
Page ‹#›

Chapter 4 – VLIW

Exploiting ILP through Software
Approaches

Venkatesh Akella
EEC 270

Winter 2005
Based on Slides from Prof. Al. Davis @

cs.utah.edu

Chapter 4 – VLIW

Let the Compiler Do it – Pros and Cons

• Pros
– No window size limitation, the whole program is there to see
– Hardware is simple, so can push the clock rate
– Pragmas and profile information can be used

• Cons
– Binary code compatibility
– Basic blocks are small – global code optimization is might hard
– Lack of run-time knowledge – eg: memory dataflow problems

• Perhaps a mixture of the two?

Chapter 4 – VLIW

Overview of the Chapter
• Basic Compiler Techniques for Exposing ILP

– Loop Unrolling
– Instruction Scheduling

• Static Branch Prediction

• Static Multiple Issue: VLIW Approach

Chapter 4 – VLIW

Overview of the Chapter
• Advanced Compiler Support for Exposing and

Exploiting ILP
– Detecting and Enhancing Loop-Level Parallelism
– Dependence Analysis
– Software Pipelining
– Global Code Scheduling

• Hardware Support for Exposing More
Parallelism at Compile Time

– Predicated Execution
– Compiler Speculation with HW Support

• CASE STUDY : ITANIUM PROCESSOR

Page ‹#›

Chapter 4 – VLIW

Overview of Software Approaches

Chapter 4 – VLIW

Assumptions for the Examples

Chapter 4 – VLIW

A Simple Loop

Chapter 4 – VLIW

Scheduling the Instructions to
minimize Stalls

Page ‹#›

Chapter 4 – VLIW

How to do better?
• Unroll the loop, replicate the loop body and

adjust the iteration counter appropriately so
that the program semantics remains the same

• What are the advantages?

• Get rid of the ADDUI and BNE overhead

• What is the downside?
• Larger code size – bad for instruction caches
• Needs lots of registers

Chapter 4 – VLIW

Basic Idea

Can we do better?

Chapter 4 – VLIW

Result of Unrolling

Chapter 4 – VLIW

Caveats of Loop Unrolling

Page ‹#›

Chapter 4 – VLIW

How does unrolling help interact with
dependencies

Chapter 4 – VLIW

Static Branch Prediction
• Static branch behavior is useful for scheduling instructions

when the branch delays are exposed by the architecture (eg:
delayed branches or canceling branches)

• They can also be used to predict which code paths are more
plausible which is key for global code optimization

• Predict Taken or Not Taken – poor accuracy from 9% to 59%
misprediction rates

• Backward taken and forward not-taken, context based
prediction

• Profile information from earlier runs

Chapter 4 – VLIW

Misprediction Rate of Profile-based
predictor on SpEC92

• Better for FP programs
than integer program

• Actual performance varies
depends on prediction
accuracy and branch
frequency which varies
from 3% to 24%

Chapter 4 – VLIW

Number of instructions between
mispredicted branches (log scale)

• Average = 20 for predict-taken and 110 for profile-based
• Compare this to 4-5 instructions between a branch without

prediction
• The variation is due to the nature of the program and the

branch frequency

Page ‹#›

Chapter 4 – VLIW

VLIW Processors
• Suitable for wide issue. N>4 when superscalar

becomes unwieldy
• Assume VLIW with 2 mem references, 2 FP ops, 1

integer/br unit
• Show do all x[I] = x[I] + s
• Unroll as many times as needed to eliminate all stalls

Chapter 4 – VLIW

Unrolled 7 times

Bne r1, r2, loopSd F28, 8(r1)

SD F20, 24(r1)

Daddui R1, r1, -
56

SD F12, -16(r1)

Add f28, f26, f2SD F4, 0(r1)

Add f24, f22, f2Add f20, f18, f2

Add f16, f14, f2Add f12, f10, f2LD F26, -48(r1)

Add f8, f6, f2Add F4, F0, F2LD F22, -40(r1)LD F18, -32(r1)

LD F14, -24(r1)LD F10, -16(r1)

LD F6, -8(r1)LD F0, 0(R1)

IntegerFP OP2FP OP1Mem Ref2Mem Ref1

Chapter 4 – VLIW

Performance
• 9 cycles for 7 iterations
• Note anything smaller in terms of unrolling will result in empty cycles
• 1.29 cycles per result
• Increases code size - unrolling + packing density in cache is poor (18

empty slots)
• Compression and Encoding is possible
• Register pressure
• Lockstep execution is not efficient - any stall in pipeline causes all

instructions to stall
• If you relax this requirement, hw has to do some checking
• Lack of binary compatibility

» Dynamic Binary Translation or Emulation
» New approaches such as IA64 relaxes the strictness

• VLIW permits simpler/standard memory such as
caches as opposed to a Vector Processor

Chapter 4 – VLIW

Compiler Techniques to Expose ILP
• ECS 243 EEC175 classes dedicated to this topic
• What can the compiler do?
a) Detecting and Enhancing Loop Level Parallelism
b) Source Level Optimizations
c) Eliminating Dependent Computation

a) Copy propagation
b) Symbolic Substitution
c) Tree Height Reduction
d) Algebraic Simplification

d) Software Pipelining -
e) Global Scheduling

Page ‹#›

Chapter 4 – VLIW

Loop Carried Dependencies
• LCD = whether data accesses in a particular

iteration are dependent on values produced
in an earlier iteration

• Eg1 - for (I=1000; I>0, I--)
X[I] = X[I] + s

No LCD
X(I) depends on the value of X[I] in current

iteration

Chapter 4 – VLIW

Loop Carried dependecies II
For (I=1, I<100, I++)

A[I+1] = A[I] + C[I] -------- S1
B[I+1] = B[I] + A[I+1] ---------S2

There are two types of dependencies here:
S1 -> S1 -- LCD A(I) current iteration needs A(I)

from previous iteration!!!!,
So iterations I and I+1 cannot proceed in parallel

S1 -> S2 on A[I+1] is not LCD

Chapter 4 – VLIW

LCD III
For (I=1, I<100, I++)

A[I] = A[I] + B(I) /* Statement S1 */
B[I+1] = C[I] + D[I) /* Statement S2 */

S1 uses the value produced by S2 in the previous
iteration

This is not a cyclic dependency, so you can remove it
by source transformation

A(1) = A(1) + B(1)
For (I=1, I<=99, I++)

{ B[I+1] = C[I] + D(I)
A[I+1] = A[I+1] + B[I+1)}

B(101) = C(100) + D(100)

Chapter 4 – VLIW

Finding Dependecies
• In general HARD problem because of implicit names and

arrays and pointers
• General Case is NP-complete
• Restricted cases are solvable in polynomial time
• Eg: Arrays indices that are AFFINE i.e can be expressed as

A*I + B where A and B are constants and I is the loop index
variable

• The problem can be formulated as checking if 2
affine functions can have the same value I.e.

For some values of a,b,c,d : a[I] +b = c[I] + d
• Apply GCD tests if a,b,c,d are constants
• GCD(c,a) mod (d-b) = 0 --- sufficient condition,

not necessary

Page ‹#›

Chapter 4 – VLIW

Software Pipelining
• Symbolic Loop Unrolling
• Loop unrolling is good for uncovering parallelism among

instructions by creating longer sequences of st. line code -
increasing the window size

• Eg: repeat (n) [A;B;C] is replaced by
repeat (n/2) [A1; B1; C1; A2; B2; C2]

Reorder instructions to avoid hazards, hence expose ILP - code
size increases, some branches are eliminated

Software pipelining is different - it involves reorganizing a loop
with instructions from different iterations:

A; (repeat (n-1) [BCA]) B; C
B, C, A are instructions from DIFFERENT iterations of the loop

Chapter 4 – VLIW

Software Pipelining
A; (repeat (n-1) [BCA]) B; C

Prolog New Loop Epilog
B, C, A are instructions from DIFFERENT iterations of the loop

This does in SW what Tomasulo’s algorithm did in
HW - interleaving instructions from different
iterations of a loop and executing them in parallel

Prolog and Epilog code is to make sure that the same
code is executed in both the cases I.e. semantics
of the program are not altered.

Chapter 4 – VLIW

A Concrete Example
Loop:LD F0, 0(R1)
 ADD F4, F4, F2
 SD F4, 0(R1)
 DADDUI R1, R1, -8
 BNE R1, R2, LOOP

 LD F0, 0(R1)
 STALL
 ADD F4, F0, F2
 LD F0, -8(R1)
 DADDUI R1, R1, -8

Loop:SD F4, 16(R1) -- stores M[I]
 ADD F4, F0, F2 --- adds M[I-1]
 LD F0, 0(R1) ---- loads M[I-2]
 DADDUI R1, R1, -8
 STALL
 BNE R1, R2, LOOP
 STALL
ADD F4, F4, F2
 SD F4, 8(R1)
 STALL
 STALL
 SD F4, 8(R1)

EPILOG

PREAMBLE

Instructions not executed
In the final 2 iterations

Chapter 4 – VLIW

Loop Unrolling vs SW Pipelining

• SW is symbolic so does not increase the code
size.

• Does not increase register pressure, however
register management is tricky - lifetimes of
registers values can be long

• Loop unrolling and SW pipelining attack different
problems so in general they can be combined

• LU - reduces loop overhead I.e. branch and
counter update

• SWP - reduces the time when the loop is not
running at its peak

Page ‹#›

Chapter 4 – VLIW

Figuratively Speaking

Chapter 4 – VLIW

Going Beyond Basic Blocks
What are the consequences of moving

instruction K before the branch?
Instr J is dependent on K instead of P
If branch is not taken C[I] will get

wrong value
-- Add compensating code
-- keep copy of B
Welcome to Speculation!!
Static Approaches to speculation:

a) Global Scheduling: Trace Scheduling,
Superblocks
b) Predicated Execution

Loop Body
a[I] = a[I] + b[I];
 If (a(I)==0)
B[I] = XXX Else X;
 C[I] = YYY;

J: reads B

J: reads B

P: write B

k: write B

Chapter 4 – VLIW

Global Scheduling - Fisher 1984
• Going Beyond BASIC BLOCKS
• Exploit Parallelism ACROSS BB I.e. inter BB parallelism as

opposed to INTRA BB parallelism with Loop Unroll and SWP
• Useful when there is no support for predication and loop

unrolling doesn’t help because of conditional branches inside
the loop body

• Pick a trace - a sequence of basic blocks (called trace) that
is executed frequently

• Trace Selection can be done by profiling
• Loop unrolling and static branch prediction can be used
• Trace Compaction - Squeeze the trace into a small number of

VLIW instructions by moving instructions as early as possible
- packing with constraints

• Add Compensation Code for paths that will be taken if the
prediction is wrong

Chapter 4 – VLIW

Predicated Execution -A Form of Speculation

• Works when static branch prediction is poor
• Wide issue m/c when multiple branches have to be resolved
• ILP is limited due to control dependencies
• Convert control dependency into data dependency -

predicated/cond instr
• This helps both hw based scheduling and SW pipelining and

global scheduling

• Every instruction refers to a cond.
• If the condition is TRUE execute the instruction

normally, if it is FALSE it becomes a NOP
•

Page ‹#›

Chapter 4 – VLIW

Example
• Example, if (A==0) S=T …. Conditional move
Assume R1 = A; R2 = S and R3 = T

CMOVZ R2, R3, R1
BNEZ R1, L
ADDU R2, R3, R0
L:

• Another Example, A = abs (A) …. If B<0 A = -B else A = B
• Full Predication - Every instruction is controlled by a predicate, it

allows to convert large blocks of code that are branch dependent
• Useful for global sceduling
WRINKLES
• Predicated Execution cannot generate an exception if the predicate is

FALSE
• Annuled instructions consume valuable resources like FU, fetch bW
• Wastes power
• What happens if something depends on multiple branches - you need

multiple conditions and that makes it complex
Chapter 4 – VLIW

HW Support to ASSIST Speculation
• Hw and OS cooperatively ignore exceptions for

speculative instructions - this approach preserves
exception behavior for CORRECT programs but not for
INCORRECT ones

• Speculative instructions that never raise exceptions
are used and checks made to detect when exceptions
can occur

• Poison bits in the result register - to invalidate
results when a speculative instr causes an exception

when a normal instruction tries to read the if a poison
bit is set it will result in a fault

• Use something like a reorder buffer

Chapter 4 – VLIW

Example - 1
If A== 0 A = B; else A = A + 4
A is at 0(R3) and B is at 0(r2)

LD R1, 0(R3) --- load A
BNEZ R1, L1 --- test A
LD R1, 0(R2) --- R1 gets B
J L2 --- skip else clause
L1: DADDI R1, R1, 4 -- else
L2: SD R1, 0(r3) -- store A
Assume the THEN clause is
almost always Executed:

SPECULATIVE CODE

LD R1, 0(R3) -- load A
LD R14, 0(R2) --- speculative load B
BEQZ R1, L3 --- other branch of if
DADDi R14, R1, 4 -- the else clause
L3: SD R14, 0(R3) -- non spec store
R14 is a temporary register
to keep a copy
Of A in case branch is not taken
A will be in r14 after the code

Exception Handling Rule:
HW and OS simply handle all resumable exceptions, when the
exceptions occur both for spec and non spec instructions - yes extra
work for non spec instructions but works
For terminating exceptions like protection faults, return an
undefined value which is then check whether it comes from spec or
no spec instr and dealt with appropriately.

Chapter 4 – VLIW

Another Scheme to preserve exception
behavior

Special versions of Instructions are used in the speculative
mode - these do not generate terminating exception

Eg; sLD R14, 0(R2)
• New instructions to check for such exceptions
Eg: SPECCK 0(r2) --- perform speculation check.
So, with these instruction the previous code becomes:

Ld R1, 0(r3) -- load A
sLD R14, 0(R2) -- speculative load, no termination
Bnez R1, L1 ;; test A
SPECCk 0(r2) -- perform a check if exception has occurred
J L2
L1: Daddi R14, R1, #4
L2: SD R14, 0(R3) -- store A

Page ‹#›

Chapter 4 – VLIW

Third Scheme to Preserve Exception Behavior

LD R1, 0(R3) -- load A
LD R14, 0(R2) -- speculative Load B
BEQZ R1, L3
DADDI R14, R1, 4
L3: SD R14, 0(R3)

R14 has a poison bit, which is turned on when
LD in BLUE I.e. spec LD causes an exception
When non speculative SD in GREEN tries to read R14, it

will cause an EXCEPTION
Note an extra bit in an instruction is needed to signify

is it a normal instr or a speculative instruction. This
is set by the compiler

