
Page ‹#›

Pipelining

Overview of Pipelining

Venkatesh Akella
EEC 270

Winter 2005

Pipelining

Outline
• Overview
• Hazards and how to eliminate them?
• Performance Evaluation with Hazards
• Precise Interrupts
• Multicycle Operations
• MIPS R4000 - 8-stage pipelined processor,

A Case Study
• Out of order Execution - An introduction

Pipelining

What is pipelining?
• It is an implementation technique.
• Think Assembly Line. A Car Wash for example
• Overlapped execution of multiple instructions
• Better utilization of the resources
• Reduces average execution time per instruction
• Reduces clock period (Tc) of the performance

equation
• If original program takes multiple clock cycles,

pipelining can be viewed as reducing CPI
• Latency of an instruction remains same or increases

slightly
• Throughput increases

Pipelining

Classic 5 Stage MIPS Pipeline
• Stage 1 (IF)
NPC = PC + 4 || IR = MEM(PC)
• Stage 2 (ID)
Read registers; decode; resolve branch

and compute branch target addr
(BTA)

Why? Fixed field instr. Format
otherwise you need to decode first
and then resolve branches

• Stage 3 (EX)
Effective address || ALU operation
(works for LS arch, otherwise you

need another pipe stage)
• Stage 4 (MEM)
Read Data | Store Data
• Stage 5 (WB)

Complete ALU op or Load
Operation

Page ‹#›

Pipelining

Implementation/Performance
• Unpipelined Processor - 2 to 5 cycles per instruction
• Pipelined Processor

– Add pipeline registers, so that multiple copies of the state is
maintained corresponding to multiple simultaneously executing
instructions

– Replicate resources to avoid structural hazards or pipeline the
functional units/memory

– Potential (Ideal) Speed up = N where n is number of stages but
– Pipelining requires 5x memory bandwidth compared to unpipelined
– Clock skew introduces overhead - Watch out for Amadahl’s law,

limits how many stages you can have
– Branches ruin the party!

Pipelining

Hazards
• Structural
• Data Hazards
• Control Hazards
Stall till the hazards clears - simple strategy
Speed up = CPIunpipelined / (1 + Pipeline Stalls/instr)
So, we need to eliminate hazards:
Structural Hazards
- Duplicate resources
- Pipeline functional units

Pipelining

Data Hazards
DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

XOR R10, R1, R11
What is the value of produced by DSUB if you don’t do anything?

Non deterministic
What do we do?
R1 is not needed till cycle 4; but it is produced in cycle 3, so in

the case of a hazard, the DSUB instruction can read from the
output oF ALU

Called Forwarding or Bypass
Should the Forwarding logic be enabled during an interrupt -

Why?
LD R1, 0(R2)
DSUB R4, R1, R1 - will forwarding work? Load use hazard :-(

Pipelining

Basic Pipeline Datapath

Implement control by carrying the control signals,
Branch Penalty is 3 cycles, can we do better

Page ‹#›

Pipelining

Control Hazards
• Branch is resolved at end of cycle 4, so the

instruction fetch in cycle 2,3,4 is “speculative”
• Easiest solution - Fetch again in cycle 3
• Branch penalty is 3
• Problem every branch instructions takes 4 cycles :-(
• Supposing branch is not taken, you had the right

instruction in cycle 2
• Predict Not Taken and flush if you are wrong
(What’s the branch penalty now?)
• Branch Delay slot
• Predict Taken - Will it work with our pipeline? Why?

Pipelining

Reducing Branch Penalty to 1 cycle

Pipelining

What makes pipelining difficult?
• Exceptions
• Instruction set complications
• Multicycle operations
Exceptions => I/O device request, breakpoint, Page Fault, Mem

Protection, system call, overflow, misaligned, hardware malfunction
- Sync vs Async
- Predictable vs Unpredictable. Eg: user requested I/O, syscall are

predictable
- Maskable vs Unmaskable => can the user disable the interrupt?
- Within instructions or between instructions => cache miss, page

fault
- Terminate vs resume - Terminate is obviously easier.
- Restartable - if a pipeline can handle the exceptions, save state

and resume without affecting the execution of the program the
processor is said to be restartable

Pipelining

PRECISE INTERRUPTS
• If the pipeline can be stopped so that all

instructions before the offending instruction can
be completed and all instructions following the
offending instruction can be started from scratch

So, what’s the problem?
a) Sometimes the faulting instr may overwrite the

source operands (FP mult), before the exception
you need to extract them and save them

b) An instr after the faulty inst may complete and
update state eg: DIVF R1, R2, F3

 DADD R2, R2 0
-- assume out-of-order completion

Page ‹#›

Pipelining

So, what do you do?
• Do not update the state of the instruction and

its successor unless you know the instruction
cannot cause an exception.

• Allow 2 modes of operations - Precise and
Imprecise

• Imprecise Mode is 10x faster than Precise
mode? Why?

Eg: you can disallow out-of-order completion in
the precise mode

Why precise?
Makes OS interface simple; why? hw is dealing the

cleanup
With Virtual Memory you do not have a choice.

Pipelining

Handling Exceptions
• Force a trap instruction into the pipeline on the next

instruction fetch
• Until the trap is taken, turn off all the writes for

the faulting instruction - this prevents state changes
for instructions that will not be completed

• Jump to exception handler, which will save the PC of
the offending instruction

• Delayed Branches make this difficult - more than one
PC may have to be saved

Pipelining

Multiple Exceptions can occur in same cycle
LOAD IF ID EX MEM WB
DADD IF ID EX MEM WB

Assume LD causes page fault, DADD has an overflow
Address page fault first
Overflow exception will occur again. Handle it then as it

will be only exception
What if DADD causes Icache miss?
What do you do? You have to handle the page fault

first?

Mark the eception in DADD; disable all state
updates and deal with the exceptions in WB
stages in instruction order (in order
completion)

Pipelining

Instruction Set Complications?
• What is an instruction wrote in 2 stags instead of

one? Eg: auto increment/decrement
• Eg: IA 32 - need hardware support if precise

exceptions are required
• Multiple memory accesses -> need to hold the values

and a mask register to tell what has been copied.
Example memory block copy

• Conditional code or Program Status Word - nee to
save them as part of the state

• Multicycle operations - complicate exceptions
further - convert CISC instructions into internal
microoperations and pipelinethem - so that all
instructions take the same number of cycles -

Page ‹#›

Pipelining

Multicycle Instructions

Load, stores,
integer ALU,

 branch

2524FP DIVIDE
(non-pipelined)

16FP MULT

13FP ADD

11LOAD

10INTEGER ALU

Initiation
Interval

LATENCY

Pipelining

FP PIPELINE

Pipelining

Hazard Classification
Instr(i) OPi Rdi, Rs1i, Rs2i
……………. … … … … ..
Instr (j) Opj Rdj, Rs1j, Rs2j

• Read After Write (RAW) :j tries to read source before i
writes to it

• Write After Read (WAR): j writes the destination before I
read it - in general it is not a problem if reads are done early
(2nd stage) and writes are done late - however, it could be a
problem if writes are done early and reads are done late or
when instructions are re-ordered

• Write after Write (WAW) : Instr j tries to write an operand
before it is written by instruction I

» This occurs if instructions WRITE in more than one stage
» Out of order execution and completion

Pipelining

What are the new Problems?
• Structural Hazards - eg: there is only one divider
(these need to be detected and stalled)
• Varying completion times => conflicts on the

register file write port - need interlock hardware
• Out-of-order completion
• Lots of data Hazards (RAW) as more instructions

in flight
• WAW Hazards due to out-of-order completion

ADD F2, F4, F6
LD F2, 0(R2)

Can you have WAR Hazards? Why?

Page ‹#›

Pipelining

New Structural Hazards Sources

Pipelining

Increased RAW Hazards

Pipelining

How do you handle these problems?
• Issue stage becomes more complete. Before issuing
Check the following and stall if necessary
• Check for structural hazards
• Check for RAW hazards and stall or forward =

deeper pipelines means lots of checks and more
complex forwarding paths

• Check for WAW hazards

Pipelining

Maintaining Precise Interrupts
DIV F0, F2, F4 --- 25 cycles
ADD F10, F19,F8 -- 4 cycles

SUB F12, F12, F14 -- 4 cycles
What’s the problem?
Out-of-order completion - ADD and SUB may finish before divide

finishes
Divide produces an exception after F12 is written by SUB
Can you have precise interrupts? No. You cannot restart SUB :-(
4 solutions
a) No Precise Interrupts or Precise/Imprecise modes - disallow

some interrupts to be precise, or limit the overlap by allowing
only one outstanding FP operation eg: 21064, 21164,Power1,2

Page ‹#›

Pipelining

Making Interrupts Precise
• Buffer the intermediate results with Result queue

– History File : Keep original values, Bypassing becomes a pain
– Future File: Keep new values in a buffer and update the Register

file only after instructions before it have finished. In order
completion

• Let the SW reconstruct the state by keeping the
PCs of the instructions in flight; software can finish
the preceding instructions

• Hybrid Schemes - allow an instruction to continue on
if it is guaranteed that the preceeding instruction
will complete with an exception.

Eg: detect the div/zero exception early

Pipelining

Performance of FP Pipeline - stalls
generated by each multicycle FP op

How would you
Reduce these stalls?

Pipelining

MIPS Floating Point Performance -
stalls/instructions

Pipelining

MIPS R4000 Pipeline

Page ‹#›

Pipelining

Things to Notice
• Load Delay is 2 cycles

– 2 instructions or bubbles between a load instruction and an
instruction that uses the load value

– At end of DS stage but before the tag check?
– Yes, if the tag check fails, it is a cache miss and hence you

need to stall

• Branch Penalty is 3 cycles
– First cycle is a delay slot
– The next two cycles are predict-not taken I.e. if not taken

the delay is one otherwise it is 2, assuming the branch delay
slot is filled with an useful instruction

Pipelining

MIPS R4000 Performance on SPEC92

