
Page ‹#›

Cache Design

Chapter 5

Roadmap of the chapter
• Basics of Caches
• Reducing Miss penalty, hit time, Miss Rate
• Memory Systems Organization
• Virtual Memory
• Case Studies – Alpha 21264, Sony PlayStation,

SunFire

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Who Cares About the Memory Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

“Less’ Law?”

 Generations of Microprocessors
• Time of a full cache miss in instructions executed:
1st Alpha: 340 ns/5.0 ns = 68 clks x 2 or 136
2nd Alpha: 266 ns/3.3 ns = 80 clks x 4 or 320
3rd Alpha: 180 ns/1.7 ns =108 clks x 6 or 648

• 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ ­5X

Page ‹#›

Processor-Memory
Performance Gap “Tax”

 Processor % Area %Transistors
(­cost) (­power)

• Alpha 21164 37% 77%
• StrongArm SA110 61% 94%
• Pentium Pro 64% 88%

– 2 dies per package: Proc/I$/D$ + L2$

• Caches have no “inherent value”,
only try to close performance gap

What is a cache?
• Small, fast storage used to improve average access time to

slow memory.
• Exploits spatial and temporal locality
• In computer architecture, almost everything is a cache!

– Registers “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

Traditional Four Questions for Memory
Hierarchy Designers

• Q1: Where can a block be placed in the upper
level? (Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU

• Q4: What happens on a write?
(Write strategy)

– Write Back or Write Through (with Write Buffer)

What are all the aspects of
cache organization that
impact performance?

• Cache Parameters – total size, block size,
associativity

• Hit time
• Miss Rate
• Miss Penalty
• Bandwidth of the next level of the memory

hierarchy

Page ‹#›

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess

Execution
CPIICCPUtime !"

#
$

%
&
' !!+!=

CycleTimeyMissPenalt
Inst

MemMisses

Execution
CPIICCPUtime !"

#
$

%
&
' !+!=

Review: Cache performance

• Separating out Memory component entirely
– AMAT = Average Memory Access Time
– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccess
CPI

Inst

AluOps
ICCPUtime

AluOps
!"

#
$

%
&
' !+!!=

yMissPenaltMissRateHitTimeAMAT !+=

()

()DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime

!+

+!+=

Impact on Performance
• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1
– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss penalty
• Suppose that 1% of instructions get same miss penalty
• CPI = ideal CPI + average stalls per instruction
• 1.1(cycles/ins) +

[0.30 (DataMops/ins)
x 0.10 (miss/DataMop) x 50 (cycle/miss)] +

[1 (InstMop/ins)
x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

Unified vs Split Caches

• Unified vs Separate I&D

• Example:
– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better? (ignore L2 cache)
– Assume 33% data ops ⇒ 75% accesses from instructions (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMATUnified=75%x(1+1.99%x50)+25%x(!+1.99%x50)= 2.24

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

How to Improve Cache
Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT !+=

Page ‹#›

Where do misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, so
the block must be brought into the cache. Also called cold start
misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.

– Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called
collision misses or interference misses.
4th “C”:

– Coherence - Misses caused by cache coherence.
Cache Size (KB)

M
is

s

R
a
te

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

Cache Size

• Old rule of thumb: 2x size => 25% cut in miss rate
• What does it reduce?

Cache Size (KB)

M
is

s

R
a
te

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Cache Organization

• Assume total cache size not changed:
• What happens if:

1) Change Block Size:

2) Change Associativity:

3) Change Compiler:

Which of 3Cs is obviously affected?

Page ‹#›

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Larger Block Size
(fixed size&assoc)

Reduced
compulsory

misses Increased
Conflict
Misses

What else drives up block size?

Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

– suggested big and dumb caches

Example: Avg. Memory
Access Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-
way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
 (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01
 2 1.98 1.86 1.76 1.68
 4 1.72 1.67 1.61 1.53
 8 1.46 1.48 1.47 1.43
 16 1.29 1.32 1.32 1.32
 32 1.20 1.24 1.25 1.27
 64 1.14 1.20 1.21 1.23
 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

CCT=clock
Cycle time

Hit Time of Dm = 1 CCT

Fast Hit Time + Low Conflict
=> Victim Cache

• How to combine fast hit time
of direct mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry victim
cache removed 20% to 95%
of conflicts for a 4 KB direct
mapped data cache

• Used in Alpha, HP machines
To Next Low er Level In

Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Page ‹#›

Reducing Misses via
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see if
there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

Way Prediction

• How to combine the low miss rate of higher
associativity without paying for the increase in
hit time?

• 2 way SA cache – have a bit that predicts
which set the next block is more likely to be
found in, so that you avoid the delay of one
large MuX

• Used in alpha 21264
• Useful for power minimization – don’t wake-up

all the blocks – good for embedded systems.

Reducing Misses by Hardware
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

Reducing Misses by
Software Prefetching Data

• Why not let the compiler prefetch data – after all it knows
the whole program flow? Eg: loops

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of speculative

execution

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.

» Can be incorrect.

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

Page ‹#›

Reducing Misses by Compiler Optimization
(Favorite Technique of HW Designers)

• Code and data accesses can be rearranged by the compiler
without affecting the correctness

• McFarling (1989) showed 50% reduction in instruction misses and
75% reduction in 8KB cache. How?

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)
– Aligning Basic Blocks

• Data Access Reordering to improve spatial/temporal locality
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly

vs. going down whole columns or rows

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky

(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged

arrays

loop

interchange

loop fusion blocking

Summary of Compiler Optimizations to Reduce
Cache Misses (by hand)

Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

CPUtime = IC ! CPI
Execution

+
Memory accesses

Instruction
!Miss rate!Miss penalty

"

$

%
!Clock cycle time

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Page ‹#›

Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying
memory/cache

– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to
fill in rest of the cache-line!

– Alternative: per/word valid bits

• Write non-allocate (or “write-around”):
– Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

1. Reducing Miss Penalty:
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts with main
memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss penalty
(old MIPS 1000 by 50%)

– Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write-back write buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, and then

do the write
– CPU stall less since restarts as soon as do read

• Merging Writes in a Write Buffer

2. Reduce Miss Penalty:
Early Restart and Critical Word

First
• Don’t wait for full block to be loaded before

restarting CPU
– Early restart—As soon as the requested word of the block

ar rives, send it to the CPU and let the CPU continue execution
– Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality => tend to want next sequential

word, so not clear if benefit by early restart
block

Page ‹#›

3. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by
overlapping multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
 Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of

memory accesses generated by the CPU

– Global Miss Rate is what matters

An Example
• Global Miss rate for L2 = Miss Rate L1 * Miss Rate L2
Suppose 1000 mem reference
40 miss in L1 and 20 miss in L2 What are the local and

global miss rates?
Miss Rate L1 = 40/1000 = 0.04 = 4%
Miss Rate L2 = 20/40 = 0.5 = 50%
Global Miss Rate of L2 = 20/1000 = 2%

What is AMAT assuming MissPenalty L2 = 100 and Hit = 1
Therefore, AMAT with two level caches =
Hit Time L1 + Miss Rate L1 *(HitL2+

MissRateL2*MissPenaltyL2)

= 1 + 0.04(1+0.5*100) = 3.4 cycles

Reducing Misses:
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler

Optimizations

Page ‹#›

Multilevel Cache Optimization
– A Challenge?

• What are the optimal parameters for L1 and L2 w.r.t
block size? Associativity? Size?

• Eg: consider L1 block Size vs L2 Block Size
 L1BS << L2BS – may increase L1 miss rate? How?
Should L2 include everything that L1 has?
Or only those that L1 does not have? – exclusive cache?
Why waste valuable real-estate with duplicates?

(athlon has two 64kb L1 caches and only 256L2 cache)
Now, L1 and L2 are on-chip, so some trade-offs are

different?
Power is still an issue.

Relative CPU Time

Block Size

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

16 32 64 128 256 512

1.36

1.28 1.27
1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels

in between
– First attempts at L2 caches can make things worse, since

increased worst case is worse

CPUtime = IC ! CPI
Execution

+
Memory accesses

Instruction
!Miss rate!Miss penalty

"

$

%
!Clock cycle time

1. Fast Hit times
via Small and Simple Caches

• Why Alpha 21164 has 8KB Instruction and 8KB
data cache + 96KB second level cache?

– Small data cache and clock rate

• Direct Mapped, on chip

Page ‹#›

3: Fast Hits by pipelining Cache
Case Study: MIPS R4000

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here as

well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and also

instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition evaluation.
– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• What is impact on Load delay?
– Need 2 instructions between a load and its use!

Virtual Memory

Page ‹#›

Page ‹#›

Page ‹#›

Page ‹#›

Page ‹#›

Page ‹#›

Page ‹#›

