. DBGTX
	9.11.2.1 DBG_SR[0]
	9.11.2.2 TX (DBG_SR[34:3])

	9.11.3 DBGRX JTAG Register
	Figure 9�3. DBGRX
	9.11.3.1 RX Write Logic
	9.11.3.2 DBG_SR[0]
	9.11.3.3 flush_rr
	9.11.3.4 hs_download
	9.11.3.5 RX (DBG_SR[34:3])
	9.11.3.6 rx_valid

	9.12 Trace Buffer
	9.12.1 Trace Buffer Registers
	Table 9�15. CP 14 Trace Buffer Register Summary�
	9.12.1.1 Checkpoint Registers
	Table 9�16. Checkpoint Register (CHKPTx)

	9.12.1.2 Trace Buffer Register (TBREG)
	Table 9�17. TBREG Format

	9.13 Trace Buffer Entries
	9.13.1 Message Byte
	Figure 9�4. Message Byte Formats
	Table 9�18. Message Byte Formats
	9.13.1.1 Exception Message Byte
	9.13.1.2 Non-exception Message Byte
	Example 9�1. Rollover Messages Examples

	9.13.1.3 Address Bytes
	Figure 9�5. Indirect Branch Entry Address Byte Organization

	9.13.2 Trace Buffer Usage
	Figure 9�6. High Level View of Trace Buffer

	9.14 Downloading Code in the Instruction Cache
	9.14.1 Mini Instruction Cache Overview
	9.14.2 LDIC JTAG Command
	9.14.3 LDIC JTAG Data Register
	Figure 9�7. LDIC JTAG Data Register Hardware

	9.14.4 LDIC Cache Functions
	Table 9�19. LDIC Cache Functions
	Figure 9�8. Format of LDIC Cache Functions

	9.14.5 Loading Instruction Cache During Reset
	Figure 9�9. Code Download During a Cold Reset For Debug
	Table 9�20. Steps For Loading Mini Instruction Cache During Reset

	9.14.6 Dynamically Loading Instruction Cache After Reset
	Figure 9�10. Downloading Code in IC During Program Execution
	Table 9�21. Steps For Dynamically Loading the Mini Instruction Cache�
	9.14.6.1 Dynamic Download Synchronization Code

	Performance Considerations 10
	10.1 Interrupt Latency
	10.2 Branch Prediction
	Table 10�1. Branch Latency Penalty

	10.3 Addressing Modes
	10.4 Instruction Latencies
	10.4.1 Performance Terms
	Example 10�1. Computing Latencies
	Table 10�2. Latency Example

	10.4.2 Branch Instruction Timings
	Table 10�3. Branch Instruction Timings (Those predicted by the BTB)�
	Table 10�4. Branch Instruction Timings (Those not predicted by the BTB)

	10.4.3 Data Processing Instruction Timings
	Table 10�5. Data Processing Instruction Timings�

	10.4.4 Multiply Instruction Timings
	Table 10�6. Multiply Instruction Timings (Sheet 2 of 2)
	Table 10�7. Multiply Implicit Accumulate Instruction Timings
	Table 10�8. Implicit Accumulator Access Instruction Timings

	10.4.5 Saturated Arithmetic Instructions
	Table 10�9. Saturated Data Processing Instruction Timings

	10.4.6 Status Register Access Instructions
	Table 10�10. Status Register Access Instruction Timings

	10.4.7 Load/Store Instructions
	Table 10�11. Load and Store Instruction Timings
	Table 10�12. Load and Store Multiple Instruction Timings

	10.4.8 Semaphore Instructions
	Table 10�13. Semaphore Instruction Timings

	10.4.9 Coprocessor Instructions
	Table 10�14. CP15 Register Access Instruction Timings
	Table 10�15. CP14 Register Access Instruction Timings

	10.4.10 Miscellaneous Instruction Timing
	Table 10�16. Exception-Generating Instruction Timings
	Table 10�17. Count Leading Zeros Instruction Timings

	10.4.11 Thumb Instructions

	Optimization Guide A
	A.1 Introduction
	A.1.1 About This Guide

	A.2 The Intel XScale® Core Pipeline
	A.2.1 General Pipeline Characteristics
	A.2.1.1. Number of Pipeline Stages
	A.2.1.2. The Intel XScale® Core Pipeline Organization
	Figure A�1. The Intel XScale® Core RISC Superpipeline
	Table A�1. Pipelines and Pipe stages

	A.2.1.3. Out Of Order Completion
	A.2.1.4. Register Scoreboarding
	A.2.1.5. Use of Bypassing

	A.2.2 Instruction Flow Through the Pipeline
	A.2.2.1. ARM* V5TE Instruction Execution
	A.2.2.2. Pipeline Stalls

	A.2.3 Main Execution Pipeline
	A.2.3.1. F1 / F2 (Instruction Fetch) Pipestages
	A.2.3.2. ID (Instruction Decode) Pipestage
	A.2.3.3. RF (Register File / Shifter) Pipestage
	A.2.3.4. X1 (Execute) Pipestages
	A.2.3.5. X2 (Execute 2) Pipestage
	A.2.3.6. WB (write-back)

	A.2.4 Memory Pipeline
	A.2.4.1. D1 and D2 Pipestage

	A.2.5 Multiply/Multiply Accumulate (MAC) Pipeline
	A.2.5.1. Behavioral Description

	A.3 Basic Optimizations
	A.3.1 Conditional Instructions
	A.3.1.1. Optimizing Condition Checks
	A.3.1.2. Optimizing Branches
	A.3.1.3. Optimizing Complex Expressions

	A.3.2 Bit Field Manipulation
	A.3.3 Optimizing the Use of Immediate Values
	A.3.4 Optimizing Integer Multiply and Divide
	A.3.5 Effective Use of Addressing Modes

	A.4 Cache and Prefetch Optimizations
	A.4.1 Instruction Cache
	A.4.1.1. Cache Miss Cost
	A.4.1.2. Round-Robin Replacement Cache Policy
	A.4.1.3. Code Placement to Reduce Cache Misses
	A.4.1.4. Locking Code into the Instruction Cache

	A.4.2 Data and Mini Cache
	A.4.2.1. Non Cacheable Regions
	A.4.2.2. Write-through and Write-back Cached Memory Regions
	A.4.2.3. Read Allocate and Read-write Allocate Memory Regions
	A.4.2.4. Creating On-chip RAM
	A.4.2.5. Mini-data Cache
	A.4.2.6. Data Alignment
	A.4.2.7. Literal Pools

	A.4.3 Cache Considerations
	A.4.3.1. Cache Conflicts, Pollution and Pressure
	A.4.3.2. Memory Page Thrashing

	A.4.4 Prefetch Considerations
	A.4.4.1. Prefetch Distances
	A.4.4.2. Prefetch Loop Scheduling
	A.4.4.3. Prefetch Loop Limitations
	A.4.4.4. Compute vs. Data Bus Bound
	A.4.4.5. Low Number of Iterations
	A.4.4.6. Bandwidth Limitations
	A.4.4.7. Cache Memory Considerations
	A.4.4.8. Cache Blocking
	A.4.4.9. Prefetch Unrolling
	A.4.4.10. Pointer Prefetch
	A.4.4.11. Loop Interchange
	A.4.4.12. Loop Fusion
	A.4.4.13. Prefetch to Reduce Register Pressure

	A.5 Instruction Scheduling
	A.5.1 Scheduling Loads
	A.5.1.1. Scheduling Load and Store Double (LDRD/STRD)
	A.5.1.2. Scheduling Load and Store Multiple (LDM/STM)

	A.5.2 Scheduling Data Processing Instructions
	A.5.3 Scheduling Multiply Instructions
	A.5.4 Scheduling SWP and SWPB Instructions
	A.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)
	A.5.6 Scheduling the MIA and MIAPH Instructions
	A.5.7 Scheduling MRS and MSR Instructions
	A.5.8 Scheduling CP15 Coprocessor Instructions

	A.6 Optimizing C Libraries
	A.7 Optimizations for Size
	A.7.1 Space/Performance Trade Off
	A.7.1.1. Multiple Word Load and Store
	A.7.1.2. Use of Conditional Instructions
	A.7.1.3. Use of PLD Instructions

	Test Features B
	B.1 Overview

