
Page ‹#›

Chapter 2

Computer Architecture

Venkatesh Akella
EEC 270

Winter 2005

Chapter 2

Project Topics
1. Trading Reliability for Energy : Voltage Overscaling

in Data Caches, especially in media applications
2. ASIP - Application Specific Instruction Processor

for a given domain - streaming, packetization,
arithmetic coding, error correction/detection

3. Application Specific Loop Processor - a simple
programmable vector co-processor for ARM and
implement using Tensilica, SimpleScalar for
multimedia or message passing algorithms (LDPC
decoding), focus on programmable memory access
unit and smaller bitwdith operations

4. Network processors for multimedia over wireless ad-
hoc networks.

5. Processors for Sensor Networks
6. Low Density Parity Check Codes - Programmable

Architectures
7. Simultaneous Multithreading and dynamic resource

management

Chapter 2

Project Topics

• Embedded Processors
– ASIP
– ASLP

• Voltage speculation to save energy
– Overclocking data caches
– Reliability vs energy

• Multithreading for dynamic resource management
• Low Density Parity Check Codes

– High Speed - interconnection networks
– HW/SW Codesign

• Networking Processors
– Sensors
– Multimedia Packet Scheduling

Chapter 2

Instruction Set Design – Principles and
Examples

Execution Time = IC * CPI * Tc

IC = Dynamic Instruction Count

Instruction Set influences IC, CPI

Desktop – Int/FP – power/codesize not important
Server - Integer – No FP – string manipulation imp
Embedded – Cost, Power, Real time – smaller

bitwdith

Page ‹#›

Chapter 2

Overview of the Chapter

•What are the alternatives and trade-offs?

•Taxonomy of ISA and quantitative assessment

•ISA of embedded and DSP processors

•Role of Compilers and High-level Languages

•TriMedia and MIPS64 Cases Study

Chapter 2

Anatomy of an Instruction
- Operation

- Arithmetic
- Logical
- Control Flow
- Procedure Call

- Operands
- Type of operands (bit, byte, char, string, float, int)
- Addressing the operands (Addressing modes)

- Representation in the memory (encoding)
- Fixed vs variable
- Aligned vs unaligned
- Lilliputian Wars
- Compressed vs Uncompressed
- Impacts code size, decode efficiency,

Chapter 2

Classifying Instruction Set
Architectures

Chapter 2

Why did Register-Register ISA
survive?

• Registers are faster than memory
• Take advantage of principle of locality
• Flexibility – Consider the expression:
(A*B) – (B*C) – (A*D)
There are several ways of evaluating this on a R-R

machine but on a stack based machine it is
restricted to one order

. Code density – registers can be specified with
fewer bits than memory addresses

. Reduces memory traffic – locality

. Amenable for automatic compilation

Page ‹#›

Chapter 2

Addressing Modes - Note the relationship to high-
level language constructs

Chapter 2

More Addressing Modes

Chapter 2

Use of Memory Addressing Modes

Vax Measurements based on SPEC89 benchmarks

Chapter 2

X86 Measurements

Small register file bloats number of loads
and stores

Page ‹#›

Chapter 2

Mix of Instructions on TI DSP C54x

4.6%MAC
4.0%Move mem-mem16
4.9%Subtract mem16
5%Push mem16
5%CALL
6.8%Add mem16
9.4%Load mem16
32.2%Store mem16
PercentInstruction

Chapter 2

Interesting Questions
• How many bits for the immediate field?
• How many registers do I need?
• What addressing modes to support?
• What operations to support?

• Amadahl’s law
• Make the common case fast
• Can the compiler use it?
• Don’t forget, ultimately Execution Time

matters – so always look at the impact on
IC, CPI and Tc

• Measure on Real Benchmarks!

Chapter 2

Role of a Compiler
• Today majority of programming is in high-level

languages.
• So, the Instruction set should be amenable for a

compiler as a target
• Case in point – DSP, micro controllers are not

which makes software development a nightmare
• Remember – architecture is a codesign issue, so

a smart compiler can help if the architecture
exposes some aspects

• Eg: instruction scheduling to avoid pipeline stalls,
hide long latency of memory, use the registers
better, avoid recomputation, code size
optimization, cache optimization, …….

Chapter 2

Anatomy of a compiler

Page ‹#›

Chapter 2

Compiler Optimizations
• High-level optimizations – source level

transformations
Eg: procedure integration, code inlining
• Local optimizations – in a basic block, or

straight line code
Eg: common sub-expression elimination, constant

propagation, stack height reduction
• Global optimizations – across branches
Eg: Copy propagation, code motion, loop

optimization, unrolling
• Register allocation
• Instruction Scheduling

Chapter 2

How can the architect help the
compiler writer?

• Regularity a.k.a orthogonality of instruction
set

• Provide primitives, not solutions
• Expose the cost of different trade-offs –

especially with pipelining and caches this is
difficult

Eg: how many times should a variable be used
before it is better stored in register? Hard
to determine?

. Provide instructions that bind quantities
known at compile time as constants

Eg: It is a waste to let the processor
interpret a value at runtime that was a
compile time constant

