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Abstract

In this article, we present an approach for improv-
ing the performance of sequences of dependent instruc-
tions. We observe that many sequences of instructions
can be interpreted as functions. Unlike sequences of in-
structions, functions can be translated into very fast but
exponentially costly two-level combinational circuits.We
present an approach that exploits this principle, speeds up
programs thanks to circuit-level parallelism/redundancy,
but avoids the exponential costs.

We analyze the potential of this approach, and then
we propose an implementation that consists of a super-
scalar processor with a large specific functional unit as-
sociated with specific back-end transformations. The per-
formance of the SpecInt2000 benchmarks and selected
programs from the Olden and MiBench benchmark suites
improves on average from 2.4% to 12% depending on the
latency of the functional units, and up to 39.6%; more
precisely, the performance of optimized code sections im-
proves on average from 3.5% to 19%, and up to 49%.

1. Introduction

Current and upcoming processors heavily rely on
increasing instruction throughput through pipelining
and exploiting all forms of ILP. The additional on-
chip space which comes with each new processor ver-
sion is increasingly devoted to these techniques (larger
pipelines, larger branch prediction tables, larger caches,
larger instruction windows and reservation stations...)
rather than to computing resources themselves (func-
tional units). Besides, throughput and ILP techniques
increasingly rely on speculative mechanisms (branch
prediction, instruction and data prefetching, value pre-
diction...), and the quality of each individual predic-
tion mechanism tends to improve slowly.

Since each mechanism comes at a significant on-chip
space cost, it is not obvious that speculation will always

remain the most complexity-effective path to perfor-
mance improvements. Already, two recent approaches,
the Chimaera architecture [23] and the Grid Processor
Architecture (GPA) [12] used in the TRIPS architec-
ture [19] propose to use on-chip space differently to im-
prove performance. Both approaches rely on a common
principle: directly map part of the program dataflow
graph to the architecture, so that instructions become
hardware operators and execute much faster; Chimaera
maps instructions to reconfigurable circuits, and GPA
to grids of ALUs. However, once translated into hard-
ware, a sequence of dependent instructions remains
a sequence of dependent (connected) hardware oper-
ators. Therefore, both approaches are again limited by
intrinsic ILP [22], and even more by the compiler abil-
ity to extract ILP [24], just like current and upcom-
ing processors. And the increasing processor architec-
ture complexity combined with the limitations of static
analysis on pointer-based codes, like the SPECInt2000
and the Olden [18] benchmarks, already considerably
strain the compiler.

In this article, we propose an approach for exploiting
additional on-chip space that is not limited by the lack
of ILP and that does not require complex software sup-
port. The starting point of our approach is to note that
many stateless sequences of instructions can be viewed
and expressed as a function: it has input data (the func-
tion parameters) and has output data (the value of the
function). Unlike algorithms, functions can be mapped
very easily to a combinational 2-level sum of products
circuit (ORs of ANDs). While this transformation is ex-
treme and its cost is prohibitive, it does show that it
is possible to obtain a sequence of dependent instruc-
tions as a combinational logic circuit. Implicitly, this
transformation trades on-chip space for computing re-
sources and achieves high speed by exploiting circuit-
level parallelism. We present an approach that exploits
this principle while avoiding the exponential cost of the
2-level circuit transformation. The mechanism is im-
plemented in a superscalar processor using a large and
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result=(long)hdL+(long)hdR−1;
ov=(int)result;
if((ov<<1)>>1==ov)
    return ov;

(a)

i1: addq r10,r9,r3     ; hdL+hdR

i3: addl r31,r3,r4      ; ov=(int) result;
i4: sll r4,0x1,r5        ; ov <<1 

i7: bne r5, continue

i5: sra r5,0x1,r5       ; ((ov<<1)>>1)
i6: xor r5,r4,r5         ; ((ov<<1)>>1)==ov

i2: subq r3,0x1,r3    ; hdL + hdR −1
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fr3(r9, r10) = r9 + r10 − 1
fr4(r9, r10) = sign ext(r9 + r10 − 1)31:0
fr5(r9, r10) = ((r9 + r10 − 1) << 1) >> 1
fbr(r9, r10) = (r9 + r10 − 1)

⊕ ((r9 + r10 − 1) << 1) >> 1)
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Figure 1. An example of instruction collapsing: (a) C code, (b) assembly code, (c) non-collapsed hardware
operators, (d) corresponding DFG, and (e) corresponding functions.

scalable functional unit, called the Function unit. Even
though this unit is reconfigurable, its structure is very
different and more simple than traditional FPGAs, es-
pecially with respect to its interconnection network.
The functions are built offline using the trace builder
presented in the rePLay framework [7], and we have
implemented the corresponding toolset that automati-
cally converts rePLay frames into mappable functions.

With this mechanism, transformed frames execute
up to 49% faster for some codes. This mechanism illus-
trates a first implementation of an approach that pro-
vides a different way to improve the performance of se-
quences of dependent instructions.

In Section 2, we present the principles of the ap-
proach, the methodology in Section 3, we analyze the
potential speedup and limitations of the approach in
Section 4, we present the implementation and experi-
mental results in Section 5.

2. Principles

To illustrate our approach and compare it with exist-
ing solutions, we will use the example of Figure 1(a) ex-
tracted from procedure Sum of the SPECInt2000 bench-
mark 254.gap. This code adds two integers and com-
pares the two most significant bits to check for over-
flow. The resulting assembly code on an Alpha EV6
processor is a fully sequential set of instructions, i.e.,
no two instructions can execute in parallel, as shown
in Figure 1(b). Therefore, current and upcoming pro-
cessors, which heavily rely on the exploitation of all

forms of ILP, can do little to improve the performance
of such codes. The Chimaera [23] or GPA [12] ap-
proaches would map the corresponding dataflow graph
of Figure 1(b) respectively to a reconfigurable circuit
or a grid of ALUs. The mapped hardware operators
would perform faster than a set of instructions, but
they would still operate sequentially, as shown in Fig-
ure 1(c).

In our approach, we split the dataflow graph (DFG)
of Figure 1(d) into a set of independent single-output
functions, one for each output of the dataflow graph,
as shown in Figure 1(e). At the cost of redundant oper-
ations, e.g., r9+r10-1, and thus hardware resources, all
these functions can execute in parallel. Now, each func-
tion can be translated into a combinational logic func-
tion and collapsed into a 2-level logic circuit or a LUT.
However, a simple function with two parameters like
fr3, corresponds to a 2128-bit truth table for each out-
put bit (assuming two 64-bit registers), which is not re-
alistic. One way to alleviate this size problem is to im-
plement a function of n input bits as a set of n 1-bit
operators associated with a multiple-carry propagation
network, as shown in Figure 2(b). Each operator can be
implemented as a reconfigurable logic block much like
in FPGAs, but the number of 1-bit inputs is higher
than in traditional FPGAs, e.g., 4-input lookup-tables
(LUTs) in the Virtex-II Xilinx architecture [2], versus
6 inputs in our implementation. On the other hand,
the placement and routing are much more simple. Fur-
ther increasing the number of inputs would slightly in-
crease performance (we have evaluated the potential of
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(r9 + r10)i =
{

r90 ⊕ r100 i = 0
r9i ⊕ r10i ⊕ Cout1i−1 0 < i ≤ 63 (1)

Cout1i =

{
r90 · r100 i = 0
r9i · r10i + r9i · Cout1i−1
+ r10i · Cout1i−1 0 < i < 63

(2)

(r9 + r10 − 1)i =
{

(r9 + r10)0 ⊕ 1 i = 0
(r9 + r10)i ⊕ 1 ⊕ Cout2i−1 0 < i ≤ 63

=

{
r90 ⊕ r100 i = 0
r9i ⊕ r10i ⊕ Cout1i−1 ⊕ Cout2i−1 0 < i ≤ 63

(3)

Cout2i =
{

(r9 + r10)0 i = 0
(r9 + r10)i + Cout2i−1 0 < i ≤ 63

=
{

r90 ⊕ r100 i = 0
(r9i ⊕ r10i ⊕ Cout1i−1) + Cout2i−1 0 < i ≤ 63 (4)

(a)

.  .  .  .  .  .  .  .  .  .  .  .  .  .
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Figure 2. Translating function r3 into a hardware operator: (a) r3 function, and (b) 64 1-bit operators with
multiple-carry propagation.

up to 40-input blocks), but it would also significantly
increase operators size, see Section 4. The 1-bit logi-
cal expressions associated with function fr3 are shown
in Figure 2(a). Assuming a collapsed sequence of in-
structions in a Function unit executes as fast as a sin-
gle instruction, the length of the sequence of depen-
dent instructions is an upper-bound of the speedup,
i.e., 7 in the exemple of Figure 1. The impact of the
Function unit delay on performance is studied in Sec-
tion 5.4.

The notion of collapsing instructions was previously
introduced by Phillips et al. who proposed a 3-1 inter-
lock collapsing adder that could collapse two dependent
adds into one specific 3-input adder [16]. They later in-
vestigated the potential of collapsing up to three de-
pendent instructions [20], but neither the concept nor
its implementation were generalized, and the notion of
functions was not introduced in these studies. Similarly,
an instruction Scale and Add, which adds an operand
to another multiplied by a factor, is implemented in the
Alpha ISA [1]. Furthermore, to a certain extent, Chi-
maera [23] proposes a limited form of instruction col-
lapsing by combining arithmetic operations, e.g., ADD,
with bit-shifting instructions: in fact, a single arith-
metic operation takes place on each row of the recon-
figurable unit but the interconnection network between
rows is used to implement the shifts, hence the collaps-
ing. The notion of “function” is implicitly widely used
in ASIC and ASIP [9], but not in a way that can be
applied to general-purpose processors. PRISC [17] pro-
poses to map operations on hardware-programmable
functional units (PFUs), and recently, Clark et al. [5]
proposed a method to automatically extract candidate
functions from programs, but, in both approaches, the
operations are not extracted at run time, and cannot

span across multiple basic blocks.
Our approach has three major assets: (1) in theory

it applies to almost any sequence of dependent instruc-
tions, (2) it doesn’t rely on ILP exploitation, and (3)
translating DFGs into functions requires only straight-
forward transformations.

3. Experimental Framework

We performed two sets of experiments: architecture-
independent experiments which aim at determining the
potential of the approach, see Section 4, and experi-
ments on a superscalar processor coupled with the re-
PLay framework without optimization (only the frame
builder is used), see Section 5. We developed a specific
toolset to translate Alpha assembly instructions into
circuit configuration macros. It can be implemented ei-
ther as a static compilation tool, a dynamic compila-
tion tool, or in hardware. On purpose, we developed
a fully automatic toolset in order to demonstrate that
the added compiler and hardware complexity can be
harnessed.

Translating dependent instructions into con-
figuration macros. The four phases of our optimiza-
tion engine are shown in Figure 3: first, we dynamically
split the program execution trace into large chunks of
consecutive instructions that we call a trace, and we ap-
ply the next steps to each trace. Note that the trace
size is fixed for the architecture-independent experi-
ments, and is variable in the superscalar processor ex-
periments, see Section 5. Next, data dependencies in
the trace are analyzed and the dataflow graph (DFG)
for that trace is built as in Figure 1(d). Then func-
tions are selected within the DFG modulo the rules de-
scribed in Section 4.2. Finally, the truth table associ-
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DFG Functionsinstructions
Assembly Configuration

macros

Figure 3. Phases of the optimization engine.

ated with each bit of the function is computed as well as
the associated carry chain functions described in Sec-
tion 2 and Figure 2. The LUT (Look-Up Table) con-
figurations directly derive from the truth tables. The
algorithm and its implementation are detailed in Sec-
tion 5.

Simulation methodology. In all experiments
we used the Simplescalar emulator [3] of the Al-
pha ISA, the SPECInt2000 benchmarks, as well as 9
of the Olden benchmark suite [18] (bh, em3d, health,
mst, perimeter, power, treeadd, tsp and bisort) and
3 of the MiBench suite [10] (patricia, tiff2bw and
djpeg). We tested 100 million consecutive instruc-
tion traces for each benchmark, focused on the most
time-consuming procedures (selected using profil-
ing on full benchmarks executions). The benchmarks
were compiled using the Compaq Alpha compiler with
full optimizations (-fast). For the superscalar pro-
cessor experiment, we used the sim-outorder archi-
tecture [21] and applied our transformations to rePLay
frames.

4. Potential of the Approach

4.1. Potential performance improvements

To evaluate the potential of the approach, we want
to compute the theoretical speedup over an idealized
processor where all instructions that can execute in
parallel do execute in parallel. Thus performance im-
provements only come from executing sequential in-
structions as collapsed functions. The idealized proces-
sor is defined as having a 1-cycle ideal memory, per-
fect branch prediction, infinite instruction window, is-
sue width, and reservation stations.

As explained in Section 2, the potential speedup is,
in theory, determined by the number of dependent in-
structions collapsed, i.e., 7 in the example of Figure 1.
However, consider the DFGs of Figure 4. DFG1 in Fig-
ure 4(a) represents a sequence of 7 dependent instruc-
tions, like our example of Figure 1, resulting in a the-
oretical speedup of 7. DFG2 in Figure 4(b) contains
again 7 instructions but it has 3 branches, one per out-
put function, and the largest branch of the DFG con-
tains 4 instructions, thus, the maximum speedup is 4 in
this case. Similarly, for DFG3 in Figure 4(c), the theo-
retical speedup is 2, again with 7 instructions. There-
fore, to compute the theoretical speedup of a trace of
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Figure 4. Different possible DFG shapes.
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Figure 6. DFG height distribution.

instructions, we need to identify all disjoint DFGs in
the trace, i.e., DFGa is disjoint from DFGb if none of
the instructions of DFGa depends on an instruction in
DFGb and reciprocally. Then, the theoretical speedup
of a DFG is equal to the size of its largest branch, or,
in other terms, to its critical path or height. Thus, the
traces are partitioned into disjoint DFGs, and the theo-
retical speedup of each DFG is calculated. The theoret-
ical speedup of a program trace is the average height
of all DFGs in the trace. An important limiting fac-
tor for the speedup is the trace size. The larger the
traces, the larger the DFGs and the speedup. Using
1024-instruction traces and up to 40-input operators,
the average theoretical speedup for all benchmarks is
1.5 with a maximum speedup of 2.32 for the djpeg
benchmark, see Figure 5. Figure 6 shows the distribu-
tion of the height of DFGs as a percentage of the total
number of instructions executed, also using traces of
1024 instructions, averaged on all benchmarks. While
there are very large DFGs, i.e., over 250 instructions,
many DFGs are rather small. The factors limiting the
size of the DFGs and how these limitations can be over-
come are discussed in Section 4.2.
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Figure 5. Theoretical speedup for different trace sizes.

4.2. Analyzing and overcoming the limita-
tions of the approach

In theory, the whole program can be one huge DFG.
In practice, DFGs need to be split due to many factors,
which we call DFG cuts. A cut is an instruction that
prevents further collapsing and thus reduces speedup
opportunities. It is then transformed into a function
output of its parents’ DFG and becomes an input for
its childs’ DFGs. Besides these “true” cuts, the trace
size limitation mentioned in Section 4.1 introduces ad-
ditional methodology-related cuts. The different types
of “true” cuts are discussed below.

Number of function inputs. We call physical in-
puts both the register inputs and the inputs corre-
sponding to carries, see Figure 2(b). The maximum
number of physical inputs per function determines the
size of the 1-bit hardware operators used to implement
functions. Since the hardware operator size is fixed, the
maximum number of inputs is fixed as well, and any
DFG requiring more than the maximum number of in-
puts must be cut. Figure 7 shows the cumulative distri-
bution of the number of inputs per function, averaged
over all benchmarks, using 1024-instruction traces. We
observed that more than 80% of the functions require
fewer than 10 physical inputs, so that implementing
even large functions does not require large 1-bit opera-
tors. In our implementation we have used 6-input logic
blocks. Figure 8 confirms that increasing the number
of inputs beyond 10 has a negligible impact on the the-
oretical speedup.

Load instructions. For the moment, loads induce
cuts because they cannot be combined with subsequent
dependent instructions, though we are currently inves-
tigating several ways to alleviate these cuts such as
data preloading. While, on average, 24.43% of executed
instructions are load instructions, their irregular occur-
rence in DFGs still enables large DFGs, as shown in
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Figure 7. Cumulative distribution of the number
of inputs per function.
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Figure 6. Store and branch instructions are not cuts,
they are exit points of DFGs. Load and store instruc-
tions are still considered collapsible : address computa-
tion instructions can be collapsed with loads and stores,
and value computation instructions can be collapsed
with stores. Our transformation engine detects pairs of
statically dependent store/load and replaces such “load
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add r1,r2,r3
srl r3,63,r3
add r3,r6,r7

(a)

....................

++ +....................

cout1cout1

11 0 0

1 0

62

63

0r60r61r663

cout2 1cout263 cout2 0r7 r7r7 0163

<<<

cout1

cout2 62

r1r2r1r263r1r2

r3

(b)

Figure10.Cuts becauseof carries fromupper sig-
nificant bits: (a) assembly code, (b) implemen-
tation.

cuts” with true register dependence. By static depen-
dence, we mean a store followed by a load which uses
the same register and the same offset for address com-
putation and where the register is not modified between
the store and the load. Note that such a store/load pair
may not necessarily be in the same basic block, as the
generated functions may span across more than one ba-
sic block. Dynamic store/load dependencies are not de-
tected.

Non-collapsible instructions. Like all other
RISC codes, the Alpha binary code contains many in-
structions that cannot be collapsed (e.g., system calls),
or which correspond to very costly hardware op-
erators (e.g., floating-point divide). All these in-
structions are DFG cuts. For the moment, we only
collapse integer instructions add/sub, shift by con-
stants, bit operations/manipulations, and conditional
branches. Figure 9 shows that, on average, bench-
mark traces contain 15.13% of non-collapsible in-
structions. The eon and power benchmarks perform
many floating-point operations, hence the large num-
ber of non-collapsible instructions.
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Figure 11. Effect of relaxing the upper significant
carries constraints.

Carries from upper significant bits. Certain
combinations of instructions are treated as cuts due
to specific carry propagation issues. Consider the ex-
ample of Figure 10 in which the most significant bit
of (r1 + r2) is added to r6. Due to the carry prop-
agation in (r1 + r2), the addition of r6 cannot start
before (r1 + r2) ends. Therefore, the only way to col-
lapse (X >> 63) + r6 with (r1 + r2) is to add another
chain of 64 1-bit operators where the output of the
most significant 1-bit operator of (r1 + r2) is fed into
the least significant 1-bit operator of (X >> 63) + r6,
see Figure 10. In other terms, either the operator chain
is larger than the word size and it can accommodate
right shifts, or right shifts must be treated as cuts; the
same problem occurs whenever a carry comes from up-
per significant bits. To test the impact of that choice,
we have ignored the hardware consequences (cost) of
carries from upper significant bits and removed the cor-
responding cuts. As shown in Figure 11, further perfor-
mance improvements can be achieved by relaxing this
constraints. In all other experiments, we chose to treat
such cases as cuts for hardware cost reasons, i.e., we as-
sume a “left-only” carry propagation.

5. Implementation

In this section, we first explain how functions are
built, and then how this mechanism can be imple-
mented within a superscalar processor architecture us-
ing the rePLay hardware framework [14].

5.1. Generating DFG and functions

The optimization engine described in this section
may be implemented either in hardware or software,
the rePLay framework is compatible with both types
of implementation. We present below the different steps
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in the process of building functions, and we illustrate
this process with the example of Figure 1.

Building the DFG. Each instruction in the trace,
i.e., the instructions of Figure 1(b), are loaded in
the DFGT (DataFlow Graph Table), with one entry
per instruction, see Figure 12.1 Consider instruction
i1:addq r10,r9,r3: when the instruction is stored in
the DFGT, the flag OutFlag is set to indicate the in-
struction is an output of the DFG being progressively
built; when instruction i2:subq r3,0x1,r3 is loaded,
this flag will be reset because instruction i1:addq
r10,r9,r3 will no longer be a DFG output.

In the same time, we keep track of the data de-
pendencies between instructions through the Produc-
ing Output Table (POT). The POT is indexed by the
instruction destination register. Each entry contains an
index to the DFGT, i.e., to the instruction that pro-
duces the corresponding register. For instruction i1,
since r9 and r10 are inputs to the DFG, i.e., they are
not generated by another DFG instruction, the corre-
sponding entries in the POT will not point to a DFGT
entry. The combined role of the POT and the DFGT is
akin to the role of the ROB in a superscalar architec-
ture, except that we cannot use the processor ROB to
perform that task since function building is performed
offline by the rePLay framework.

Generating the function corresponding to an
instruction. Once a new DFG instruction is loaded
in the DFGT, we build the function corresponding to
the instruction operation, or more exactly, we compose
this operation with the functions producing its source
operands, creating a more complex function. For that
purpose, we send the instruction source operands to

1 Note that complex instructions, such as the Alpha Scaled Add
instruction s4addq, are decomposed into several elementary
operations, each corresponding to a DFG node, and thus to an
entry in the DFGT.
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the Function Generation Engine (FGE), see Figure 13.
There are three types of operands, DFG inputs which
are operands not produced by other instructions in the
DFG, constant inputs, and operands produced by other
instructions in the DFG. The first two types are simply
sent to the Function Generation Engine. If the operand
is produced by another instruction, then we send the
function producing this operand as a truth table. Func-
tions are stored in the FRT (FunctionRepository Table)
as 64-bit truth tables (for a maximum of 6 inputs for
each function), one per word bit, see Figure 14. Each
DFGT entry (instruction) contains an index to the cor-
responding function in the FRT. Besides the truth ta-
ble, the FRT also contains the number of inputs of the
truth table. Each bit of the operand is a (input list,
truth table) pair. When the operand is just a value, as
for registers r9 and r10 of instruction i1, the num-
ber of inputs is 1 and the truth table is the identity
function (01).

To create the truth table of the composed func-
tion (the operation of the current instruction composed
with the functions creating the operands), the Func-
tion Generation Engine performs as follows. For each
possible combination of all input variables (the input
variables of both operands), the engine looks up the
truth tables of the operands, and uses these values to
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then look up the truth table of the operation itself.
The truth table of the operation is stored in a library
of operations in the Function Generation Engine. Be-
sides the truth table, the library also indicates if addi-
tional function variables must be introduced, such as
(and usually) carries. For instance, for instruction i1,
the operands are r9 and r10 with identity truth ta-
bles. After looking up the library of operations, the en-
gine sees that the carry must be one of the function in-
puts since the operation is an addition, so there are
three input variables: r9kr10kCout1k−1 for bit k of the
composed function. Then, the truth table of the com-
posed function (in this case, just an addition) is output
(in this case, the adder truth table). Function truth ta-
bles are then stored in the FRT, and the correspond-
ing index is stored in the DFGT. The whole process for
instruction i2:subq r3,0x1,r3 is similar except that
the POT entry corresponding to r3 will point to the
i1 entry in the DFGT. The function corresponding to
this entry will thus be passed to the Function Genera-
tion Engine as well as the constant 0x1.

Cuts. Input operands that are dependent on in-
structions that were identified as cuts (see Section 4)
are treated as identity functions also.

Filtering functions. Depending on the latency of
the Function unit, a sequence of collapsed instructions
may execute slower in the Function unit than in the
normal execution units, if the number of collapsed in-
structions is small. For example, if a function is collaps-
ing three dependent 1-cycle latency instructions, the
Function unit should execute in less than three cycle
to execute faster. Assuming a 1-cycle ALU latency, we
filter candidate functions by selecting only those dis-
joint DFGs (see Section 4) with height greater than the
Function unit latency. Instructions that do not belong
to these selected DFGs are marked as non-collapsible,
and are executed in the normal execution units. This
heuristic allows better utilization of all functional units
and prevents non-appropriate functions from slowing
down the execution.

5.2. Hardware implementation of functions

Figure 15 shows the implementation of functions as
an additional large functional unit. As explained in Sec-
tion 2, we implement functions using a set of 64 1-
bit chained operators. These operators represent one
of the bits of an n-input function, as explained in Sec-
tion 2. Since the functions vary constantly from one
trace to another, we use reconfigurable logic to imple-
ment the 1-bit operators. However, it is important to
note that our operators need not bear the same lim-
itations as traditional FPGAs: (1) the chained oper-
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Figure 15. Implementation of functions.

ators only contain combinational logic, no sequential
logic is necessary, and (2) only one row of operators is
needed. The operators are linked in an unusual but sim-
ple manner: multiple carries are propagated from oper-
ator i to higher order bits only, therefore avoiding the
complex interconnection networks that usually account
for more than 90% of on-chip space in FPGA circuits
[6]. On the other hand, our approach relies on func-
tions with a significant number of inputs, resulting in
larger logic blocks. As mentioned in Section 4.2, we as-
sumed a maximum of 6 physical inputs for each bit of
the Function units.

5.3. Implementing functions using the re-
PLay hardware framework

The two major implementation issues of our ap-
proach are the overhead of dynamically building DFGs
and functions on-the-fly, during execution, and assem-
bling large traces. The rePLay environment proposed
by Patel et al. [7][14][15] can partially address both is-
sues.

The rePLay framework provides a dynamic opti-
mization support for building large traces of instruc-
tions (frames) after retirement. Moreover, the frames
are transformed offline, i.e., out of the critical path.
We implemented the rePLay architecture framework,
augmented with our function optimization engine and
the associated Function units, in the Simplescalar sim-
ulation environment. We assumed a future scaled-up
8-way superscalar processor architecture, see Table 1
for the modified parameters. Figure 16 shows the core
processor together with rePLay and the function mech-
anism which includes several Function units. Our op-
timization mechanism can be built on top of the opti-
mizations proposed in [7] which improve ILP while our
techniques focus on ILP-deprived code sections. To out-
line the impact of the Functions mechanism, we im-
plemented rePLay without frame optimizations; thus
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Fetch width 16
Issue / Decode / 8
Commit width
RUU size 1024
(Inst. window- ROB)
LSQ size 128
ExeUnits 8 IALU, 4 IMULT,

4 FPALU, 4 FPMULT
Function units 8
Branch Combined,

4K entries bimodal,
and 2 level Gap predictor,

8K 2nd level entries,
14 history wide ,

1K meta-table size
7 cycle BR resolution

Memory Latency 70 cycles
L1 DCache 32kB, 1 cycle
L1 ICache 16kB, 1 cycle
L2 Unified Cache 1MB, 6 cycle

Table 1. Baseline configuration of the processor
core.

the performance improvements reported in Section 5.4
solely correspond to the Functions mechanism.

The rePLay framework collects traces of commit-
ted instructions to form “frames”. The frames are fre-
quently executed sequences of instructions. The frame
constructor adds each committed instruction into a
frame construction buffer, until a branch with a non-
highly stable behavior (taken/not taken for condi-
tional branches or constant target addresses for indirect
branches) is encountered. Branches with highly stable
behavior are called promoted branches in the rePLay
framework [13], and are stored in a branch bias table.
When a non-promoted branch is encountered or when
the frame reaches a maximum size of 256 instructions,
the frame is passed to the optimization engine to build
functions (frames smaller than 32 instructions are dis-
carded to avoid saturating the optimization engine).
Our back-end transformation engine forms the DFG
for each frame and transforms the trace of instructions
into a trace of functions or macro-instructions, see Sec-
tion 5.1.

Because it is difficult to estimate a priori the exact
delay of the optimization engine (whether implemented
in hardware or software), we assumed a 1000-cycle opti-
mization engine delay. Fahs et al. showed in [7] that the
optimization delay may have very little impact on per-
formance. We tested a 10000-cycle delay and only ob-
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Figure 16. The core architecture.
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Figure 18. Dynamic instructions coverage.

served an average performance slowdown of less than
1%. The generated functions are cached into the frame
cache and are directly forwarded to the Function units
upon a frame cache hit. Function units may be config-

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04) 
1063-6897/04 $ 20.00 © 2004 IEEE 



0.9

1

1.1

1.2

1.3

1.4

1.5

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

bis
ort

pat
ric

ia

tif
f2

bw
djp

eg
AVG

L
o

ca
l S

p
ee

d
u

p

1 cycle

2 cycles

3 cycles

4 cycles

5 cycles

6 cycles

Figure 19. Local Speedup.

0.9

1

1.1

1.2

1.3

1.4

1.5

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

bis
ort

pat
ric

ia

tif
f2

bw
djp

eg
AVG

G
lo

b
al

 S
p

ee
d

u
p

1 cycle
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles

Figure 20. Global Speedup.

ured while they are scheduled provided there is a suffi-
cient number of functional units, as originally proposed
in the PipeRench architecture [4]. An important as-
pect of the rePLay framework is that, once dispatched,
the frames should be run to completion. Therefore,
branch instructions in frames are replaced with asser-
tions. When an assertion is not verified, rePLay pro-
vides a mechanism to revert the architectural state
to the beginning of the executed frame. We modeled
this mechanism using a 10-cycle penalty. The replace-
ment of branches by assertions fits well our approach.
Since each conditional branch is transformed into a 1-
bit function, as shown in the example of Figure 1, col-
lapsing the function can speed up the branch resolu-
tion which, in turn, can reduce the frame mispredic-
tion penalty. More generally, collapsing functions cor-
responding to branch conditions can speed up branch
resolution, using similar principles but a different tech-
nique than Anticipation [8].

We parameterized the rePLay environment as fol-
lows: a 32K-entry bias table for direct branches, a 4K-
entry bias table for indirect branches, a 14-branch his-
tory is used as a hashing key to the bias table, a branch
is promoted to a highly biased branch after a threshold
of 16 consecutive stable behavior, a 128-frame buffer to
store frames while they are processed, a 4-way associa-
tive frame cache [7] that can store up to 4K frames and

128K macro-instructions, each frame in the frame cache
is tagged using a history path of 4 branches. Upon hit,
the frame is dispatched, otherwise standard instruc-
tions are fetched from the instruction cache and dis-
patched.

5.4. Performance Analysis of the Imple-
mentation

Efficiency of frame building. The main asset of rePLay
is its ability to dynamically build large sequences of in-
structions. We experimentally observed that the aver-
age frame size is 147 instructions, see Figure 17. On av-
erage, 65% of all instructions instances effectively be-
long to optimized frames, see Figure 18. Instruction
coverage is limited by non-highly biased branches, too
small frames (less than 32 instructions), frame cache
misses and mis-speculated frames.

Speedup achieved with the function mechanism. Conse-
quently, we distinguish the speedup achieved on the
transformed traces, i.e., the local speedup and the global
speedup. We use the scaled-up 8-way superscalar ar-
chitecture (see Table 1) coupled with rePLay as the
baseline configuration. We have yet to implement a
hardware model of the function unit at the circuit
level to precisely estimate its latency. Even then, there
are multiple possible architecture choices: since these
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chained operators implement multiple but straightfor-
ward carry propagation, they can benefit from the
the fast but complex carry-propagation schemes that
were specifically designed for speeding up FPGA-based
carry chains [11], and which are different from the stan-
dard high-performance adder carry chains [25]. There-
fore, we varied the latency of the Function unit from 1
to 6 cycles. Assuming a 1-cycle Function unit, Frames
transformed into functions execute 19% faster than the
baseline configuration on average, with a maximum of
49% for the gzip benchmark, as shown in Figure 19.
Because of the still limited coverage of the rePLay envi-
ronment, the global performance improvement is only
12% but with strong variations up to 39.6% for the
bisort benchmark, see Figure 20. Codes with large
sets of sequential and dependent instructions particu-
larly benefit from the mechanism. The low speedups
are mainly due to high percentage of non-collapsible
instructions (eon and power) or long chains of depen-
dent loads that limit the height of collapsed instruc-
tions (mcf and health).

6. Conclusions and Future Work

In this paper, we presented an approach for improv-
ing the performance of sequences of dependent instruc-
tions by expressing these sequences as functions, col-
lapsing them into hardware operators and taking ad-
vantage of circuit-level redundancy. Our approach does
not rely on ILP exploitation, and the associated soft-
ware optimizations are fairly simple.

We tested an implementation of this approach on a
scaled-up superscalar processor with the rePLay frame-
work, and we observed an average performance im-
provement varying from 3.5% to 19% on optimized
code sections.

We are currently investigating the coupling of the
function mechanism with address prediction mecha-
nisms to remove many of the cuts due to load instruc-
tions. Removing some of the cuts will increase the av-
erage function size and the overall speedup.
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