289C: Internet of Things: Introduction and Design Spring 2019

Lectures room: CRN: Office Hours & Location: Instructors (Co-teaching) E-mail address:	:	R 6:10pm-8:00pm Olson 217 F 6:10pm-9:00pm Kemper 2161 93057; 4 Units TBD, Location TBD Aykutlu Dana & Saif Islam aykutlu@alumni.stanford.edu	sislam@	@ucdavis.edu	
Book(s):	"Internet of Things - From Research and Innovation to Market Deployment" Editors Ovidiu Vermesan, Peter Friess				
	"Desig	gning for Internet of things", C	et of things", O'Reilly Publishing		
	"Internet of Things Principles and Paradigms", Editors Rajkumar Buyya, Amir Vahid Dastjerdi				
	Handouts (or class notes published on Web/Moodle), and a number of refere books for each topic.			odle), and a number of reference	
Supplementary text:	Gregory T. Kovacs, Micromachined Transducers Sourcebook				
Grading:		Homeworks/Reading Assignme Midterms Laboratory Final exam - Project presentatio		20% 30% 25% 25%	
Prerequisite / Co-requisite:		Basic knowledge of C or Python programming languages,			
		Basic Electronics (analog and	l digital)	

Course Description: This course introduces fundamental concepts in the Internet of Thing, a driving element in the ongoing digital transformation. The course will include introduction to Sensors, Embedded Systems, Networking Protocols for massively connected sensor/actuator networks. The course has a laboratory section with significant hands on work and a final project presentation based on the laboratory work.

Tentative Course Syllabus:

Week:1

Course overview. Introductory concepts : IOT, Cloud Computing, Fog Computing, Networking, Security, Final Project Description

Week: 2

Sensors and Transducers. Applications of sensors: Scientific, Medical, Industrial and Consumer. Fundamental aspects of transduction: Noise, Detection limits, Dynamic range, Linearity. Lab1: Analog Sensors

Week: 3

Microcontrollers for IoT Sensors: Embedded Systems, Resources and Processes, Power, Connectivity, Performance Interfacing Requirements,

Week:4

Case Study: Arduino IDE and Sensor Interfacing Lab2: Sensor and Actuator Interfacing

Week : 5 Networking and IoT: Layers, Protocols, IPV6, Connectivity (wired/wireless, Wi-Fi, cellular, ZigBee, LoRa, Bluetooth), Cloud and Fog computing, Security Lab3: Bluetooth Connectivity of Sensor Interfaces

Week: 6

Programming tools, APIs, Python Programming, REST API

Week:7

Case Study: Network Connected interfacing of Sensors

Week:8

Application Domains and Scenarios Lab4: Networked Sensing and interfacing

Week:9

Final Project Presentations