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Abstract

Hardware faults can occur in any computer system. 

Although faults cannot be tolerated for most systems (e.g., 

servers or desktop processors), many applications (e.g., 

networking applications) provide robustness in software. 

However, processors do not utilize this resiliency, i.e., 

regardless of the application at hand, a processor is expected 

to operate completely fault-free. In this paper, we will question 

this traditional approach of complete correctness and 

investigate possible performance and energy optimizations 

when this correctness constraint is released. We first develop a 

realistic model that estimates the change in the fault rates 

according to the clock frequency of the cache. Then, we 

present a scheme that dynamically adjusts the clock frequency 

of the data caches to achieve the desired optimization goal, 

e.g., reduced energy or reduced access latency. Finally, we 

present simulation results investigating the optimal operation 

frequency of the data caches, where reliability is compromised 

in exchange of reduced energy and increased performance. 

Our simulation results indicate that the clock frequency of the 

data caches can be increased as much as 4 times without 

incurring a major penalty on the reliability. This also results 

in 41% reduction in the energy consumed in the data caches 

and a 24% reduction in the energy-delay-fallibility product.   

1. Introduction 

Over the last decade, in spite of the complexities of new 

manufacturing technologies and increasingly complicated 

architectures, designers have been able to steadily push the 

limits of performance of microprocessors. This is achieved 

through optimizations at the architectural level (such as 

aggressive pipelining strategies) and at the circuit level 

(such as smaller feature sizes). As we move into deeper 

sub-micron technologies, the complexity of pushing the 

circuit performance has become an important obstacle. 

Increased heat dissipation and sub-micron effects are two 

examples of the limitations on the optimizations at the 

circuit level. In this work, we design a micro-architectural 

optimization to aid the circuit designers overcome such 

hurdles. Particularly, we will allow the clock frequency of 

the data cache to go beyond the specifications of the circuit 

designer. Instead of performing this “over-clocking” 

uninformed, we will first explore the relation between the 

operating frequency (i.e., clock frequency) of a cache 

structure and its robustness. As we increase the clock 

frequency, the probability of a fault in the data cache 

accesses increases. This may result an erroneous execution 

of the applications. Hence, we name our proposed 

architecture a clumsy packet processor. In our approach, 

we first develop a model for estimating the hardware faults 

when the clock frequency is changed. This model will 

allow us to develop ultra-low power cache structures. In 

addition, the delay of the components will also be reduced. 

The disadvantage of this optimization is that the probability 

of hardware failure reduces the reliability of the processor. 

Overall, our goal is to investigate the trade-offs at the 

application-level, architecture-level, and circuits 

simultaneously in the context of packet processors. We use 

the term packet processor for any type of processor 

handling packets in a networking hardware. These range 

from network processors (NPs) to ASICs and general-

purpose microprocessors used in networking hardware.  

In all computer processors there is an inherent 

possibility of faults1 being introduced into the system. 

These faults may arise from any of several sources such as 

adverse environmental conditions [26], physical hardware 

defects, electronic noise or logical design flaws [9]. 

Moreover, this fault problem is expected to be even more 

pressing in the future due to aggressive scaling-down of the 

supply voltages (Vdd), increasing clock rates, and the use of 

flip-chip packaging. While it is critical to put every effort 

for avoiding these faults by careful circuit design and 

packaging, they can still occur and need to be addressed. 

Hence, we should consider reliability trade-offs even 

during the design of the processors, which will operate 

completely under the specified conditions.  

The effect a fault has on a system is largely dependent 

on the application in question. In most cases, omitting 

faults is not an option, i.e., the processor should be 

designed to capture and eliminate faults. This is the 

inherent nature of the user expectation. However, for other 

domains—such as networking and media applications—a 

certain level of error is acceptable, and the integrity of the 

system’s behavior can be maintained despite potential 

faults. This is also related to the properties of the systems: 

networking software/systems are implemented with the 

assumption that the hardware can fail (e.g., routers can 

drop packets).  

Regardless of a fault’s source, the system will operate 

differently depending on the corrupted data. Electronic 

noise may lead to the corruption of a single piece of 

1
A fault is an incorrect execution of the hardware. An error is defined to 

be an incorrect outcome of an application due to a fault.  
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transient data and affect behavior only momentarily. On the 

other hand, a static data element might be damaged—such 

as a lookup table—disrupting the system for a longer 

period of time and perhaps making recovery from the error 

more difficult. In this paper we analyze the susceptibility of 

a data cache to faults and the resulting behavior for packet 

processors. Particularly, we study several networking 

applications and define error metrics for each of these 

applications. We first make the distinction between the 

control plane and data plane tasks in these applications and 

measure the error behavior of the applications under 

different operation frequencies in these segments. Then, we 

perform a study where we introduce cache faults and 

measure their effect on these applications. Our goal is to 

extract optimal execution properties of the caches for 

different applications. We also present a scheme that 

dynamically adjusts the processor properties to achieve 

reduced energy consumption and/or increased performance. 

Specifically, our contributions in this paper are: 

We propose the design and utilization of clumsy packet 

processors,

We find a realistic model that determines the 

probability of a fault for a given cycle time of a cache 

and show that the delay of the cache and the energy 

consumed by the cache can be reduced significantly 

without incurring a large penalty on faulty behavior,  

We discuss simulation results investigating an optimal 

point for trading off the reliability for reducing cycle 

time of the data cache in a representative architecture,

We implement a scheme to dynamically adjust the 

operation frequency of the data cache to achieve the 

desired objective (e.g., reduced energy).

There is also an increasing motivation to utilize NPs in 

wireless systems. In such systems, energy consumption is 

arguably the most important design criteria. Our 

optimization scheme reduces the execution delay and the 

energy consumption simultaneously.  

The types of errors examined are similar to those in the 

aforementioned cases. One type is considered to be a 

volatile error, affecting data only temporarily. In general 

this type of error will only concern a limited amount of 

data, and will not noticeably affect performance provided 

that the error does not continually reproduce. The other 

type is a nonvolatile error, which has an effect on a static 

data structure (e.g., the routing table). This type of error 

will have a lasting effect on the system. Our goal in this 

paper is to define data structures in these applications that 

can be used to measure their error behavior.  

The rest of the paper is organized as follows. In the next 

section, we present the applications studied and discuss the 

application-specific error metrics we have defined for each. 

Section 3 explains the analytical model we have developed 

to estimate the hardware faults for various clock 

frequencies of the data cache. Section 4 presents the overall 

architecture and a dynamic scheme for adjusting the clock 

frequency. Section 5 discusses the simulation results. 

Section 6 gives an overview of the related work and 

Section 7 concludes the paper with a summary.  

2. Applications and error measurement 

In this section, we discuss the networking applications 

studied in this paper and present the error metrics used for 

each application. We selected seven applications from the 

NetBench [13] suite. The applications are listed in Table I. 

NetBench is a benchmarking suite designed for NPs. It 

contains applications representing level 3 tasks (e.g., route) 

as well as higher-level programs.  

As a metric of “reliability”, we first identify important 

data structures and outputs of key function units for each 

application. Our goal is to make a comparison of these data 

values between the correct execution and an execution with 

faults (Section 5.2). Thereby, we will measure the 

probability of an error in the application. Some of these 

data structures have more impact on the overall output than 

others (e.g., a routing table error is more important than an 

error in the ttl value calculation). However, in this study we 

do not assign weights to them. Note that this type of 

measurement assumes that the application executes to 

completion even under faults. As we are executing 

erroneous code (i.e., a code that will read erroneous data) 

and the data values are changed, it is possible that the 

application might fall into an infinite loop or even cause the 

system to crash. This is of interest to us for measuring the 

effects of faults. Therefore, an error, which prevents a 

complete execution is a special one called a fatal error.

Table I. Networking Applications and Their Properties 

Fallibility Factor 
App.

No. of inst. 

simulated 

[M] 

No. of 

cache acc. 

[M] 

Cache

miss

rate [%] Cr=0.5 Cr=0.25

crc  145.8 59.8 1.2 1.007 1.052 

tl 6.9 3.9 9.2 1.016 1.135 

route 14.2 7.1 5.8 1.001 1.018 

drr 12.9 7.9 5.7 1.002 1.008 

nat 11.4 5.6 7.1 1.004 1.077 

md5 209.1 73.2 3.8 1.055 1.261 

url 497.0 249.1 11.2 1.003 1.018 

One common property of all the applications is the 

separation of control plane and data plane tasks. In all the 

applications, the implementation initially performs the 

control plane tasks. This is followed by the data plane 

tasks. We have identified each of these segments in the 

applications.  

CRC: The CRC-32 checksum calculates a checksum 

based on a cyclic redundancy check. The code is available 

in the public domain [6]. The errors are measured using 

two data structures: the crc table and the crc accumulator 

value calculated for each packet. Note that the errors in the 

crc table are more serious, because they can potentially 

affect multiple packets.  
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TL: TL is the table lookup routine common to all routing 

processes. In this application, a radix-tree routing table is 

implemented. The code segment is from FreeBSD 

operating system [18]. The data values in the TL 

application are the radix tree nodes traversed and the 

RouteTable entry for each packet.

ROUTE: Route implements IPv4 routing according to 

RFC 1812 [4]. When a router receives a packet, it has to 

decide the next network hop. The values observed in the 

route application are the entries in the created RouteTable, 

the checksum value, the ttl value, and the radix tree entries 

traversed for each packet.

DRR: Deficit-round robin (DRR) scheduling [24] is a 

scheduling method implemented in several switches today. 

In DRR, all the connections through the router have 

separate queues for a fair scheduling. The implementation 

is based on the algorithm by Shreedhar and Varghese [24]. 

The data values in the DRR application are the entries in 

the created RouteTable, the radix tree entries traversed for 

each packet, the value of the deficit list for each packet, and 

the deficit information read for the packet.

NAT: Network Address Translation (NAT) is a common 

method for IP address management. NAT operates on a 

router, usually connecting two networks, and translating 

the private (not globally unique) addresses in the internal 

network into legal addresses before packets are forwarded 

onto the public network. The data values used for 

measuring errors in NAT are initial IP source address, 

value in the interface for translation, translated IP source 

address, the IP destination address after translation, the 

entries in the NAT table, and the radix tree entries traversed 

for each packet.

MD5: Message Digest algorithm (MD5) creates a 

signature for each outgoing packet, which is checked at the 

destination [21]. The implementation is from RSA Data 

Security, Inc. [22]. The errors in MD5 are binary errors 

URL: URL implements URL-based destination 

switching, which is a commonly used content-based load 

balancing mechanism. In URL-based switching, all the 

incoming packets to a switch are parsed and forwarded 

according to URL. The data structures in the URL 

application that are observed are: URL table entries, final 

IP destination address, RouteTable entries, the checksum 

value, the ttl value, and the radix tree entries traversed for 

each packet 

3. Fault model and clock frequency 

Injection of noise into a circuit node causes a signal 

deviation at that node. This signal deviation will affect the 

operation of the circuit or circuit block driven by the victim 

net, and may lead to different kinds of unexpected behavior 

including functional failure or logic faults. The parameters 

that determine if there will be a logic fault are (i) the 

amplitude and the duration of the noise pulse, (ii) the type 

of the victim node and the circuit connected to the victim 

node, and (iii) the signal condition on the affected node.  

Higher clock rates limit the achievable voltage swing at a 

circuit node (see Figure 1(a)), since there is insufficient 

time to fully charge or discharge the load capacitance. Cfs

in Figure 1(a) is clock cycle time required to obtain the full 

voltage swing (Vfs) from zero to Vdd. Note that the supply 

voltage is kept constant at Vdd.

Figure1(a). Voltage at circuit node;  

Figure1(b). Voltage swing-frequency curve 

Figure 1(b) illustrates the decrease of voltage swing (Vs)

with the decrease of clock cycle time (C). The clock cycle 

time and the voltage swing are normalized against the clock 

cycle at full swing (Cfs) and the full swing voltage (Vfs),

respectively. The relative voltage swing is defined as Vsr = 

Vs/Vfs and the relative cycle time Cr = C/Cfs. If the voltage 

swing changes, all the signals become faster by the same 

ratio independent of the capacitive load at a circuit node. 

This shape correctly maps the change of actual signals on-

chip with time. The curve in Figure 1(b) has been produced 

by simulating a chain of gates driven by an inverter at 

different frequencies with constant supply voltage Vdd.

Figure 2 (a) A static RAM cell; (b) Noise Immunity Curve 

With a reduced signal level, a circuit node is more likely 

to suffer from logic failure due to a certain level of noise. 

The main advantage of static logic over dynamic logic is its 

robustness under the influence of noise. But static logic 

may also suffer from logic failure if there is a feedback 

loop. A 6-transistor static RAM cell (as in Figure 2(a)), 

which is a common building block of caches, has a 

feedback loop that cannot recover from noise-induced 

faults. In these types of circuits there are three possible 

points where noise can be injected: the input, the clock and 

the feedback loop. Of these three points, the feedback loop 

is the most sensitive to noise. A set of noise immunity 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative cylce time (Cr)

re
la

ti
v
e 

v
o
lt

ag
e 

sw
in

g
(V

sr
)

at Cfsat 0.3Cfs

Vfs
0.8Vfs 0.78Vfs

0.6Vfs

0.56Vfs

0.39Vfs
0.61Vfs0.5Vfs

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



curves for the SRAM cell in Figure 2(a) is presented in 

Figure 2(b), which plots the relative noise duration (Dr)

against the relative noise amplitude(Ar) at various voltage 

swings. SPICE simulations were used to determine the set 

of noise amplitudes and durations that cause a logic failure 

for different voltage swing levels. The area above each 

curve in Figure 2(b) represents the amplitudes and 

durations of a noise pulse that can cause logic failure. The 

relative noise amplitude is defined as Ar = A/Vfs, where A is 

the amplitude of the noise pulse, and the relative duration 

of noise Dr = D/Cfs, where D is the duration of the noise 

pulse. The highest curve is for the full voltage swing Vfs

(swing from zero to Vdd). The lower curves illustrate noise 

immunity at voltage swings smaller than the full swing.  

Figure 3. Noise level at various switching combinations. 

It is important to note that the noise amplitudes and 

durations are not equally probable. The probability of 

smaller noise amplitudes and noise durations are higher 

than larger amplitude pulses with longer duration. Consider 

a victim line, which has n neighbors significantly coupling 

to it. For noise injection into the victim line the total 

number of switching combinations of the neighboring lines 

is 22n. Only one switching combination results in the worst-

case noise amplitude, which occurs when all the 

neighboring lines switch in the same direction. However, 

the number of cases where the effects of most of the 

neighboring lines cancel each other resulting in very small 

amplitude of noise is very large. We have found the 

number of switching cases between these two limiting 

cases, which result in a certain noise amplitude range. The 

results are plotted in Figure 3. This distribution can be 

approximated very well by an exponential as in (1). 

Number of cases = 
AK

eK 2
1 (1)

The exact constant K1 and K2 depends on the number of 

lines (n) coupling to the victim line. For large n (greater 

than 16) this curve saturates to continuous probability 

distribution of the form 

rA
erAP

8.28
*8.28)(  where rA0 (2)

10)( rDP   for 1.00 rD

0)( rDP   for rD1.0
(3)

The probability distribution of noise duration can be 

given by (3). The reason Dr is uniformly distributed 

between 0 and 0.1 is that this is the range of rise time on 

chip as a ratio of the cycle time. The noise duration is 

limited by these rise times, since noise occurs due to 

capacitive and/or inductive coupling of switching line to a 

victim line. Once an aggressor signal settles, the noise 

pulse ends. Using equation (2) and (3), the probabilities 

(PE) of logic failure for an SRAM cell at different voltage 

swings have been obtained by the integration of the 

probabilities of noise pulse above each curve of Figure 

2(b). Figure 4 plots the probabilities of logic failure against 

the relative voltage swings (Vrs). The probability number at 

full voltage swing are consistent with industrial and test 

data [23]. 

Figure 4. Probability of a fault at various voltage levels 

Figure 5. Probability of a fault at different cycle times 

The probability of fault versus cycle time in Figure 5 

has been obtained by the voltage swing variable from the 

two relations: cycle time versus voltage swing (Figure 1(b)) 

and probability of fault versus voltage swing (Figure 4). 

The relative cycle time Cr is always less than 1 for lower 

voltage swings. Similarly we can define relative frequency 

Fr = f/ffs = 1/Cr, where f is the frequency and ffs is the 

frequency at full voltage swing. PE is a single bit 

probability of fault and is a function of how fast a circuit is 

driven by allowing the voltage swing to decrease. The 

formula below shows the relation between PE and Cr and 

Fr.

67*6

1

7

2

2

*10*59.2*10*59.2
r

r

F

C

E eeP (4)

These formulae have been found by curve fitting for the 

data of the above curves. The curves in Figure 5, showing 

the data and the curve fitted formula, illustrate the accuracy 

of the formula. 

4. Clock variation and fault detection 

In this paper, we assume a processor architecture similar 

to a generic Network Processor (NP). We model a 

relatively simple execution core with a local instruction 

cache, a local data cache, and a shared level-2 cache. 

Although we apply our ideas to a packet processor, they 
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can be applied to any type of processor that executes 

applications with fault resiliency (e.g., media processors).  

One important aspect of the cache accesses is whether to 

include a fault detection scheme or not. In Section 5, we 

will experiment with a processor architecture where cache 

blocks are protected with parity and a processor 

architecture without any fault detection scheme. We are 

modifying the clock frequency of the level-1 cache only. 

Hence, we assume that the data in the level-2 cache will be 

correct unless an incorrect value from level-1 is written to 

it. Therefore, if a fault is detected, we can access the data 

from the level 2 cache. As the error correction techniques 

(such as Hamming codes) would incur unnecessary 

complication on the design and energy consumption, they 

are not considered in our studies.   

Once a fault is detected, we have different options of 

recovery. A fault might be caused during the read—in 

which case the actual data in the cache is actually correct—

or during the write to the cache . We cannot determine the 

exact source of the fault. The first technique we utilize 

assumes that every fault observed is a write fault. 

Therefore, for every fault detected, it invalidates the cache 

block2 and starts accessing the level 2 cache. This strategy 

is called a one-strike strategy. The second strategy accesses 

the cache after a fault and if another fault is detected, it 

invalidates the cache block and accesses the level 2 cache. 

This strategy is called a two-strike strategy. Similarly, a 

three-strike strategy accesses the level 1 cache twice before 

invalidating the block. Even if the processor employs a 

fault detection and recovery mechanism, there is still a 

chance of undetected faults. Therefore, the application can 

behave erroneously.  

Over-clocking the cache can be utilized during the 

design process of a processor. However, this is hard to 

achieve for programmable processors (such as Network 

Processors), because different applications might require 

different levels of reliability. Therefore, in the next section 

we also present results for a dynamic frequency adaptation

technique. In this scheme, the processor adapts the 

operation frequency of the data cache according to the 

faults it has observed. Particularly, it records the number of 

parity failures during execution epochs. For our 

simulations, after the completion of the processing of 100 

packets, the processor makes a decision for whether to 

increase the frequency, to keep it in its current state, or to 

decrease it depending on the number of faults. Note that the 

possible frequency settings are discrete. Hence, when the 

frequency is changed, it will be set to the next frequency 

level available. Whenever a frequency change is made, the 

number of faults in the previous epoch is stored. During the 

decision, if the number of faults is more than X1% of the 

last stored fault rate, the frequency is reduced. If the fault 

2
If the cache has sub-blocks, only the corresponding portions of the cache 

block can be invalidated and accessed from the level 2 cache. However, in 

this paper we do not study such cache structures.

rate is less than X2% of the last stored rate, the frequency is 

increased. For all other rates, the frequency is not changed. 

A detailed study reveals that setting X1 to 200% and X2 to 

80% overall results in the best performance of the dynamic 

scheme. This also relates to the fault model we have 

developed in Section 3. As shown in Figure 5, the clock 

cycle can be reduced by almost 60% before we observe a 

major increase in the number of faults. Depending on the 

packet processing time, the X1 and X2 values will lean 

towards increasing the frequency until a significant 

increase in the number of faults.  

Most networking applications have application errors 

proportional to the number of faults occurred during the 

processing of a packet. The dynamic frequency adaptation 

technique observes the packet processing and makes the 

decision for a constant number of packets (instead of time). 

This allows the system to dynamically adjust to the 

properties of the application. This information is usually 

available to the processor cores.

Note that dynamically varying the clock frequency of 

the cache is easier to implement than varying the supply 

voltage [11]. This can be achieved while the cache is being 

accessed and there is no need to flush the cache. In 

accordance with this, we incur a 10-cycle penalty whenever 

the frequency is dynamically varied. In addition, the 

hardware to implement variable clock rate is also quite 

simple. We assumed that the frequency can be increased by 

50%, 100%, or 300%, corresponding to Cr values of 0.75, 

0.5, and 0.25.

4.1 Comparison Metric  

We need to introduce a measurement index to determine 

the “optimal” point of operation. Since, the processor is 

going to make errors, traditional approaches such as delay, 

energy, or energy-delay product would be insufficient. We 

define the metric energy-delay-fallibility product, which is 

the product of the energy consumption, the execution 

cycles of the application, and the “fallibility” factor of the 

processor. The energy consumption is the energy consumed 

in the whole processor during the execution of the 

application. The fallibility is defined as the probability of 

the processor making an error for the application. One can 

use the number of hardware faults that are not detected to 

measure the fallibility. However, due to the application-

specific nature of our target architectures, we use 

application errors in the fallibility factor as discussed in 

Section 2. Particularly, fallibility corresponds to the 

fraction of packets that have any type of errors. We also 

pay special attention to the fatal errors. Since fatal errors 

prevent other packets to be processed3, we calculate the 

number of packets successfully processed till the 

occurrence of a fatal error. The reported energy-delay-

3
Majority the fatal errors we have observed during our simulations are 

because the execution gets stuck in an infinite loop. For such an error, the 

processor can be modified such that we can recover from the error. 
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fallibility factors are based on this number. We report the 

probability of a fatal error in addition to the energy-delay-

fallibility product. Particularly, we record the fatal error 

probability with increasing clock frequency. Increased 

clock frequency makes system more susceptible to 

termination. Hence, less number of packets can be 

processed successfully at higher clock frequency. 

Although we argue that the packet processors can have 

faults, frequent faults are certainly undesirable considering 

the system behavior. Therefore, instead of giving the same 

weight to each component in energy-delay-fallibility 

product, one can give more weight to the fallibility. 

Particularly, the product can be calculated as energyk-

delaym-fallibilityn according to the needs of the 

architecture. In our studies, since delay and fallibility are 

more important than energy, we set k to 1, m to 2, and n to 

2. The energy-delay-fallibility product can be defined for a 

single component (e.g., cache). However, in this paper, we 

measure the metric for the applications.  

5. Experimental results 

5.1 Simulation Environment  

We used the SimpleScalar/ARM [7] for our simulations. 

We modified the processor configuration to model a 

processor similar to execution cores in a variety of Network 

Processor architectures. Particularly, we simulate a 

processor similar to StrongARM 110 with 4 KB, direct-

mapped L1 data and instruction caches with 32-byte line- 

size, and a 128 KB, 4-way set-associative unified L2 cache 

with a 128-byte line-size. The level 1 data cache has 2-

cycle latency and the level 2 cache latency is 15 cycles. We 

first modified the applications to mark the values of data 

structures mentioned in the previous section. Then, we 

have modified the simulator to introduce random faults into 

the execution and to simulate the effects of the introduced 

faults. We chose an initial fault probability of 2.59*10-7 per 

bit (in accordance with the formula (4)). This fault rate is 

similar to the rates reported by Shivakumar et al. [23]. The 

probability of a two-bit fault is set to 2.59*10-9, and the 

probability of three-bit faults is 2.59*10-10 in accordance 

with reported correlation between single-bit and multiple 

bit faults [12]. For the higher clock rates, we increased the 

fault rate in steps according to formula (4).  

5.2 Application Error Behavior

This section describes the simulation results observed 

for the networking applications. The experiments in this 

section measure the effect of different fault rates on the 

data structures discussed in Section 2.  

Figure 6 presents the results for the route application. 

For the results presented in Figure 6(a), we only introduce 

faults during the control plane tasks. Similarly, for the 

results in Figure 6(b), faults are introduced only during data 

plane tasks. For the results in Figure 6(c), faults are 

introduced during both the control plane and data plane 

tasks. Intuitively, the faults in the control plane tasks 

should have significantly more effect on the application 

behavior. This can be observed for initialization error when 

Figure 6(a) and Figure 6(b) are compared. However, for 

most error types, the difference is not drastic. This behavior 

is due to the shorter length of the control plane tasks 

compared to that of the data plane tasks. Therefore, 

although each fault happening during the control plane 

tasks has larger impact on the error rate compared to the 

faults during data plane tasks, the overall impact of varying 

the clock rate during the control plane tasks is not 

drastically more on the application errors. This is an 

encouraging result, because in many cases the processor 

will not have information about the type of task it is 

executing. Hence, it might be complicated to have different 

clock rates for different tasks. Since the results indicate that 

the effect of faults during control plane tasks is tolerable, 

we can “safely” vary the clock frequency. 
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     Figure 6.  Error Probability of route application 

Figure 7 presents the results for the nat application. 

Similar trends can be observed for this application as well. 

Particularly for the nat application we see that errors due to 

faults during data plane tasks have more impact on the 

application behavior than the faults during control plane 

tasks. The results for the remainder of the applications are 

not presented due to their similarities with the presented 

results. However, all of them show identical characteristics 

of the applications under erroneous execution. Overall, all 

the applications can sustain faults to varying extents. For 

smaller fault rates we observed the execution of the 

(a) Faults introduced in control plane 

(b) Faults introduced in data plane 

(c) Faults introduced in both data and control planes 
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     Figure 7. Error Probability of nat application 

With increase in the fault rates, the applications start 

producing erroneous outputs. Nevertheless, we see that the 

clock rate of the data cache can be increased up to 4 times 

without causing a major impact on the application output. 

Particularly, the largest error behavior we have observed in 

our simulations for the md5 application, when the relative 

clock frequency is set to 400%. For this particular case, the 

fallibility factor is 1.261. The fallibility factor of all the 

studied applications for the 0.5 and 0.25 relative clock rates 

are presented in the right-most columns of Table 1. The 

reasons we can increase the clock frequency as much as 4 

times are two-fold. First, since the clock frequency is 

initially set too low by the circuit designer to be safe, 

increasing the clock frequency initially does not have a 

major impact on the fault probability. In addition, during 

the simulations, we have seen that not all the faults have an 

impact on the application output. On average we have only 

observed an error for approximately 15% of the faults.  

5.3 Fatal Error Probability Measurements

We recorded the probability of a fatal error with 

increased clock frequency. Unlike other errors, fatal errors 

may destroy the system integrity. This prompts to ensure 

that the clock frequency should not reach a value that may 

result a high probability of fatal error. Figure 8 depicts the 

fatal error probability for different applications when there 

is no error detection scheme employed. Similar to the 

fallibility results, we see that the fatal error probability is 

zero for smaller increases in the clock rate. As we exceed 

100% increase in the clock rate, we start seeing an impact 

on the fatal error probability.  

Note that the fatal error probabilities in Figure 8 are 

measured for the base architecture, which does not employ 

any error detection scheme. Error detection schemes reduce 

the probability of fatal errors dramatically. In fact, during 

the simulations of the architectures with error detection, we 

have never encountered a fatal error.   

Figure 8. Fatal error probabilities for different clock rates. 

5.4 Energy-Delay-Fallibility Measurements

The simulations presented in this section introduce 

faults during both the control plane and the data plane. As 

we have discussed in Section 4.1, different techniques are 

compared using the energy-delay2-fallibility2 product. To 

measure the energy consumed during the applications we 

use three models. For the energy consumption of the 

overall processor, we used the results presented by 

Montanaro et al. [14]. The energy consumed by the caches 

when they are operated with full frequency is found using 

CACTI [28]. When the clock frequency is increased, the 

voltage swing decreases. The energy consumed by the 

cache linearly shrinks with this decrease in the voltage 

swing. Therefore, we used the model presented in Figure 

1(b) to find the relative voltage swing for different clock 

rates. Particularly, the energy consumed by the cache 

reduces by 45%, 19%, and 6% for relative clock rates of 

0.25, 0.5, and 0.75, respectively. To estimate the energy 

consumed by the error detection scheme, we use the results 

presented by Phelan [17]. The level-1 data cache consumes 

16% of the overall chip energy. Parity increases the energy 

consumed during reads by 23%. Similarly, the energy 

consumed during writes increases by 36%. We assumed 

that each word (32-bits) is protected by a single parity bit. 

To measure the delay in the applications, we calculate the 

average number of cycles spend for each packet. Note that 

we cannot use the total number of execution cycles, 

because some simulations do not finish to completion due 

to fatal errors. The fallibility factor is calculated as 

explained in Section 4.1.  

(c) Faults introduced in both data and control planes 

(b) Faults introduced in data plane 

(a) Faults introduced in control plane 
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Figure 9: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static 

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the route, (b) for the crc application. The bars represent the 
relative energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection. 

Figure 10: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static 

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the md5, (b) for the tl application. The bars represent the relative 
energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection. 

Figure 11: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static 

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the drr, (b) for the nat application. The bars represent the relative 
energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection.

Figure 12: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static 

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the url, (b) for the average application. The bars represent the 
relative energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection. 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2
 

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it
y

^
2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll

ib
il

it
y

^
2

1 0.75

0.5 0.25
dynamic

2.1 2.5 2.5

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



Results for the route application are summarized in 

Figure 9(a). For route application, we see that the best 

technique is the static technique with 50% relative clock 

cycle when two-strike recovery is used. For the crc 

application (Figure 9(b)), on the other hand, the best 

configuration is the dynamic frequency adaptation with 

three-strike recovery. When we compare these two 

applications, we see that crc is more resilient to faults, 

because due to its streaming nature it already has a large 

cache miss rate. Therefore, additional cache accesses due 

to errors have less effect on the execution time. As 

explained in Section 4, three-strike eliminates some of the 

incorrect accesses to the level 2 cache that might happen 

by the two-strike scheme. Therefore, three-strike 

improves the performance for the crc application because 

it reduces the pressure on the level 2 cache.

     Figure 10(a) and (b) present the results for the md5 

and tl applications, respectively. We see that similar to 

the route application, the static technique with 50% 

relative clock cycle and two-strike recovery scheme gives 

the best result. For the tl application, we see that the 

energy-delay2-fallibility2 product is reduced by as much 

as 43%. Tl application has a large fraction of load 

instructions. Therefore, reducing the cache access latency 

has a significant impact on the overall performance.  

One interesting result with the tl application (Figure 

10(b)) is the inability of the dynamic scheme to reduce 

the energy-delay2-fallibility2 product for the one-strike 

scheme. The reason for this is due to some initial errors, 

the dynamic scheme gets late into the 0.5 region. Since 

the total number of instructions executed for this 

application is small, the overall energy-delay2-fallibility2

remains high. The results presented in Figure 11(a) and 

(b) are for the drr and the nat applications.

Figure 12(a) presents the results for the url application. 

Figure 12(b), on the other hand, gives the average of all 

the simulated applications. Overall, we see that the static 

technique with 50% relative clock cycle and two-strike 

recovery scheme gives the best result reducing the 

energy-delay2-fallibility2 product by 24%. This is partially 

an artifact of the steps we have selected for the clock 

frequency. Although when we set Cr to 0.25, we see a 

significant reduction in the energy consumption, we also 

see a sharp increase in the error rates. Therefore, Cr = 0.5 

almost always performs better than the Cr = 0.25. As a 

result, the dynamic scheme also stays mostly in the Cr = 

0.5 region and hence does not perform better than the 

static scheme. Note that if we do not consider the errors, 

the static approach with Cr = 0.5 and two-strike recovery 

scheme reduces the energy-delay product of the processor 

by 17%, and the energy-delay2 product by 26%.  

In almost all the applications, we see that without the 

error detection, increasing the clock frequency increases 

the energy-delay2-fallibility2. The reasons for this are 

two-fold. First, we take the square of the fallibility in our 

metric. Since we increase the fallibility factor when we 

increase the clock frequency, there is a significant 

increase in our metric. Second, we see that errors usually 

increase the number of execution cycles. There are two 

reasons for this. First, erroneous load operations usually 

result in misses in the cache. More importantly, we see 

that the number of instructions executed also increases 

with the errors. This is mostly due to the loops. If one of 

the values that affect the completion criteria changes, we 

see that in most cases the number of iterations increase.  

6. Related work 

One class of related work is in the area of fault 

tolerance. Traditionally, fault tolerance has caught 

attention in the context of environments with heavy 

concentration of alpha-particles and atmospheric neutrons 

[27]. Transient faults induced by these particles are 

shown to decrease the reliability of processors [25]. 

Another area where there has been a strong emphasis on 

reliability is circuit verification, which is an important 

problem in IC fabrication. Techniques exist to study 

potential errors in the pre-silicon [5] stage and also 

subsequent to the fabrication process [1]. More recently, 

designing computer systems for resiliency [2] to transient 

faults has gained greater significance due to the combined 

effect of higher integration densities, lower voltages, and 

faster clock frequencies. There have been various studies 

utilizing redundancy to increase robustness for SMT 

processors [15, 20], for superscalar processors [19], and 

for CMPs [8]. All of these techniques aim to increase 

robustness. Our approach, on the other hand, reduces it. 

Although this might seem controversial at a glance, our 

motivations are similar to these studies: correctness 

cannot be achieved by optimizations only at the circuit 

level. However, we propose to deal with the errors at the 

higher levels instead of trying to eliminate them.  

Validation methods such as fault injection are 

particularly attractive for estimating the dependability of 

computer systems [10]. Mukherjee et al. introduces the 

architectural vulnerability factor (AVF) for various 

processor components [16]. However, we are not aware 

of any study that investigates the application-level 

behavior of networking programs under hardware faults. 

More importantly, these studies still do not allow an 

incorrect execution of the program as we propose in this 

paper. Austin introduces DIVA, which is a method for 

enforcing correctness in processors which can make 

mistakes because of the lack of complete verification [3]. 

DIVA still aims to achieve correctness, whereas in this 

paper we reduce the probability of correct execution.  

7. Conclusions

In this paper, we proposed the design and utilization of 

clumsy packet processors. Clumsy packet processors use 
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the robustness available in the networking applications to 

increase the efficiency of hardware structures while 

increasing their fault probabilities. Overall, this results in 

better execution efficiency and reduced energy 

consumption. Particularly, we have shown how the access 

delay and energy consumption of a data cache can be 

reduced while increasing the hardware faults during 

accesses. We developed a realistic model that estimates 

the fault probability of the cache for a given clock 

frequency. Thus, a clumsy processor can increase the 

clock frequency of its data cache and reduce its energy 

consumption. We have also defined various application-

specific error metrics that is used to measure the 

“fallibility” of the processor. Particularly, we have 

proposed the energy-delay-fallibility product metric, 

which can be used to measure the trade off between the 

energy, execution time, and the error probability. We 

have presented a scheme to adapt the frequency of the 

data cache to adjust to the application requirements. Our 

simulations reveal that there is a significant gap between 

the specifications of the circuit designer and the optimal 

clock frequency in terms of energy-delay2-fallibility2

product. The technique that doubles the clock frequency 

while utilizing a parity-based error detection scheme and 

a two-strike recovery mechanism gave the best result on 

average, which resulted in 24% reduction in the energy-

delay2-fallibility2 product.  
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