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AbstractÐAs the instruction issue width of superscalar processors increases, instruction fetch bandwidth requirements will also

increase. It will eventually become necessary to fetch multiple basic blocks per clock cycle. Conventional instruction caches hinder this

effort because long instruction sequences are not always in contiguous cache locations. Trace caches overcome this limitation by

caching traces of the dynamic instruction stream, so instructions that are otherwise noncontiguous appear contiguous. In this paper,

we present and evaluate a microarchitecture incorporating a trace cache. The microarchitecture provides high instruction fetch

bandwidth with low latency by explicitly sequencing through the program at the higher level of traces, both in terms of 1) control flow

prediction and 2) instruction supply. For the SPEC95 integer benchmarks, trace-level sequencing improves performance from 15

percent to 35 percent over an otherwise equally sophisticated, but contiguous, multiple-block fetch mechanism. Most of this

performance improvement is due to the trace cache. However, for one benchmark whose performance is limited by branch

mispredictions, the performance gain is almost entirely due to improved prediction accuracy.

Index TermsÐInstruction cache, instruction fetching, multiple branch prediction, superscalar processors, trace cache

æ

1 INTRODUCTION

HIGH performance superscalar processor organizations
divide naturally into an instruction fetch mechanism

and an instruction execution mechanism. These two
mechanisms are separated by instruction issue buffers, for
example, issue queues or reservation stations. Concep-
tually, the instruction fetch mechanism acts as a ªproducerº
which fetches, decodes, and dispatches instructions into the
buffer. The instruction execution engine is the ªconsumerº
which issues instructions from the buffer and executes
them, subject to data dependence and resource constraints.

The instruction issue buffers are collectively called the

instruction window. The window is the mechanism for

exposing instruction-level parallelism (ILP) in sequential

programs: A larger window increases the opportunity for

finding data-independent instructions that may issue and

execute in parallel. Thus, the trend in superscalar design is

to construct larger instruction windows, and provide wider

issue/execution paths to exploit the corresponding increase

in available ILP.
These trends place increased demand on the instruction

supply mechanism. In particular, the peak instruction fetch

rate should match the peak instruction issue rate or the

benefits of aggressive ILP techniques are diminished.
In this paper, we are concerned with instruction fetch

bandwidth becoming a performance bottleneck. Current

fetch units are limited to one branch prediction per cycle

and, therefore, can fetch no more than one basic block per

cycle. Previous studies have shown, however, that the

average size of basic blocks in integer codes is small, around

four to six instructions [30], [3]. While fetching a single basic

block each cycle is sufficient for implementations that issue

at most four instructions per cycle, it is not for processors

with higher peak issue rates. If multiple branch prediction

[30], [3], [4], [26] is used, then the fetch unit can at least fetch

multiple contiguous basic blocks in a cycle. As will be shown

in this paper, fetching multiple contiguous basic blocks is

important, but the upper bound on fetch bandwidth is still

limited due to the frequency of taken branches. Therefore, if

a taken branch is encountered, it is necessary to fetch

instructions down the taken path in the same cycle that the

branch is fetched.

1.1 The Trace Cache

The job of the fetch unit is to feed the dynamic instruction

stream to the decoder. A problem is that instructions are

placed in the cache in their compiled order. Storing

programs in this static form favors fetching code with

infrequent taken branches or with large basic blocks.

Neither of these cases is typical of integer programs.
Fig. 1a shows an example dynamic sequence of basic

blocks as they are stored in the instruction cache. The

arrows indicate taken branches. Even with multiple branch

predictions per cycle, four cycles are required to fetch the

instructions in basic blocks ABCDE because the instructions

are stored in noncontiguous cache locations.
It is for this reason that several researchers have

proposed a special instruction cache for capturing long

dynamic instruction sequences [15], [22], [23], [24], [21].

This structure is called a trace cache because each line stores

a snapshot, or trace, of the dynamic instruction stream.

Referring again to Fig. 1, the same dynamic sequence of
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blocks that appear noncontiguous in the instruction cache

are contiguous in the trace cache (Fig. 1b).
The primary constraint on a trace is a maximum length,

determined by the trace cache line size. There may be any

number of other implementation-dependent constraints,

such as the number and type of embedded control transfer

instructions, or special terminating conditions for tuning

various performance factors [25].
A trace is fully specified by a starting address and a

sequence of branch outcomes which describe the path

followed. The first time a trace is encountered, it is allocated

a line in the trace cache. The line is filled as instructions are

fetched from the instruction cache. If the same trace is

encountered again in the course of executing the program,

i.e., the same starting address and predicted branch out-

comes, it will be available in the trace cache and is fed

directly to the decoder in a single cycle. Otherwise, fetching

proceeds normally from the instruction cache.
Other high bandwidth fetch mechanisms have been

proposed that are based on the conventional instruction

cache [30], [4], [3], [26]. Every cycle, instructions from

noncontiguous locations are fetched from the instruction

cache and assembled into the predicted dynamic sequence.

This typically requires multiple pipeline stages: 1) a level of

indirection through special branch target tables to generate

pointers to all of the noncontiguous instruction blocks, 2) a

moderate to highly interleaved instruction cache to provide

simultaneous access to multiple lines, with the possibility

for bank conflicts, and 3) a complex alignment network to

shift and align blocks into dynamic program order, ready

for decoding/renaming.
The trace cache approach avoids this complexity by

caching dynamic instruction sequences themselves, rather

than information for constructing them. If the predicted

dynamic sequence exists in the trace cache, it does not have

to be recreated on the fly from the instruction cache's static

representation. The cost of this approach is redundant

instruction storage: The same instructions may reside in

both the primary cache and the trace cache and there is

redundancy among different lines in the trace cache.

1.2 Related Prior Work

1.2.1 Alternative High Bandwidth Fetch Mechanisms

Four previous studies have focused on mechanisms to fetch

multiple, possibly noncontiguous basic blocks each cycle

from the instruction cache. These are the branch address cache

[30], the subgraph predictor [4], the collapsing buffer [3], and

the multiple-block ahead predictor [26].

1.2.2 Trace Cache Development

Melvin et al. proposed the fill unit and multinodeword cache
[18], [16]. The first work qualitatively describes the
performance implications of smaller or larger atomic units
of work at the instruction-set architecture (ISA), compiler,
and hardware levels. The authors argue for small compiler
atomic units and large execution atomic units to achieve
highest performance. The fill unit is proposed as the
hardware mechanism for compacting the smaller compiler
units into the large execution units, which are then stored
for reuse in a decoded instruction cache. The follow up
work [16] evaluates the performance potential of large
execution atomic units. Although this work only evaluates
sizes up to that of a single VAX instruction and a basic
block, it also suggests joining two consecutive basic blocks if
the intervening branch is ªhighly predictable.º

In [17], software basic block enlargement is discussed. In
the spirit of trace scheduling [5] and trace selection [11], the
compiler uses profiling to identify candidate basic blocks
for merging into a single execution atomic unit. The
hardware sequences at the level of execution atomic units
as created by the compiler. The advantage of this approach
is the compiler can optimize and schedule across basic
block boundaries.

Franklin and Smotherman [6] extended the fill unit's role
to dynamically assemble VLIW-like instruction words from
a RISC instruction stream, which are then stored in a shadow
cache. This structure eases the issue complexity of a wide
issue processor. They further applied the fill unit and a
decoded instruction cache to improve the decoding perfor-
mance of a complex instruction-set computer (CISC) [27]. In
both cases, the cache lines are augmented to store trees to
improve the utilization of each line.

Four works have independently proposed the trace
cache as a complexity-effective approach to high bandwidth
instruction fetching. Johnson [15] proposed the expansion
cache, which addresses cache alignment, branch prediction
throughput, and instruction run merging. The expansion
process also predetermines the execution schedule of
instructions in a line. Unlike a pure VLIW cache, the
schedule may consist of multiple cycles via cycle tagging.
Peleg and Weiser [22] describe the design of a dynamic flow
instruction cache, which stores instructions independent of
their virtual addresses, the defining characteristic of trace
caches. Rotenberg et al. [23], [24] motivate the concept with
comparisons to other high bandwidth fetch mechanisms
proposed in the literature and define some of the trace
cache design space. Patel et al. [21] expand upon and
present detailed evaluations of this design space, arguing
for a more prominent role of the trace cache.

The mispredict recovery cache proposed by Bondi et al. [1]
caches instruction threads from alternate paths of mispre-
dicted branches. The goal of this work is to quickly bypass
the multiple fetch and decode stages of a long CISC pipeline
following a branch mispredict. Nair and Hopkins [19]
employ dynamic instruction formatting to cache large
scheduled groups, similar in spirit to the cycle tagging
approach of the expansion cache.

There has also been recent work incorporating trace
caches into new processing models. Vajapeyam and Mitra
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Fig. 1. Storing a noncontiguous sequence of instructions. (a) Instruction
cache. (b) Trace cache.



[29], Sundararaman and Franklin [28], and Rotenberg et al.
[25] exploit the data and control hierarchy implied by traces
to overcome complexity and architectural hurdles of super-
scalar processors. Jacobson et al. [14] propose a control
prediction model well-suited to the trace cache called next
trace prediction, discussed in later sections. Friendly et al.
propose a new processing model called inactive issue for
reducing the effects of branch mispredictions [7] and
dynamically optimizing traces before storing them in the
trace cache, reducing their execution time significantly [8].

1.2.3 Microcode, VLIW, and Block-Structured ISAs

Clearly, the concept of traces exists in the software realm of
instruction-level parallelism. Early work by Fisher [5], Hwu
and Chang [11], and others on trace scheduling and trace
selection for microcode recognized the problem imposed by
branches on code optimization. Subsequent VLIW architec-
tures and novel ISA techniques, for example [12], [10],
further promote the ability to schedule long sequences of
instructions containing multiple branches.

2 TRACE CACHE MICROARCHITECTURE

In Section 1.1, we introduced the concept of the trace
cacheÐan instruction cache which captures dynamic
instruction sequences, i.e., traces. We now present a
microarchitecture organized around traces.

2.1 Trace-Level Sequencing

The premise of the proposed microarchitecture, shown in
Fig. 2, is to provide high instruction fetch bandwidth with
low latency. This is achieved by explicitly sequencing
through the program at the higher level of traces, both for 1)
control flow prediction and 2) supplying instructions.

A next trace predictor [14] treats traces as basic units and
explicitly predicts sequences of traces. Because traces are
the unit of prediction, rather than individual branches, high
branch prediction throughput is implicitly achieved with
only a single trace prediction per cycle. Jacobson et al. [14]
demonstrated that explicit trace prediction not only
removes fundamental constraints on the number of
branches in a trace (usually a consequence of adapting
single branch predictors to multiple branch predictor
counterparts [23]), but it also holds the potential for
achieving higher overall branch prediction accuracy than

single branch predictors. Details of next trace prediction are
presented in Section 2.3.

The output of the trace predictor is a trace identifier: A
given trace is uniquely identified by its starting PC and the
outcomes of all conditional branches embedded in the trace.
The trace identifier is used to look up the trace in the trace
cache. The index into the trace cache can be derived from
just the starting PC or from a combination of PC and branch
outcomes. Using branch outcomes in the index has the
advantage of providing path associativityÐmultiple traces
eminating from the same start PC can reside simultaneously
in the trace cache, even if it is direct mapped [24].

The output of the trace cache is one or more traces,
depending on the cache associativity. A trace identifier is
stored with each trace in order to determine a trace cache
hit, analogous to the tag of conventional caches. The desired
trace is present in the cache if one of the cached trace
identifiers matches the predicted trace identifier.

The trace predictor and trace cache together provide fast
trace-level sequencing. Unfortunately, trace-level sequen-
cing does not always provide the required trace. This is
particularly true at the start of the program or when a new
region of code is reachedÐneither the trace predictor nor the
trace cache has ªlearnedº any traces yet. Instruction-level
sequencing, discussed in the next section, is required to
construct nonexistent traces or repair trace mispredictions.

2.2 Instruction-Level Sequencing

The outstanding trace buffers in Fig. 2 are used to 1) construct
new traces that are not in the trace cache and 2) track branch
outcomes as they become available from the execution
engine, allowing detection of mispredictions and repair of
the traces containing them.

Each fetched trace is dispatched to both the execution
engine and an outstanding trace buffer. In the case of a trace
cache miss, only the trace prediction is received by the
allocated buffer. The trace prediction itself provides enough
information to construct the trace from the instruction
cache, although this typically requires multiple cycles due
to predicted-taken branches.

In the case of a trace cache hit, the trace is dispatched to
the buffer. This allows repair of a partially mispredicted
trace, i.e., when a branch outcome returned from execution
does not match the path indicated within the trace. In the
event of a branch misprediction, the trace buffer begins
reconstructing the tail of the trace (or all of the trace if the
start PC is incorrect) using the corrected branch target and
the instruction cache. For subsequent branches in the trace,
a second-level branch predictor is used to make predictions.

We advocate an aggressive instruction cache design for
providing robust performance over a broad range of trace
cache miss rates. The instruction cache is 2-way interleaved
so that up to a full cache line can be fetched each cycle,
independent of PC alignment [9]. The second-level branch
prediction mechanism is simpleÐa 2-bit counter and
branch target stored with each branch. Logically, the
instructions, counters, and targets are all stored in the
instruction cache (as opposed to a separate cache and
branch target buffer) to allow fast, parallel prediction of any
number of not-taken branches. We call this instruction fetch
mechanism SEQ.n in keeping with the terminology of [24]
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Ðany number (denoted n) of sequential basic blocks, up to
the line size, can be fetched in a single cycle.

When a trace buffer is through constructing its trace, it is
written into the trace cache and dispatched to the execution
engine. If the newly constructed trace is a result of
misprediction recovery, the trace identifier is also sent to
the trace predictor for repairing its path history.

2.3 Next Trace Prediction

The next trace predictor, shown in Fig. 3, is based on
Jacobson's work on path-based, high-level control flow
prediction [13], [14].

An index into a correlated prediction table is formed
from the sequence of past trace identifiers. The hash
function used to generate the index is called a DOLC

function: `D'epth specifies the path history depth in terms
of traces; `O'ldest indicates the number of bits selected from
each trace identifier except the two most recent ones; `L'ast
and `C'urrent indicate the number of bits selected from the
second-most recent and most recent trace identifiers,
respectively.

Each entry in the correlated prediction table contains a
trace identifier and a 2-bit counter for replacement. The
predictor is augmented with several other mechanisms [14].

. Hybrid prediction. In addition to the correlated table,
a second, smaller table is indexed with only the most
recent trace identifier. This second table requires a
shorter learning time and suffers less aliasing
pressure.

. Return history stack. At call instructions, the path
history is pushed onto a special stack. When the
corresponding return point is reached, path history
before the call is restored. This improves accuracy
because control flow following a subroutine is
highly correlated with control flow before the call.

. Alternate trace identifier. An entry in the correlated
table may be augmented with an alternate trace
prediction, a form of associativity in the predictor. If
a trace misprediction is detected, the outstanding
trace buffer responsible for repairing the trace can
use the alternate prediction if it is consistent with
known branch outcomes in the trace. If so, the trace
buffer does not have to resort to the second-level
branch predictor; instruction-level sequencing is
avoided altogether if the alternate trace also hits in
the trace cache.

2.4 Trace Selection

The performance of the trace cache is strongly dependent
on trace selection, the algorithm used to divide the dynamic
instruction stream into traces. Trace selection primarily
affects average trace length and trace cache hit rate, both of

which, in turn, affect fetch bandwidth. The interaction
between trace length and hit rate, however, is not well
understood. Preliminary studies indicate that longer traces
result in lower hit rates, but this may be an artifact of naive
trace selection policies. Sophisticated selection techniques
that are conscious of control flow constructsÐloop back-
edges, loop fall-through points, call sites, and reconvergent
points in generalÐmay lead to different conclusions. The
reader is referred to [21], [25], [20] for a few interesting
control-flow-conscious selection heuristics.

Trace selection in this paper is constrained only by the
maximum trace length of 16 instructions and indirect
branches (returns and jump/call indirects) terminate traces.

2.5 Hierarchical Sequencing

In Fig. 4a, a portion of the dynamic instruction stream is
shown with a solid horizontal arrow from left to right. The
stream is divided into traces T1 through T5. This sequence
of traces is produced independent of where the instructions
come fromÐtrace predictor/trace cache, trace predictor/
instruction cache, or branch predictor/instruction cache.

For example, if the trace predictor mispredicts T3, the
trace buffer assigned to T3 resorts to instruction-level
sequencing. This is shown in the diagram as a series of
steps, depicting smaller blocks fetched from the instruction
cache. The trace buffer strictly adheres to the boundary
between T3 and T4, dictated by trace selection, even if the
final instruction cache fetch produces a larger block of
sequential instructions than is needed by T3 itself.

We call this process hierarchical sequencing because there
exists a clear distinction between intertrace control flow and
intratrace control flow. Intertrace control flow, i.e., trace
boundaries, is effectively predetermined by trace selection
and is unaffected by dynamic effects such as trace cache
misses and mispredictions.

A contrasting sequencing model is shown in Fig. 4b. In
this model, trace selection is ªresetº at the point of the
mispredicted branch, producing the shifted traces T30, T40,
and T50. This sequencing model does not work well with
path-based next trace prediction. After resolving the branch
misprediction, trace T30 and subsequent traces must some-
how be predicted. However, this requires a sequence of
traces leading to T30 and no such sequence is available
(indicated with question marks in the diagram).

A potential problem with hierarchical sequencing is
misprediction recovery latency. Explicit next trace predic-
tion uses a level of indirection: A trace is first predicted, and
then the trace cache is accessed. This implies an extra cycle
is added to the latency of misprediction recovery. However,
this extra cycle is not exposed. First, consider the case in
which the alternate trace prediction is used. The primary
and alternate predictions are supplied by the trace predictor
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at the same time and stored together in the trace buffer.
Therefore, the alternate prediction is immediately available
for accessing the trace cache when the misprediction is
detected. Second, if the alternate is not used, then the
second-level branch predictor and instruction cache are
used to fetch instructions from the correct path. In this case,
the instruction cache is accessed immediately with the
correct branch target PC returned by the execution engine.

In our evaluation, we assume a trace must be fully
constructed before any of its instructions are dispatched to
the execution engine, because traces are efficiently renamed
as a unit [29], [25]. This aggravates both trace misprediction
and trace cache miss recovery latency. We want to make it
clear, however, that this is not due to any fundamental
constraint of the fetch model, only an artifact of our
dispatch model.

3 SIMULATION METHODOLOGY

3.1 Fetch Models

To evaluate the performance of the trace cache microarch-
itecture, we compare it to several more constrained fetch
models. We first determine the performance advantage of
fetching multiple contiguous basic blocks per cycle over
conventional single block fetching. Then, the benefit of
fetching multiple noncontiguous basic blocks is isolated.

In all models, a next trace predictor is used for control
prediction for two reasons. First, next trace prediction is
highly accurate and, whether predicting one or many
branches at a time, it is comparable to or better than some
of the best single branch predictors in the literature. Second,
it is desirable to have a common underlying predictor for all
fetch models so we can separate performance due to fetch
bandwidth from that due to branch prediction (more on this
in Section 3.2).

What differentiates the following models is the trace
selection algorithm.

. SEQ.1 (ªsequential, 1 blockº): A ªtraceº is a single
basic block up to 16 instructions in length.

. SEQ.n (ªsequential, n blocksº): A ªtraceº may contain
any number of sequential basic blocks up to the 16
instruction limit.

. TC (ªtrace cacheº): A trace may contain any number
of conditional branches, both taken and not-taken,
up to 16 instructions or the first indirect branch.

The SEQ.1 and SEQ.n models do not use a trace cache
because an interleaved instruction cache is capable of
supplying a ªtraceº in a single cycle [9]Ða consequence
of the sequential selection constraint. Therefore, one may
view the SEQ.1/SEQ.n fetch unit as identical to the trace
cache microarchitecture in Fig. 2, except the trace cache
block is replaced with a conventional instruction cache.
That is, the next trace predictor drives a conventional
instruction cache, and the trace buffers are used to construct
ªtracesº from the L2 cache/main memory if not present in
the cache.

Finally, to establish an upper bound on the performance
of noncontiguous instruction fetching, we introduce a
fourth model, TC-perfect, which is identical to TC but the
trace cache always hits.

3.2 Isolating Trace Predictor/Trace Cache
Performance

An interesting side effect of trace selection is that it
significantly affects trace prediction accuracy. In general,
smaller traces (resulting from more constrained trace
selection) result in lower accuracy. We have determined at
least two reasons for this. First, longer traces naturally
capture longer path history. This can be compensated for by
using more trace identifiers in the path history if the traces
are small; that is, a good DOLC function for one trace length
is not necessarily good for another. For the TC model,
DOLC = {7, 3, 6, 8} (a depth of seven traces) consistently
performs well over all benchmarks [14]. For SEQ.1 and
SEQ.n, a brief search of the design space shows DOLC = {17,
3, 4, 12} (a depth of 17 traces) performs well.

We have observed, however, that tuning the DOLC
parameters is not enoughÐtrace selection affects accuracy
in other ways. The graph in Fig. 5 shows trace predictor
performance using an unbounded table, i.e., using full,
unhashed path history to make predictions. The graph
shows trace mispredictions per 1,000 instructions for SEQ.1,
SEQ.n, and TC trace selection as the history depth is varied.
For the go benchmark, trace mispredictions for the SEQ.n
model do not dip below 8.8 per 1,000 instructions, whereas
the TC model reaches as few as 8.0 trace mispredictions per
1,000 instructions. Unconstrained trace selection results in
the creation of many unique traces. While this trace
explosion generally increases conflicts in the trace cache,
we hypothesize it also creates many more unique contexts
for making predictions. A large prediction table can exploit
this additional context.

We conclude that it is difficult to separate the perfor-
mance advantage of the trace cache from that of the trace
predictor because both show positive improvement with
longer traces. Nonetheless, when we compare TC to SEQ.n
or SEQ.1, we would like to know how much benefit is
derived from the trace cache itself.

To this end, we developed a methodology to statistically
ªadjustº the overall branch prediction accuracy of a given
fetch model to match that of another model. The trace
predictor itself is not adjustedÐit produces predictions in
the normal fashion. However, after making a prediction, the
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predicted trace is compared with the actual trace, deter-
mined in advance by a functional simulator running in
parallel with the timing simulator. If the prediction is
incorrect, the actual trace is substituted for the mispredicted
trace with some probability. In other words, some fraction of
mispredicted traces are corrected. The probability for
injecting corrections was chosen on a per benchmark basis
to achieve the desired branch misprediction rate.

This methodology introduces two additional fetch
models, SEQ.1-adj and SEQ.n-adj, corresponding to the
ªadjustedº SEQ.1 and SEQ.n models. Clearly, these models
are unrealizable, but they are useful for performance
comparisons because their adjusted branch misprediction
rates match that of the TC model.

3.3 Simulator and Benchmarks

A detailed, fully execution-driven superscalar processor
simulator is used to evaluate the trace cache microarchi-
tecture. The simulator was developed using the simplescalar
platform [2]. This platform uses a MIPS-like instruction set
and a gcc-based compiler to create binaries.

The datapath of the fetch engine, as shown in Fig. 2, is
faithfully modeled. The next trace predictor has 216 entries.
The DOLC functions for compressing the path history into a
16-bit index were described earlier, in Section 3.2, for both
the TC and SEQ models. The trace cache configurationÐ-
size, associativity, and indexingÐis varied. There are
sufficient outstanding trace buffers to keep the instruction
window full. The trace buffers share a single port to the
combined instruction cache and second-level branch pre-
dictor. The instruction cache is 64KB, 4-way set-associative,
and 2-way interleaved. The line size is 16 instructions and
the cache hit and miss latencies are 1 cycle and 12 cycles,
respectively. The second-level branch predictor consists of
2-bit counters and branch targets, assumed to be logically
stored with each branch in the instruction cache.

An instruction window of 256 instructions is used in all
experiments. The processor is 16-way superscalar, i.e., the
processor can fetch and issue up to 16 instructions each
cycle. Five basic pipeline stages are modeled. Instruction
fetch and dispatch take 1 cycle each. Issue takes at least 1
cycle, possibly more if the instruction must stall for
operands; any 16 instructions, including loads and stores,
may issue each cycle. Execution takes a fixed latency based
on instruction type, plus any time spent waiting for a result
bus. Instructions retire in order.

For loads and stores, address generation takes 1 cycle
and the cache access is 2 cycles for a hit. The data cache is
64KB, 4-way set-associative with a line size of 64 bytes and a
miss penalty of 14 cycles. Realistic but aggressive memory
disambiguation is modeled. Loads may proceed ahead of
any unresolved stores, and any memory hazards are
detected as store addresses become availableÐrecovery is
via selective reissuing of misspeculated loads and their
dependent instructions [25].

Seven of the SPEC95 integer benchmarks, shownin Table 1,
are simulated to completion.

4 RESULTS

4.1 Performance of Fetch Models

Fig. 6 shows the performance of the six fetch models in
terms of retired instructions per cycle (IPC). The TC model
in this section uses a 64KB (instruction storage only), 4-way
set-associative trace cache. The trace cache is indexed using
only the PC (i.e., no explicit path associativity, except that
afforded by the four ways).

We can draw several conclusions from the graph in Fig. 6.
First, comparing the SEQ.n models to the SEQ.1 models, it
is apparent that predicting and fetching multiple sequential
basic blocks provides a significant performance advantage
over conventional single-block fetching. The graph in Fig. 7
shows that the performance advantage of the SEQ.n model
over the SEQ.1 model ranges from about 5 percent to 25
percent, with the majority of benchmarks showing greater
than 15 percent improvement. Similar results hold whether
or not branch prediction accuracy is adjusted for the SEQ.n
and SEQ.1 models.

This first observation is important because the SEQ.n
model only requires a more sophisticated, high-level control
flow predictor, and retains a more or less conventional
instruction cache microarchitecture.

Second, the ability to fetch multiple, possibly noncontig-
uous basic blocks improves performance significantly over
sequential-only fetching. The graph in Fig. 8 shows that the
performance advantage of the TC model over the SEQ.n
model ranges from 15 percent to 35 percent.

Fig. 8 also isolates the contributions of next trace
prediction and the trace cache to performance. The lower
part of each bar is the speedup of model SEQ.n-adj over
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SEQ.n. And, since the overall branch misprediction rate of

SEQ.n-adj is adjusted to match that of the TC model, this

part of the bar approximately isolates the impact of next

trace prediction on performance. The top part of the bar,

therefore, isolates the impact of the trace cache on

performance.
For go, which suffers noticeably more branch mispredic-

tions than other benchmarks, most of the benefit of the TC

model comes from next trace prediction. In this case, the

longer traces of the TC model are clearly more valuable for

improving the context used by the next trace predictor than

for providing raw instruction bandwidth. For gcc, however,

both next trace prediction and the trace cache contribute

equally to performance. The other five benchmarks benefit

mostly from higher fetch bandwidth.
Finally, Fig. 6 shows that the moderately large trace

cache of the TC model very nearly reaches the performance

upper bound established by TC-perfect (within 4 percent).

Table 2 shows trace- and branch-related measures.
Average trace lengths for TC range from 12.4 (li) to 15.8
(jpeg) instructions (1.6 to over 2 times longer than SEQ.n
traces).

The table also shows predictor performance: primary
and alternate trace mispredictions per 1,000 instructions,
and overall branch misprediction rates (the latter is
computed by checking each branch at retirement to see if
it caused a misprediction, whether originating from the
trace predictor or second-level branch predictor). In all
cases, prediction improves with longer traces. TC has from
20 percent to 45 percent fewer trace mispredictions than
SEQ.1, resulting in 15 percent (jpeg) to 41 percent (m88ksim)
fewer total branch mispredictions. Note that the adjusted
branch misprediction rates for the SEQ models are nearly
equal to those of TC.

Shorter traces, however, generally result in better
alternate trace prediction accuracy. Shorter traces result in
1) fewer total traces and, thus, less aliasing and 2) fewer
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TABLE 2
Trace Statistics



possible alternative traces from a given starting PC. For all
benchmarks except gcc and go, the alternate trace prediction
is almost always correct given the primary trace prediction
is incorrectÐboth predictions taken together result in fewer
than 1 trace misprediction per 1,000 instructions.

Trace caches introduce redundancyÐthe same instruc-
tion can appear multiple times in one or more traces. Table 2
shows two redundancy measures. The overall redundancy
factor, RFoverall, is computed by maintaining a table of all
unique traces ever retired. Redundancy is the ratio of total
number of instructions to total number of unique instruc-
tions for traces collected in the table. RFoverall is indepen-
dent of trace cache configuration and does not capture
dynamic behavior. The dynamic redundancy factor, RFdyn, is
computed similarly, but using only traces in the trace cache in
a given cycle; the final value is an average over all cycles.
RFdyn was measured using a 64KB, 4-way trace cache.
RFoverall varies from 2.9 (vortex) to 14 (go). RFdyn is less

than RFoverall and only ranges between 2 and 4, because the
fixed size trace cache limits redundancy, and perhaps
temporally there is less redundancy.

4.2 Trace Cache Size and Associativity

In this section, we measure performance of the TC model as
a function of trace cache size and associativity. Fig. 9 shows
overall performance (IPC) for 12 trace cache configurations:
direct mapped, 2-way, and 4-way associativity for each of
four sizes, 16KB, 32KB, 64KB, and 128KB.

Associativity has a noticeable impact on performance for
all of the benchmarks except go. Go has a particularly large

working set of unique traces [25] and total capacity is more

important than individual trace conflicts. The curves of jpeg

and li are fairly flatÐsize is of little importance, yet

increasing associativity improves performance. These two

benchmarks suffer few general conflict misses (otherwise,

size should improve performance), yet conflicts among

traces with the same start PC are significant. Associativity

allows simultaneously caching these path-associative traces.
The performance improvement of the largest configura-

tion (128KB, 4-way) with respect to the smallest one (16KB,

direct mapped) ranges from 4 percent (go) to 10 percent

(gcc).
Fig. 10 shows trace cache performance in misses per 1,000

instructions. Trace cache size is varied along the x-axis, and

there are six curves: direct mapped (DM), 2-way (2W), and

4-way (4W) associative caches, both with and without

indexing for path associativity (PA). We chose (somewhat

arbitrarily) the following index function for achieving path

associativity: The low-order bits of the PC form the set

index and the high-order bits of this index are XORed with

the first two branch outcomes of the trace identifier.
Gcc and go are the only benchmarks that do not fit

entirely within the largest trace cache. As we observed

earlier, go has many heavily referenced traces, resulting in

no fewer than 20 misses/1,000 instructions.
Path associativity reduces misses substantially, particu-

larly for direct mapped caches. Except for vortex, path
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Fig. 9. Performance vs. size/associativity.

Fig. 10. Trace cache misses.



associativity closes the gap between direct mapped and 2-
way associative caches by more than half.

5 SUMMARY

It is important to design instruction fetch units capable of
fetching past multiple, possibly taken, branches each cycle.
Trace caches provide this capability without the complexity

and latency of equivalent-bandwidth instruction cache
designs. We evaluated a microarchitecture incorporating a

trace cache, with the following major results.

. The trace cache improves performance from 15
percent to 35 percent over an otherwise equally
sophisticated, but contiguous, multiple-block fetch
mechanism.

. Longer traces improve trace prediction accuracy. For
the misprediction-bound benchmark go, this factor
contributes almost entirely to the observed perfor-
mance gain.

. A moderately large and associative trace cache
performs as well as a perfect trace cache. For go,
however, trace mispredictions mask poor trace cache
performance.

. Overall performance is not as sensitive to trace cache
size and associativity as one might expect, due in
part to robust instruction-level sequencing. IPC
varies no more than 10 percent over a wide range
of configurations.

. The complexity advantage of the trace cache comes
at the price of redundant instruction storage: for gcc,
a factor of 7 redundancy among all traces created,
corresponding to a factor of 3 redundancy in the
trace cache.

. An instruction cache combined with an aggressive
trace predictor can fetch any number of contiguous
basic blocks per cycle, yielding from 5 percent to 25
percent improvement over single-block fetching.
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