Project Topics

Computer Architecture

Venkatesh Akella
EEC 270

Winter 2005

7.

.~ Trading Reliability for Energy : Volfage Overscaling

in Data Caches, especially in media applications

ASIP - Application Specific Instruction Processor
for a given domain - streaming, packetization,
arithmetic coding, error correction/detection

Application Specific Loop Processor - a simple
programmable vector co-processor for ARM and
implement using Tensilica, SimpleScalar for
multimedia or ge passing algorithms (LDPC
decoding), focus on programmable memory access
unit and smaller bitwdith operations

Network processors for multimedia over wireless ad-
hoc networks.

Processors for Sensor Networks

Low Density Parity Check Codes - Programmable
Architectures

Chapter 2

Simultaneous Multithreading and dynamic resource
T

Chapter 2

Project Topics

Instruction Set Design - Principles and
Examples

+ Embedded Processors
- ASIP
- ASLP
+ Voltage speculation to save energy
- Overclocking data caches
- Reliability vs energy

* Multithreading for dynamic resource management

+ Low Density Parity Check Codes
- High Speed - interconnection networks
- HW/SW Codesign
+ Networking Processors
- Sensors
- Multimedia Packet Scheduling

Execution Time = IC * CPI * Tc

IC = Dynamic Instruction Count

Instruction Set influences IC, CPI

Desktop - Int/FP - power/codesize not important

Server - Integer - No FP - string manipulation imp

Embedded - Cost, Power, Real time - smaller

bitwdith

Chapter 2

Chapter 2

Page <#>

Overview of the Chapter

Anatomy of an Instruction

‘What are the alternatives and trade-offs?

*Taxonomy of ISA and quantitative assessment

‘ISA of embedded and DSP processors

*Role of Compilers and High-level Languages

*TriMedia and MIPS64 Cases Study

- Operation
- Arithmetic
- Logical
- Control Flow
- Procedure Call

- Operands
- Type of operands (bit, byte, char, string, float, int)
- Addressing the operands (Addressing modes)
- Representation in the memory (encoding)
- Fixed vs variable
- Aligned vs unaligned
- Lilliputian Wars
- Compressed vs Uncompressed

I 4 ode-size —d ds ffici
P

Chapter 2 Chapter 2
Classifying Instruction Set Why did Register-Register ISA
Architectures survive?
* Registers are faster than memory
+ Take advantage of principle of locality

Machine Type |Advantages Disadvantages - . .
Stack Simple effective address Lack of random access. ' F|eXIbI|I1’y - Consider the expression:

Short instructions Efficient code is difficult to * — 3 — *

Good code density generate. (A B) (B C) (A D)

Simple I-decode Stackis often a botteneck. There are several ways of evaluating this on a R-R
Accumulator Minimal internal state Very high memory traffic machine but on a stack based machine it is

Fast context switch .

Short instructions restricted to one order

Simple I-decod: . . s .

- Tpe B0 — . Code density - registers can be specified with

Register Lots of code generation Longer instructions. f bi h dd

options. Possibly complex effective ewer bits than memory addresses

Efficient code since compiler | address generation. i .

has numerous useful Size and structure of register - Reduces memory traffic Iocal'fy

options. sethas many options. . Amenable for automatic compilation

Chapter 2 Chapter 2

Page <#>

Addressing Modes - Note the relationship to high-
level language constructs

More Addressing Modes

Mode Example Instruction Meaning Use Mode Example Instruction Meaning Use
Register Add R4, R3 Regs[R4] < Regs[R4] + AlIRISC ALU operations Memory Indirect or AddR1, @R3 Regs|R1] <- Regs[R1] + RS holds a pointer
R R3] Memory Deferred Mem[Mem[Regs[3]]] address, then result is the
egs]l tull dereferenced pointer
Immediate Add R4, #3 Regs[R4] <- Regs[R4] +3 | for small constants - prob- Autoincrement AddR1, (R2) + Regs[R1] <- Regs[R1] + Array walks - if element of
lems? in this case postincrement Mem[Regs[R2]l; size d is accessed then
N note symmetry with autodec Regs[R2] <- Regs[R2] + d pointer increments auto
Displacement Add R4, 100(R1) Regs[R4] <- Regs[R4] + accessing local variables Autodecrement AddR1, - (R2) Regs[R2] <- Regs[R2] -d; | array walks, with autoinc
Mem[100 + Regs[R1]] i this case predecrement RegsIR1] <- Regs[R1] + useful for stack
Register deferred or Indirect | Add R4, (R1) Regs[R4] <- Regs[Rd} + pointers Scaled Add R1, 100 (R2) R3] RegsIR1] <- Regs[R1] + armay access - may be
Mem[Regs[R1]] Mem[100 + Regs[R2] + applied to indexed
- RegsIR3] " d] addressing in some
Indexed AddR3, (R1+R2) Regs[R3] <- Regs [R3] + armay access - R1is the machines
Mem[Regs[R1] + Regs[R2]] | base, R2is the index
Direct or absolute Add R1, (1001) Regs[R1] <- Regs[R1] + problems? d = size of an element
Mem([1001]
Chapter 2 Chapter 2
Use of Memory Addressing Modes X86 Measurements
o Rank x86 instruction % of total X
Memory indirect instructions
1 load 2%
Sealed 2 conditional branch 20%
3 compare' 16%
Register Indiract 4 sstore 12%
5 add 8%
6 and 6%
Immediate
7 sub 5%
8 move reg-reg 4%
Displacement
9 call 1%
o% 10% 20% 0% 40% 80% 80% 10 return 1%
Frequency of the addressing mode TOTAL 96%
PEC ks . y
Vax Measurements based on SPEC89 benchmarks Small register file bloats number of loads
and_stares.
Chapter 2 Chapter 2

Page <#>

Mix of Instructions on TI DSP C54x

Interesting Questions

Instruction Percent
Store mem16 32.2%
Load mem16 9.4%
Add mem16 6.8%
CALL 5%
Push mem16 5%
Subtract mem16 4.9%
Move mem-mem16 4.0%
MAC 4.6%

How many bits for the immediate field?
How many registers do I need?

What addressing modes to support?
What operations to support?

Amadahl’s law
Make the common case fast
Can the compiler use it?

Don't forget, ultimately Execution Time
matters - so always look at the impact on
IC, CPI and Tc

Measure on Real Benchmarks!

Chapter 2

Chapter 2

Role of a Compiler

Anatomy of a compiler

Function

Today majority of programming is in high-level
languages.

So, the Instruction set should be amenable for a
compiler as a target

Case in point - DSP, micro controllers are not
which makes software development a nightmare

Remember - architecture is a codesign issue, so
a smart compiler can help if the architecture
exposes some aspects

Eg: instruction scheduling to avoid pipeline stalls,
hide long latency of memory, use the registers
better, avoid recomputation, code size
optimization, cache optimization, ...

Transform language to
common intermediate form

_anguage dependent Front end per
language.

‘achine independent
Intermediate
representation
Somewhat language dependent; For example, loop
High-level
argely machine independent B e transformations and
" procedure inlining

(also called
procedure integration)

Smalllanguage dependencies; Including global and local
machine dependencies slight Global optimizations + register
€.g., register countsitypes) i allocation

Highly machine dependent; Detailed instruction selection
anguage independent 008 generato ‘and machine-dependent

may include
by assembler

or be followed

©2003 Elsevier Science (USA). Al rights reserved.

Chapter 2

Chapter 2

Page <#>

Compiler Optimizations

How can the architect help the
compiler writer?

+ High-level optimizations - source level
transformations

Eg: procedure integration, code inlining

+ Local optimizations - in a basic block, or
straight line code

Eg: common sub-expression elimination, constant
propagation, stack height reduction

+ Global optimizations - across branches

Eg: Copy propagation, code motion, loop
optimization, unrolling

* Register allocation
+ Instruction Scheduling

Chapter 2

* Regularity a.k.a orthogonality of instruction
set

* Provide primitives, not solutions

+ Expose the cost of different trade-offs -
especially with pipelining and caches this is
difficult

Eg: how many times should a variable be used

before it is better stored in register? Hard
to determine?

. Provide instructions that bind quantities
known at compile time as constants

Eg: It is a waste to let the processor

____interpret a value at runtime that wasa

Chapter 2compile time constant

Page <#>

