
Evaluation of Design Alternatives for a Multiprocessor

Microprocessor

Basem A. Nayfeh, Lance Hammond and Kunle Olukotun

Computer Systems Laboratory

Stanford University

Stanford, CA 94305-4070

{bnayfeh, kmce, kunle} @ogun.stanford.edu

Abstract

In the future, advanced integrated circuit processing and packaging
tecbnolog y will allow for several design options for multiprocessor
microprocessors. In this paper we consider three architectures:
shared-primary cache, shared-secondary cache, and shared-mem-
ory. We evaluate these three architectures using a complete system
simulation environment which models the CPU, memory hierarchy
and I/O devices in sufficient detail to boot and run a commercial
operating system. Within our simulation environment, we measure
performance using representative hand and compiler generated par-
allel applications, and a multiprogramming workload. Our results
show that when applications exhhk fine-grained sharing, both
shared-primary and shared-secondary architectures perform simi-
larly when the full costs of sharing the primary cache are included.

1 Introduction

With the use of advanced integrated circuit (IC) processing and

packaging technology several options for the design of high-perfor-

mance microprocessors are available. A design option that is

becoming increasingly attractive is a multiprocessor architecture.

Multiprocessors offer high performance on single applications by

exploiting loop-level parallelism and provide high throughput and

low interactive response time on multiprogr amming workloads

[2][15]. Wkh the multiprocessor design option, a small number of

processors are interconnected on a single die or on a multichip

module (MCM) substrate. The abundance of wires available on-

chip or on-MCM make it possible to construct interprocessor com-

munication mechanisms which have much lower latency and higher

bandwidth than a single bus-based multiprocessor architecture.

Given the multiprocessor communication implementation options

available for improving interprocessor communication perfor-

mance; it is important to understand which mechanism provides the

best overall performance on important application classes. The

objective of this paper is to characterize the benefits and costs of

realistic implementations of two proposed cache-sharing mecha-

nisms that exploit the increased wire density shared level-l (Ll)

Permission to mako digitab?wrd copy of part or all of this work for personal
or daesroom use is ranted without fee provided that copies are not made

ior distributed for pro t or commercial advanta e the copyright notice, the
%’title of the ublication and its date appear, an notice is given that

“icopying IS Ypermission of ACM, Inc. To @py otherwise, to republish, to

cache and shared level-2 (L2) cache. To provide a point of refer-

ence, the performance of these architectures is compared to that of a

conventional single bus-based shared-memory multiprocessor. All

three archkectures are simulated using a complete system simula-

tion environment which models the CPU, memory hierarchy and

I/O devices in sufficient detail to boot and run the Silicon Graphics

IRIX 5.3 operating system. Within our simulation environment, we

evaluate the performance of the three architectures using represen-

tative hand and compiler generated parallel applications, and a mul-

tiprogramming workload. Both kernel and user level references are

included in our results.

We present two sets of results. One set with a simple CPU model
that does not include latency hiding or the true latencies of the
shared-Ll architecture, and a second set with a very detailed and
completely accurate CPU model. The results from the simple CPU
model are used to classify the parallel applications into three broad
classes:applications with a high degree of interprocessor communi-

cation, applications with a moderate degree of interprocessor com-

munication and applications with little or no interprocessor

communication. For applications in the first class we find that the

shared-Ll architecture usually outperforms the other two architec-

tures substantially. For applications in the second class the shared-

LI architecture performs less than 10% better than the other archi-

tectures. Finally, for applications in the third class, contrary to con-

ventional wisdom, the performance of the shared-Ll is still slightly

better than the other architectures. The second set of results include

the effects of dynamic scheduling, speculative execution and non-

blocking memory references. These results show that when the

additional latencies associated with sharing the L1 cache are

included in the simulation model, the performance advantage of the

shared-Ll architecture can diminish substantially.

The rest of this paper is organized as follows. Section 2 introduces

the three multiprocessor architectures and the architectural assumpt-

ions used throughout the paper. Section 3 describes the simulation

environment and benchmark applications that are used to study

these architectures. Simulation results of the performance of the

three multiprocessor architectures are presented in Section 4. In

Section 5 we discuss related work and we conclude the paper in

Section 6.

post on servers, or to recfistribufe to lists, requires prior specific permission
andlor a fee.

RCA ’965196 PA, USA
CI 1996 ACM 0-89791 -786-W9(YO005... $505O

67

2 Three Multiprocessor Architectures

The distinguishing characteristic of shared-memory multiprocessor

architectures is the level of the memory hierarchy at which the

CPUS are interconnected. In general, a multiprocessor architecture

whose interconnect is closer to the CPUS in the memory hierarchy

will be able to exploit fine-grained parallelism more efficiently than

a multiprocessor architecture whose interconnect is further away

from the CPUS in the memory hierarchy. Conversely, the perfor-

mance of the closely interconnected multiprocessor will tend to be

worse than the loosely interconnected multiprocessor when the

CPUS are executing independent applications. With this in mind,

the challenge in the design of a small-scale multiprocessor micro-

processor is to achieve good performance on fine-grained parallel

applications without sacrificing the performance of independent

parallel jobs. To develop insight about the most appropriate level

for connecting the CPUS in a multiprocessor microprocessor we

will compare the performance of three multiprocessor architec-

tures: shared-Ll cache, shared-L2 cache, and a conventional single-

bus shared main memory. We will see that these architectures are

natural ways to connect multiple processors using different levels of

the electronic packaging hierarchy. Before we discuss the features

that distinguish the three multiprocessor architectures, we will dis-

cuss the characteristics of the CPU, which is used with all three

memory architectures.

2.1 CPU

This study uses a 2-way issue processor that includes the support

for dynamic scheduling, speculative execution, and non-bloctig

caches that one would expect to find in a modern microprocessor

design. The processor executes instructions using a collection of

fully pipelined functional units whose latencies are shown in

Table 1. The load latency of the CPU is specific to the multiprocess-

or architecture. To eliminate structural hazards there are two cop-

ies of every functional unit except for the memory data port.

Integer

ALu

Multiply

Divide

Branch

Load

Store

Latency II Floating Point

1 SP AddlSub

2 SP Multiply

12 SP Divide

2 DP AddlSub

lor3 DP Multiply

1 DP Divide

Latency

2

2

12

2

2

18

Table 1 CPU functional unit latencies.

Other characteristics of the processor are 16 Kbyte two-way set

associative instruction and data caches, a 32 entry centralized win-

dow instruction issue scheme and a 32 entry reorder buffer to main-

tain precise interrupts and recover from mispredicted branches.

Branches are predicted with a 1024 entry branch target buffer. The

non-blocking L1 data cache supports up to four outstanding misses.

The CPU is modeled using the MXS simulator [4] which is capable

of modeling modern microarchitectures in detail. In this simulator

the MIPS-2 instruction set is executed using a decoupled pipeline

consisting of fetch, execute and graduate stages. In the fetch stage

up to two instructions are fetched from the cache and placed into

the instruction window. Every cycle up to two instructions from the

window whose data dependencies have been satisfied move to the

execute stage. After execution, instructions are removed from the

instruction window and wait in the reorder buffer until they can

graduate, i.e., update the permanent machine state in program order.

2.2 Shared-Ll Cache Multiprocessor

By the end of the century it will be possible to place multiple pro-

cessors on a single die. A natural way to interconnect these proces-

sors will be at the first level cache as illustrated in Figure 1. The

figure shows four CPUS that share a common, 4-way banked write-

back L1 cache through a crossbar switching mechanism. This archi-

tecture is similar to the M-machine [8]. The prirmwy advantage of

this architecture compared to other multiprocessor architectures is

that it provides the lowest latency interprocessor communication

possible using a shared-memory address space. Low latency inter-

processor communication makes it possible to achieve high perfor-

mance on parallel applications with fine-grained parallelism.

Parallel application performance is also improved by processors

that prefetch shared data into the cache for each other, eliminating

cache misses for processors that use the data later. Other advantages

of a shared-Ll cache are that it eliminates the complex cache-

coherence logic usually associated with cache-coherent multipro-

cessors and implicitly provides a sequentially consistent memory

without sacrificing pa-formance. This makes the hardware imple-

mentation simpler and programming easier.

There are some disadvantages to the shared-Ll cache architecture.

The access time of L1 cache is increased by the time required to

pass through the crossbar between the processors and cache. We

assume that the added overhead of the crossbar switching mecha-

nisms and cache bank arbitration logic would make the total latency

of the L1 cache three cycles, even though the cache banks would be

pipelined to allow single-cycle accesses. However, all of the mem-

ory references performed by the processors will enter the shared-

memory, so there is some probability of extra delays due to bank

conflicts between memory references from different processors. A

third disadvantage is the converse of the shared-data advantage:

processors working with different data can conflict in the shared

cache, causing the miss rate to increase.

Given the clock rates and complexity of the CPU-cache interface of

future microprocessors a single die implementation of the shared-

LI cache is essentisl in order to maintain a low L1 cache latency. If

chip boundaries were crossed, either the L1 latency would be

increased to five or more cycles or the clock rate of the processors

would be severely degraded. Ekher of these would have a signifi-

cant impact on processor performance. The major drawback to the

single die implementation today would be the large area and high

cost of the die. However, the increasing density of integrated circuit

technology will soon make it possible to put four processors on a

chip with a reasonable die area. We estimate the die area required

for four processors of the complexity of the DEC Alpha 21064A [6]

(a dual issue statically scheduled superscalar processor with 32 KB

68

$ 128 bit svstem bus

I Processor IProcessor IProcessor Processor
I

-=cub”s
I 2 MB Level 2 Cache

2-way Associative I

Figurel. Shared primary cache multiprocessor.

of on-chip cache) and the crossbar interconnect to be320mm2in

0.35 micron technology. This is the area of the largest microproces-

sor chips produced today. In a 0.25 micron CMOS technology, that

will be available by the end of 1997, the area is reduced to 160

mmz, which is a medium-sized chip.

The L2 cache and main memories are uniprocessor-like in this sys-

tem since they are not involved in interprocessor communication.

This makes them relatively simple. They are designed with low

Iatencies and heavy pipelining. The degree of pipelining is prima-

rily limited by the 128 bit L2 bus and the 32-byte cache line size

that we assume. The transfer time of tsvo cycles sets the lower

bounds on L2 cache occupancy. For the purposes of this paper we

assume memory latencies and bandwidths that could be attained in

a 200 MHz microprocessor with commodity SRAM L2 cache

memory and multibanked DRAM main memory: an L2 with 10-

cycle latency and 2-cycle occupancy (no overhead), and a main

memory with a 50-cycle latency and a 6-cycle occupancy [7]. No

cache-coherence mechanisms between the four processors on the

chip are required at these levels of the memory hierarchy, since they

are below the level of sharing, Only logic to keep the L2 cache

coherent with other, completely separate processors on the system

bus is required.

2.3 Shared-L2 Cache Multiprocessor

The second multiprocessor architecture we consider shares data

through the L2 cache instead of the L1 cache. A possible implement-

ation of this scheme is illustrated in Figure 2. Here four processors

and the shared-L2 cache interface are separate dies which are inter-

connected using MCM packaging [16]. The four processors and

their associated write-through L1 caches are completely indepen-

dent. This eliminates the extra access time of the shared-Ll cache,

returning the latency of the L1 cache to 1 cycle. However, the

shared-L2 cache interface increases the L2 cache latency from 10

cycles to 14 cycles. These extra cycles are due to crossbar overhead

and the delay for addhional chip boundary crossings [17].

%*X------ *- %--**
:

*
*

: Processor Processor Proceaaor Processor ~

t
+

16KL1 16KLi 16KLI 16KLI :

\ 2-way 2-Way 2-Way
+

:
+
+

system bus

512K 2-Way 512 K2-Way 512K 2-Way 512K 2-Way
L2 Bank L2 Bank L2 Bank L2 Bank

Figure 2. Shared secondary cache multiprocessor.

The write-back L2 cache has four independent banks to increase its

bandwidth and enable it to support four independent access

streams. To reduce the pin count of the crossbar chip, which must

support interfaces to the four processors as well as the four cache

banks, the L2 cache datapath is 64 bits instead of 128 bits used in

the shared-Ll cache architecture. This does have the side effect of

increasing the occupancy of the L2 cache from two to four cycles

for a 32-byte cache line transfer. Since we assume L2 cache is

designed to supply the critical-word-first, this does not have a sig-

nificant performance impact. White the additional latency of the

crossbar will reduce L2 cache performance compared to the shared-

L1 case, only memory accesses that miss in the L1 cache will have

to contend with the reduced-performance L2 cache. For the pur-

poses of sharing, the 14 cycle communication latency will allow

relatively fine-grained communication on multiprocessor programs

but this latency is still much greater than the three cycle sharing

latency of the shmed-Ll cache architecture.

The shared-L2 architecture implemented with separate chips results

in a large number of interchip wires in the system. However, the

performance critical path between a processor and its L1 cache

remains on chip. The less-frequently used path between the L1 and

L2 caches is more tolerant of a few cycles of additional overhead

from crossing die boundaries since it is already 10 cycles long,

Thus, a system in which smaller dies are packaged on an MCM

may have a performance that is close to a shared-L2 cache imple-

mented on a single die while potentially being less expensive to

build. Figure 2 shows that the four processor dies and the crossbar

die are packaged on an MCM, while the four separate 64 bit datap-

ath interfaces to the cache banks would go off of the MCM to sepa-

rate SRAMS. Even with the narrower L2 cache datapaths the

crossbar chip will still require several hundred signal pins for the

interfaces to the processors and cache banks. This high pin count is

only feasible today using chips with area pads that are packaged

using MCM technology [17].

The main memory for this architecture is identical to the main

memory from the shared-Ll case, since the system below the L2

cache is essentially a uniprocessor memory hierarchy. For the pur-

poses of this paper we assume 50 cycles of latency and 6 cycles of

occupancy per access. With this configuration, some hardware must

also be installed to keep the L1 caches coherent, at least for shared

69

regions of memory. The simplest way to do this is to assume that

the L1 cache uses a write-through policy for shared data and that

there is a directory entry associated with each L2 cache line. When

there is a change to a cache line caused by write or a replacement

all processors caching the line must receive invalidates or updates

[17]. This implementation of cache-coherency saves a considerable

amount of snooping control logic on the processors. If this control

logic could be eliminated the processors could be made simpler

than current microprocessors which supprt snoopy cache coher-

ence.

2.4 Shared-Memory Multiprocessor

The final architecture we consider is a traditional bus-based multi-

processor. The processors and their individual L1 caches run at full,

single-cycle cache speeds. This is much like the shared-L2 system.

In addition, each processor has its own separate bank of L2 cache

that it can access at the full speed of the SRAMS, much like the

shared-Ll system (latency = 10 cycles, occupancy= 2 cycles).

512K 2-Way 512K 2-Way 512K 2-Way 512K 2-VJay

L2 L2 L2 L2

Processor Processor Processor Processor

16K L1 16K L1 16K L1 16K L1
2-Way 2-Way 2-Way 2-Way

Figure 3. shared-memory multiprocessor.

However, in order to communicate each processor must access

main memory through the shared system bus, with its high latencies

(still, latency =50 cycles, occupancy = 6 cycles). This will tend to

limit the degree of communication that is possible — each

exchange will take 50 or more cycles. Even with systems designed

to support cache-to-cache sharing of shared data, the typical times

seen will still have a latency of approximately 50 cycles since all

three of the other processors on the bus must check their cache tags

for a match, agree which processor should source the data, and then

recover the necessary data from the correct cache. Since this will

usually require accesses to the off-chip L2 caches controlled by the

other processors while these caches are bus y with local cache traf-

fic, and because we must wait for the slowest processor’s response

in order to ensure coherency, typical times will often be comparable

to memory access times in bus-based systems [7][9].

This architecture represents the capabilities and limitations of cur-

rent printed circuit board based systems. It is worth noting that the

processors must support fidl snoopy cache coherence of both their

L1 and L2 caches. Thk level of support is included in the latest

designs from most leading manufacturers of microprocessors.

Systsm

Shared-Ll

Shared-L2

Shared-Mere.

Access fipe

Level 1 Cache

Level 2 Cache

Main

Level 1 Cache

Level 2 Cache

Main

Level 1 Cache

Level 2 Cache

Main

Cache-to-Cache

EE42!!L
3 1

10 2

50 I 6

1 1

14 4

50 6

L
1 1

10 2

50 6

>50 >6

Table 2 A summary of the ideal memory latencies of three

multiprocessor architectures in CPU clock cycles (1 cycle= 5 ns).

Table 2 shows the contention-free access Iatencies for the three

multiprocessor architectures. A common theme is the increased

access time to the level of the memory hierarchy at which the pro-

cessors communicate. A dwect result of this is that the further away

from the processor communication takes place, the less impact it

will have on uniprocessor performance.

3 Methodology

Accurately evaluating the performance of the three multiprocessor

architectures requires away of simulating the environment in which

we would expect these architectures to be used in real systems. In

this section we describe the simulation environment and the appli-

cations used in this study.

3.1 Simulation Environment

To generate the parallel memory references we use the SimOS sim-

ulation environment [20]. SimOS models the CPUS, memory hier-

archy and I/O devices of uniprocessor and multiprocessor systems

in sufficient detail to boot and run a commercial operating system.

SimOS uses the MIPS-2 instruction set and runs the Silicon Ckaph-

ics IRIX 5.3 operating system which has been tuned for muMpro-

cessor performance. Because SimOS actually simulates the

operating system it can generate all the memory references made by

the operating system and the applications. This feature is particu-

larly important for the study of multiprogr amming workloads

where the time spat executing kernel code makes up a significant

fraction of the non-idle execution time.

A unique feature of SimOS that makes studies such as this feasible

is that SirnOS supports multiple CPU simulators that use a common

instruction set architecture. This allows trade-offs to be made

70

between the simulation speed and accuracy. The fastest CPU simu-

lator, called Embra, uses binary-to-binary translation techniques

and is used for booting the operating system and positioning the

workload so we can focus on interesting regions of the execution

time. The medium performance CPU simulator, called Mipsy, is

two orders of magnitude slower than Embra. Mipsy is an instruc-

tion set simulator that models all instructions with a one cycle result

latency and a one cycle repeat rate. Mlpsy interprets all user and

privileged instmctions and feeds memory references to the memory

system simulator. The slowest, most detailed CPU simulator is

MXS, which supports dynamic scheduling, speculative execution

and non-blocking memory references. MXS is over four orders of

magnitude slower than Embra.

The cache and memory system compnent of our simulator is com-

pletely event-driven and interfaces to the SimOS processor model

which drives it. Processor memory references cause threads to be

generated which keep track of the state of each memory reference

and the resource usage in the memory system. A call-back mecha-

nism is used to inform the processor of the status of all outstanding

references, and to inform the processor when a reference com-

pletes. These mechanisms allow for very detailed cache and mem-

ory system models, which include cycle accurate measures of

contention and resource usage throughout the system.

3.2 Applications

We would expect a multiprocessor microprocessor architecture to

be used in both high-performance workstations and servers. There-

fore, we have chosen workloads that realistically represent the

behavior of these computing environments. The parallel applica-

tions we use fall into three classes: hand parallelized scientific and

engineering applications, compiler parallelized scientific and engi-

neering applications and a multiprogramming workload.

To simulate each application we first boot the operating system

using the fastest CPU simulator and then checkpoint the system

immediately before the application begins execution. The check-

point saves the internal state of CPU and main memory and pro-

vides a common starting point for simulating the three

architectures. Checkpoints also help to reduce the total simulation

time by eliminating the OS boot time.

3.2.1 Hand-ParaUelized Applications

Most parallel applications are ones which have been developed for

conventional multiprocessors. The majority of these applications

come from scientific and engineering computing environments and

are usually floating point intensive. In sekding applications we

have attempted to include applications with both fine- and coarse-

graiued data sharing behavior.

Eqntott is an integer program from the SPEC92 benchmark suite

[27] that translates logic equations into truth tables. To parallelize

this benchmark, we modified a single routine — the bit vector com-

parison that is responsible for about 90% of the computation in the

benchmark. Most of the program runs on one mmterprocessor, but

when the comparison routine is reached the bit vector is divided up

among the four processors so that each processor can check a quar-

ter of the vector in parallel. The amount of work per vector is smalI

so that the parallelism in this benchmark is fine-grained.

MP3D [14] is a 3-dirneusional particle simulator application and is

one of the original SPLASH benchmarks described in [22]. MP3D

places heavy demands on the memory system because it was writ-

ten with vector rather than parallel processors in mind. The conmm-

uication volume is large, and the communication patterns are very

unstructured and read-write in nature. As such, it is not considered

to be a well-tuned parallel application, but could serve as an exam-

ple of how applications initially written for vector machines per-

form as they are ported to shared-memory multiprocessors. In our

experiments we simulated MP3D with 35,000 particles and 20 time

steps.

Ocean is a well written and highly optimized parallel application

that is part of the SPLASH2 benchmark suite [26]. Ocean simulates

the influence of eddy and boundary currents on the large-scale flow

in the ocean using a multigrid solver method. The ocean is divided

into a n x n grid and each processor is assigned a square sub-grid.

Each processor communicates with its neighbors at the boundaries

of the subgrid. Each processor’s working set is basically the size of

the processor’s partition of a grid, and is mostly disjoint from the

working sets of the other processors. For the results in this paper we

use an input data set that has 130 x 130 grid points.

Volpack is a graphics application that implements a parallel volume

rendering algorithm using a very efficient technique called shear-

warp factorization [12]. The parallel algorithm uses a image based

task decomposition in which each processor computes a portion of

the final image in parallel. There are three steps to the parallel algo-

rithm. In the first step a lookup table is computed in parallel for

shading the voxels (volume elements), in the second step each pro-

cessor computes a portion of the intermediate image by selecting

tasks from a task queue. Each task entails computing voxels of con-

tiguous scan lines that intersect the portion of the assigned portion

of the intermediate image. In the last step, the intermediate image is

warped in parallel. To minimize load imbalance, the algorithm uses

dynamic task stealing among the processors. The application uses a

1283 voxel medical data set with a task size of two scanlines. The

small task size is selected to maximize processor data sharing and

minimize synchronization time.

3.2.2 Compiler Parallelized Applications

Recent advances in parallel compiler technology have extended the

range of applications that can be successfully parallelized [1].

These advances include algorithms for interprocedural analysis of

data dependencies, array privatization and C pointer analysis. Inter-

procedural analysis allows the compiler to find parallelism over

wide regions of the program and array privatization makes it possi-

ble to parallelize loops that use arrays as temporary work areas in

the body of the loop. Array privatization make these loops parallel

by giving each parallel loop an independent copy of the array. A

significant amount of data dependence analysis is required for a

compiler to perform array privatization. Aliases occur since C pro-

grams use pointers and pointers can refer to the same object. Such

aliases prevent parallelization and without further information the

compiler must assume all pointers are aliases of each other. Using C

pointer analysis, the compiler is able to identify the pointer aliases

that acturdly occur in the program. This greatly increases the poten-

tial for parallelization

71

In our experiments we use two SPEC92 floating point benchmarks

that have been parallelized by the Stanford Universi~ Intermediate

Format (SUIF) compiler system [2]: ear and the FFT kernel from

nasa7. Ear is a C program that models the inner ear, whfie the FFT

kernel is written in FORTRAN. The FFT kernel can be parallelized

using vector-like compiler analysis, but ear requires pointer disam-

biguation because it is a C application and interprocedural analysis

in order to detect the parallelism. Using these techniques, over 90%

of the execution time of these programs can be paralleliied by the

SUIF compiler.

The parallel behavior of the two automatically parallelized pro-

grams varies widely. In FFT the compiler is able to find outer loops

that are parallelized across procedure boundaries so that the granu-

larity of parallelism is fairly large. However, ear consists of very

short running loops that perform a small amount of work per loop

iteration; consequently, it is has an extremely small grain size.

3.2.3 Multiprogramming and OS Workload

One of the main uses of multiprocessor architectures will be for

increasing the throughput of a multiprogramming workload that

consists of both user activity and OS activity. To model this type of

compute environment we use a program development workload that

consists of the compile phase of the Modified Andrew Benchmark

[18]. The Modified Andrew benchmark uses the gcc compiler to

compile 17 files. Our benchmark eliminates the two phases of the

benchmark that install the object files in a library and delete the

object files. We use a parallel make utility that allows up to four

compilation processes to run at a time. llvo of these parallel makes

are launched at a time.

4 Results

In this section, we present the results for the three architectures run-

ning the applications described in Section 3. F~st we present the

results for all seven of the applications using the Mipsy CPU

model. These results are simple to understand because the CPU

model stalls for all memory operations that take longer than a cycle.

Thus, all the time spent in the memory system contributes dnectly

to the total execution time. The Mipsy results for the shared-Ll

architecture are optimistic because we do not include bank conten-

tion and we assume a l-cycle bit time. The motivation for this is to

avoid penalizing the shared-Ll architecture on a CPU simulator

that has no support for the latency hiding mechanisms of non-

blocking caches or dynamic instruction scheduling. To investigate

the effect of these latency hiding mechanisms, the three cycle hit

latency, and bank contention on the performance of the shared-Ll

architecture, we use the MXS simulator. We present results from

the MXS simulator for three applications with different sharing and

working-set characteristics.

We present the Mipsy results for each application normalized to the

speed of the baseline shared-memory processor. Each graph breaks

down the execution time in to the different sources of delay mod-

eled in the CPU and memory-system models. Since over half of the

time in each benchmark is devoted to the CPU, the graphs are trun-

cated, and only show the top 50’%0of the execution time. This por-

tion of the graphs allows us to focus on the percentage of time spent

waiting for delays caused by various portions of the memory sys-

tem; the component of interest in this investigation. The time spent

waiting for a spin lock or for barrier synchronization is included in

the CPU time. The speed of the load-linked and store-conditional

memory operations used to implement these synchronization primi-

tives affects the amount of time the processors spend synchroniz-

ing. Consequently, the level of data sharing in the memory

hierarchy which affects the speed of these memory operations and

the load balance in the application changes the amount of CPU time

shown in the graphs.

To provide insight into application behavior we present miss rate

data on the working set and sharing characteristics of the applica-

tions. We break down the miss rates for the L1 data cache and uni-

fied L2 cache for all three architectures. Each cache miss rate is

broken into two compmenks replacement miss rate (LIR, L2R)

and invalidation miss rate (L II, L21). Replacement misses are com-

posed of cold, capacity and conflict misses. These misses. are

affected by the organization of the cache and the level of the mem-

ory hierarchy at which the processors share data. Invalidation

misses are due to communication and are most affected by the level

of sharing in the architecture, although the cache line size will

affect the number of false sharing misses. All the cache miss rates

we present are local miss rates: they are measured as misses per ref-

erence to the cache.

4.1 Hand ParaUelized Applications

L1 L2 Mere.

H Memory Cont.

:: L2 Cache Stall

~ L2 Cache Cont.

~ L1 DCache Stall

❑ L1 lCache Stall

❑ CPU

LIR L1I L2R L21

d
Miss rates (%)

Flgnre 4. Eqntntt performance.

Figure 4 shows that on the Eqntott benchmark, the shared-Ll cache

architecture enjoys a significant performance advantage compared

to the other architectures. The low LIR miss rate in the shared-Ll

architecture and the high LII miss rate in the shared-L2 and shared-

memory architectures indicate that Eqntott is characterized by a

smrdl working set and a high communication to computation ratio.

The LII miss rate of 17. may not seem very high, but we shall see

that it is high compared with the other benchmarks. The high com-

munication to computation ratio is due to the fact that Eqntott is

parallelized inside the inner, vector comparison loop. Every time

this loop is executed, the four processors synchronize at a barrier

72

and the master processor transmits copies of the last three quarters

of the vectors being compared to the slave processors so they can

perform their portion of the comparison. Whh the shared-Ll archi-

tecture, these copy operations are free-all processors are reading

from the same L1 caches, and can read the information directly

without any overhead. With the shared-L2 and shared-memory

architectures, however, the vectors must be copied from the L1

cache of the master processor to the L1 caches of each slave. This

operation requires several cache misses in each of the slaves, slow-

ing down the machines proportionally to the communication time

required for each of these cache misses. With a larger data set the

advantage enjoyed by the shared-Ll architecture would be less pro-

nounced because the L1 cache replacement misses would make the

communication miss time a smaller percentage of the total execu-

tion time.

120q ...
❑ Memory Cont.

~~ ~ ~ac~e .sta,,

~ L2 Cache Cont.

& L1 Cache Stall

(J L1 lCache Stall

■ CPU

m

w
L1 L2 Mere. Mtsa rates (%)

Figure 5. MP3D performance.

The performance of MP3D on the three architectures, which is

shown in Figure 5, provides an interesting result. MP3D is known

as a parallel application with large amounts of communication traf-

fic; however, the L1 miss rates of all three architectures is domi-

nated by replacements misses (LIR). This indicates that even

though there is a lot of communication between the processors

cache lines are replaced before they can be invalidated. The LIR

miss rate for shared-Ll architecture is over twice the miss rate of

the other two architectures which indicates that the references from

different processors are conflicting in the L1 cache. The L2R miss

rate of shared-L2 cache is relatively low which means hat all the

important working sets of MP3D tit into the 2 MB L2 cache. We see

that the L2 miss rate of the shared-memory architecture is domi-

nated by invalidation misses due to the heavy communication

requirements of the application. The communication latency advan-

tage that the shsred-L2 architecture has over the shared-memory

architecture results in a significant performance improvement. This

performance advantage does not extend to the shared-Ll cache

because the L1 cache ie not kuge. enough to contain alt of the

important working sets of MP3D. In fact, the high LIR miss rate

causes a substantial increase in the L2R miss rate and causes the

shared-Ll architectures to perform much worse than the shared-

memory architecture. To verify that the high L2 miss rate is due to

conflict misses we increased the set associativity of the L2 cache.

When the L2 cache is 4-way set associative, the miss rate drops to

10% which is similar to the miss rates of the other two architec-

tures. MP3D demonstrates that there are applications with reference

patterns that can cause the shared-Ll mchitectnre to perform poorly

even when the application has a significant amount of shared read-

write data.

L1 L2 Mere.

❑ Memory Cont.

R L2 Cache Stall

~ L2 Cache Cont.

/$ LI DCache Stall

❑ LI lCache Stall

■ CPU

--J
LIR Lll L2R L2i

L1 50160
L25 0200

Mere. 40203

Miss rates (%)

Figure 6. Ocean performance.

The performance of Ocean is shown in Figure 6. Ocean causes

large numbers of LIR misses on all three architectures. The large

bandwidth required to support these misses puts the shared-L2

architecture at a disadvantage because its narrower buses provide

less bandwidth and the shared-L2 cache has a higher hit time. The

contention at the L2 cache caused by the write-through policy of

the L1 caches also degrades the performance of the shared-L2

architecture. The shared-Ll and shared-memory architectures avoid

most of these performance losses through the use of wider buses

and write-back L1 caches. Only a relatively small proportion of the

cache misses are required for communication purposes — there is

only a small amount of communication required at the edges of the

four 65x65 subgrids assigned to each processor compared with the

amount of work within each subgrid — the shared-cache architec-

tures do not offer much advantage over the shared-memory archi-

tecture. The net result of all these effects is that the shared-Ll

architecture performs slightly better than the shared-memory archi-

tecture and the shared-L2 architecture performs slightly worse.

Volpack performance is shown in Figure 7. Volpack’s behavior is

characterized by a low LIR miss rate of 1Yo and a negligible LII

miss rate. Under these conditions the memory system performance

of the shared-Ll architecture and the shared-L2 architecture is sim-

ilar. These architectures both outperform the shared-memory archi-

tecture slightly because there is a non-negligible L21 miss rate due

to communication in the shared-memory architecture. There is a

significant amount ofs ynchronization in Volpack and the reduction

in syncbronization time provided by the shared cache architectures

shows up as a reduction in CPU time in the graph.

73

shared-L2 architecture is not quite as good, but is considerably bet-

❑ Memory Cont.

ter than the shared-memory architecture.

L1 L2 Mere.

Wj L2 Cache Stall.,,,..

~ L2 Cache Cont.

& L1 DCache Stall

❑ L1 lCache Stall

❑ CPU

LIR Lll L2R L21I

d
Miss rates (%)

Figure 7. Volpeck performance.

4.2 Compiler Parallelized Applications

3 m“~ 65 ,..,..-—.—

LI L2 Mere.

❑ Memory Cont.

~~ L2 Cache Stall

~ L2 Cache Cont.

& LI DCache Stall

❑ L1 lCache Stall

❑ CPU

I LIR Lll L2R L211

w
Miss rates (%)

Figure 8. Ear performance.

The results from the automatically parallelized Ear benchmark,

shown in Figure 8, are similar to the hand-parallelized Eqntott

benclu-mwk, since both are very small, fine-grained parallel bench-

marks that have a high ratio of communication to computation. Ear

is even more fine-grained than Eqntott. Ear has a negligible L1 miss

rate on the shared-Ll cache architecture which indicates that all

important working sets fit completely inside the L1 cach~ but it has

the highest LII miss rate for the shamd-L2 and shared-memory

architectures of any of the applications we study which indicates a

high rate of interprocessor comxmmication. Consequently, the per-

formance of the shared-Ll architecture on Ear is impressive: there

are ahnost no memory system strolls. The performance of the

❑ Memory Cont.

jfi L2 Cache Stall

~ L2 Cache Cont.

& L1 DCacha Stall

❑ L1 lCache Stall

E CPU

I LIR Lll L2R L2

w
L1 L2 Mere. Miss rates (%)

Figure 9. FFT performance.

Figure 9 shows that the results from FFT are similar to those of Vol-

pack. Again, the low LIR and LII miss rates result in very similar

memory system performance from the shared-Ll and shared-L2

architectures. Both of these architectures do slightly better than the

shared-memory architecture due to increased L2R and L21 misses

in the shared-memory architecture. FFT shows that for applications

with relatively large grain sizes and little shared da@ the three

archkectures all offer fairly similar performance.

4.3 Multiprogramming and

110 ...
7

100

,g 90

ug

; 80
.-

~ ,0

60

50

L1 L2 Mere.

OS Workload

❑ Memory Cont.

X: L2 Cache Stall

~ L2 Cache Cent.

~ L1 DCache Stall

❑ L1 lCache Stall

E CPU

_-l
L1R Lll L2R L21

LI 2 0100
0140

Mfm. ; 0141

Miss rates (%)

Figure 10. Mtdtiprogr amtning and OS workload performance,

The multiprogramming and OS workload differs from the applica-

tions we have considered so far in that no user-level data is shared

74

& DCache Stall

~ lCache Stall

~;j Pipeline Stall

■ ActuallPC

LI L2 Mere. L1 L2 Mere, LI L2 Mere.

Multiprogramming Eqnton Ear

Figurell. Petiormance of&etim wchit=ties witidyntic superscala pro@ssors.

since the programs arerunas multiple independent processes with

separate address spaces. Figure 10 shows the performan~ of multi-

programming OS and workload on the three architectures. Another

key difference between the multiprogramming workload and the

other applications in this study is the large size of the instruction

working set. So far we have concentrated on data references

because these dominate in the previous applications. In the multi-

programming workload, the code path lengths in gcc compiler are

much longer than the other applications and there is a significant

amount of kernel activity and so the instruction working set is very

large. The instruction cache stall time, which is an indicator of

whether the instruction working set fits into the separate 16KB pro-

cessor instruction caches, is not important in the other applications

(except Volpack), but it takes up 9-10% of the execution time on

the multiprogramming workload.

Surprisingly, the shared-Ll architecture does not suffer a higher

LIR cache miss rate than the other architectures even though this

workload is composed of multiple independent processes that

should contlict with each other in the L1 cache. The reason for this

is that the OS workload is comprised of relatively small processes

with small data working sets that fit comfortably into the 64 K13

shared cache [21]. Furthermore, 16% of the non-idle execution time

is spent in the kernel. As the kernel executes on different processors

the shared-Ll cache provides overlap of the kernel data structures

and lower communication and synchronization latency.

The overall memory system performance of the shared-Ll architec-

ture and shared-memory architecture is similar. The shared-Ll

architecture has slightly more L1 data cache stall time and slightly

less L2 cache stall time than the shared-memory architecture. The

shared-L2 architecture performs 6$Z0worse than the shared-memory

architecture due to the added cost of L1 cache misses and the con-

tention at the L2 cache ports caused by write data from the write-

through L1 data cache. The port contention is significant because

the OS workload has a much larger percentage of stores than the

other applications.

4.4 Dynamic Superscalar CPU Results

Using our most detailed dynamic superscalar CPU model, MXS,

we now include the effects of dynamic scheduling, speculative exe-

cution and non-blocking memory references in determining overall

perfomnance. In addition, we also include the three cycle L1 hit

latency and L1 bank contention for the shared-Ll architecture.

We select three applications to evaluate under MXS based on their

working set and sharing characteristics. The multiprogramming

workload exhibits relatively large instruction and data working sets

with no sharing since the programs run in different address spaces,

although a minimal amount of sharing occurs within the kernel.

Eqntott has moderate instruction and data working set sizes and a

medium to high amount of sharing. Finally, Ear has small data

working sets, but exhibits a large amount of fine-grain sharing.

Figure 11 shows the relative performance, measured in instructions

per cycle (IPC), of the three applications. As described in Section

2.1, we use a 2-way issue processor model with an ideal IPC of 2.

b addition to the actual IPC achieved, we show the loss in IPC due

to data and instruction cache stalls, and pipeline stalk. For the

shared-Ll architecture, the effects of the additional shared-Ll

cache latency and L1 bank contention are counted as pipeline stalls.

Using IPC to compare performance between different multiproces-

sor architectures can be problematic because the architeetnres exe-

cute different numbers of instructions depending on

synchronization time; however we find that the IPC results track the

actual application performance.

We focus first on the results of the multiprogramming and OS

workload. Comparing the detailed CPU results to the simple CPU

results (see Figure 10) we see that the shared-memory architecture

75

now outperforms the shared-Ll architecture by 1770 and the perfor-

mance gap between the shared-memory and the shared-L2 architec-

ture has widened to 33~0. The reason for this is that there is little or

no interprocessor communication in the multiprogr amming work-

load, so the cost of sharing the cache leads to performance losses.

In the case of the shared-Ll architecture, the cost of sharing the

cache is the three cycle L1 hit time which increases the losses due

to pipeline stalls. For the shared-L2 architecture, the performance

losses are due to limited L2 bandwidth and bank contention.

Turning our attention to Eqntott, we see that the shared-Ll architec-

ture performs 18% better than the shared-memory architecture and

the shared-L2 architecture performs 12% better. Thus, the perfor-

mance of the three architectures stays in the same order as the simu-

lation results with the simple CPU model (see Figure 41 however,

the performance gap between the shared-Ll architecture and the

shared-memory architecture has narrowed; again, this is due to the

inclusion of the three cycle hit time and bank contention.

Finally, Figure 11 shows that Ear’s instruction cache and data cache

stall times decrease substantially in going from the shared-memory

to shared-Ll cache architecture. This is consistent with the simple

CPU model results (see Figure 8). However, a large increase in

pipeline stalk occurs due to the additional shared-Ll cache hit-time

and bank contention which is not completely hidden by the proces-

sor’s dynamic instruction scheduling, In contras~ the shared-L2

cache architecture is also able to reduce the instruction cache and

data cache stall times considerably, without the associated costs of

the shared-Ll cache architecture. Thus, the shared-L2 architecture

achieves the best performance overall.

5 Related Work

Shared caches have been proposed and investigated in the wntext

of multiprocessors and multithreaded processors. Shared primary

caches have been proposed by Dally, et. aL, [8] for the M-machine

and by Sohi, et al, [23] for Mukiscalar processors; however, the

performance costs of the shared cache are not really addressed in

these proposals. Nayfeh, et. al., [15] evaluated the performance of

shared primary cache for a single chip multiprocessors. Their

results showed that for a variety of applications at cache sizes larger

than 32 Kbytes adding another processor to a uniprocessor chip

improves the performance more than doubling the cache stie.
TuIlsen, et. al., [24] described a shared primary cache for a proces-

sor with simultaneous multithreading. They compared private pri-

mary caches with separate primary caches for up to eight threads

from separate processes and concluded that the cache configuration

with the best overall performance is a separate instruction cache per

thread with a combined data cach~ however, when fewer than eight

threads are running some of the private caches are not used at all.

Though previous work has considered shared cache behavior, to our

knowledge this is the first time a study of shared cache multiproces-

sors has been done using a detailed and realistic machine architec-

ture, a complete operating system and vaxying application domains.

at dflerent levels of the memory hierarchy, with widely varying

communication characteristics as a result. We have evaluated these

architectures with parallel applications that have been paralleliied

by hand and by a compiler, and with a multiprog amming work-

load. All programs are simulated running on a commercial operat-

ing system using SimOS and our memorys ystem simulator.

Our results, obtained with the simple CPU model, Mipsy, show that

the parallel applications fall into three broad classes: applications

such as Ear, MP3D and Eqntott that have a high degree of interpro-

cessor communication, applications such as Volpack and FFT that

have a moderate degree of interprocessor communication and appli-

cations such as Ocean and the multiprogramming workload with

little or no interprocessor communication. For applications in the

fist class we find that the shared-Ll architecture usually out per-

forms the shared-memory architecture substantially (20-70%). The

exception is MP3D which performs 16?70worse than the shared-

memory architecture due to conflict misses in the L2 cache caused

by contlict misses in the shared-Ll cache. For applications in the

second class the shared-Ll architecture performs lWO better than

the shared-memory architecture. Finally, for applications in the

third class, contrary to conventional wisdom, the performance of

the shared-Ll is still slightly better than the shared-memory archi-

tecture. There are two reasons for this. First, the shared 64KB 2-

way associative L1 data cache is large enough to accommodate the

important working sets of independent threads running on different

processors so that the conflict miss rate is low. We noticed that the

miss rate of the shared-Ll data cache is very similar to the miss

rates of the individual data caches in the other architectures. Sec-

ond, when there is interprocessor communication, it is handled very

efficiently in the shared-Ll architecture. The shared-L2 architecture

tracks the performance gains of the shared-Ll ~chitecture, but to a

lesser degree because the interprocessor communication latencies

are a factor of ten larger than the shared-Ll archkecture. Again, the

exception is MP3D for which the shared-L2 performs 1l% better

than the shared-memory. For applications in the third class the

shared-L2 architecture performs slightly worse than the shared-

memory architecture due to contention at the L2 cache ports.

Using our most detailed CPU model, MXS, we included the effects

of dynamic scheduling, speculative execution and non-blocking

memory references, as well as, the three cycle L1 cache hit latency

and L1 bank contention for the shared-Ll architecture. Our results

for three applications with different sharing characteristics show

that the relative performance of the shared-Ll architecture can

diminish substantially, even with dynamic scheduling. In contrast,

both the shared-L2 and shared-memory architectures retain much

of the relative performance predicted by the simple CPU results.

These MXS results indicate that for pro~ams which exhibit fine-

grained sharing, the shared-L2 cache architecture provides the same

performance benefits as the shsred-Ll architecture.

6 Conclusions

In this paper we compare the performance of three realistic archi-

tectures that could be used in a multiprocessor microprocessor.

These architectures demonstrate the interconnection of processors

76

Acknowledgments

We would like to thank Steve Herrod, Edouard Bugnion and Men-

del Rosenblum for their help with SimOS, Jennifer Anderson for

her help with the compiler parallelized benchnmks, Phil Lacroute

for letting us use the Volpack benchmark, Jim Bennet for develop-

ing MXS, the reviewers for their insightful comments and Trevor

Mudge for serving as our shepherd. This work was supported by

ARPA contract DABT63-95-C-O089.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C.-W.
Tseng, “An overview of the SUIF compiler for scalable
parallel machines: Proceedings of the Seventh SL4A4
Conference on Parallel Processing for Scientfic
Compiler, San Francisco, 1995.

[2] S. Amarasinghe et.al., “Hot compilers for future hot chips;’
presented at Hot Chips VII, Stanford, CA, 1995.

[3] J. Archibald and J. Baer “Cache coherence protocols:
Evaluation using a multiprocessor simulation model:
ACM Trans. on Computer Systems, Vol 4, no 4, pp. 2i’3-
298.

[4] J. Bennett and M. Flynn, “Performance factors for superscalar
processors: Technical report CSL-TR-95-661, Computer
&#&ms Laboratory, Stanford University, February

[5] Z. Cvetanovic and D. Bhandarkar, “Characterization of Alpha
AXP performance using TP and SPEC workloads”, Proc.
21st Annual Int. Symp. Computer Architecture, Chicago,
pp. 60-69, 1994.

[6] DECchip 21064A Hardware Rejerence Manual, Digital
Equipment Corporation, Maynard, Massachusetts, 1994.

[7] D. Fenwick, D. Foley, W. Gist, S. VanDoren, and D. Wissell,
“The AlphaServer 8000 Series: high-end server platform
&w~k~5ment~’ Digital Technical Journal, vol. 7, pp. 43-

,.

[8] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,
Y. Gurevich, and W. S. Lee, “The M-Machine
multicomputer,” Proc. 28th Annual IEEE4ACA4
International Symp. on Microarchitecture, December
1995.

[9] M. Grdles, “The Challenge Interconnect Design of a 1.2 GB/
s coherent multiprocessor bus,” in Hot Interconnects,
Stanford, CA, pp. 1.1.1-1.1.7, 1993

[10] J. Goodman, “Cache Memories and Multiprocessors--
Tutorial Notes: in Third Int. Con$ Architectural Suppon
for Progranuning Languages and Operating Systems
(ASPLOS), Boston, MA, 1989.

[11] J. L. Hennessy and D. A. Patterson, ComputerArchitecture A
Quantitative Approach, 2nd ed, Morgan Kaufman
Publishers, Inc., San Mateo, California, 1996.

[12] P. Lacroute, “Real-time volume rendering on shared memory
multiprocessors using the shear-warp factorizaticm,” 1995
Parallel Renakring Symposium,1995.

[13] D. Kroft, “Lockup-free instruction fetch/prefetch cache
organization,” in Proc. 8th Annual Int. Symp. Computer
Archite@ure, pp. 81-87, 1981.

[14] J. McDonald and D. Baganoff, “Vectotization of a particle
simulation method for hypersonic rarefied flow,” AZAA
Thermodynamics, Plasma dynamics and Lasers

Conference, June 1988.

[15] B.A. Nayfeh and K. Olukotun~ “Exploring the Design Space
for a Shared-Cache Multiprocessor;’ 21st Annual Int.
Symp. Computer Architecture, Chicago, pp. 166-175
1994.

[16] B.A. Nayfeh, K. Olukotun and J. P. Singh, “The Jmpact of
Shared-Cache Clustering in Small-Scale Shared-Memory
Multiprocessors’’,Proceedings of the Second Annual
Symposium High-Petjormance Computer
Architecture, !l%ose, CA. February 1996.

[17] K. Olukotun, J. Bergmann, and K. Chang, “Rationale and
Design of the Hydra Multiprocessor: Computer Systems
Laboratory Technical Report CSL-TR-94-645, Stanford
University, 1994.

[18] J. Ousterhout, “Why aren’t operating systems getting faster as
fast as hardware?:’ Summer 19W USENIX Conference,
pp. 247-256, June 1990.

[19] R1OOOO Users Manual, version 1.0, Silicon Graphics
International. 1995.

[20] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “The
SimOS approach,” IEEE Parallel and Distributed
Technology, vol. 4, no. 3, 1995.

[21] M. Rosenblum, E. Bugnion, S. Herrod, E. Witchel, and A.
Gupt~ “The impact of architectural trends on operating
system performance;’ Proc. 15th ACM symposium on
Operating Systems Principles, Colorado, 1995.

[22] J.P. Simzh. W.-D. Weber and A. Guota. “SPLASH: Stanford

[23] G.

[24] D.

[25] E.

—=—,
Parallel Applicatio& for ‘Sh~~”~Mernory”, Computer
Architecture News, 20(1):5-44, March 1992.

Sohi, S. Breach, and T. Vijaykumar, “Mukiscalar
processors;’ 22nd AnnuaJ Int. Symp. Computer
Architecture, Santa Margherita, Italy, June 1995.

Tullsen, S. Eggers, and H. Levy, “Simultaneous
mukithreading: maximizing on-chip parallelism,” 22nd
Annual Znt. Symp. Computer Architecture, Santa
Margherita, Italy, 1995.

Witchel and M. Rosenblum, “Embra fast and flexible
machine simulation,” ACM SIGMETRICS ’96 Conference
on Measurement and Modeling of Computer Systems,
Philadelphia 1996.

[26] S. C. Woo, M. Ohara, E. Tome, J.P. Singh and A. Gupta, “The
SPLASH-2 Programs: Characterization and
Methodological Considerations”, 22nd AnnuaJ Int. Symp.
Computer Architecture, Santa Margherita, Itrdy, June
1995.

[27] SPEC, “SPEC Benchmark Suite Release 2.0~’ System
Performance Evaluation Cooperative, 1992.

77

