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Abstract

This proposal carries out fault tolerance design methods in JPEG image compression
computing structures so that temporary failures are detected, guaranteeing that no
corrupted compressed data reaches the intended user without warnings or appropriate
actions. The research analyzes the specialized effects of computer failure errors and
provides the design methodologies to integrate fault tolerance in JPEG standard image
compression algorithms. The progress in implementing the error detection schemes
applied in different stages of JPEG data compression standard is discussed. The
compression/decompression stages, include the fast algorithm for Discrete Cosine
Transform, quantization, differential encoding, symbol mapping and entropy coding are
analyzed with enough details. Protection levels are verified by computer simulations
based on the proposed architectural and data level designs. The modification of the
JPEG system for error detection purposes provides fault detection without changing the
standard. The error detection algorithms are included in the decoding process. The
ultimate goal of this research is to influence optional features in data compression
standards that insure fault tolerance capabilities for critical applications.
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1 Introduction

The ultimate goal of data compression techniques is to reduce transmission bit rate
or storage capacity. The great achievements in information theory are realized in
practical systems for source coding and channel coding. However, source and channel
coding do not address issues arising in the computer system architectures that
implement these functions. Currently, source and channel coding is a subject being
addressed by computer technology. There are several issues arising in the computer
systems that implement these functions. First, the computing resources that execute the
source and channel coding operations are subject to temporary failures. For the
important source coding applications, the impact of such errors can be significant. The
collection of data in medical applications must faithfully represent the measurement
throughout the compression/decompression processes. In these circumstances any soft
fail effects on the compressed data cannot be detected until it is recognized by human
perception or by a special check procedure. One of the tasks of remote-sensing satellites
is acquiring and transmitting images to the earth. Radiation such as alpha particles and
cosmic rays is one source of transient and permanent faults in electronics used in space
environment. An example effect is a bit-flip a so called a soft error. A single particle can
upset multiple bits. These error bits can be the elements of the intermediate data image
stored in memory, or that being processed in the computer registers. In any
circumstance, the image will be corrupted and cannot be used at the ground stations.

Failure of a device or component in a system might cause the system to function
incorrectly and fail to provide the intended service. A fault models the effect of failure on
digital signals. There are two approaches for avoiding system failures: fault avoidance
and fault tolerance. Fault avoidance techniques try to reduce the probability of fault
occurrence, while fault tolerance techniques try to keep the system operating despite the
present of faults. Since faults cannot be completely eliminated, critical systems always
employ fault tolerant techniques to guarantee high reliability and availability. Fault
tolerant techniques are based on redundancy. Redundancy is provided by extra
components (hardware redundancy), by extra execution time (time redundancy), or by
combination of both.

In this work, the JPEG compression/decompression standard for still images will be
examined from a fault tolerance viewpoint. The concerns in the JPEG environment are:
errors due to computational noise or the temporary intermittent failures in the hardware
that could corrupt current and the subsequent code words. Such failures can lead to a
great degradation of the reconstructed image.

Furthermore, quantizing operations on individual DCT coefficients that are used in
JPEG have an unpredictable effect result on modified coefficients. The nature of such
operations makes it quite difficult to detect errors. Retrieving bad data can result from
incorrect addressing, or  errors in the lossless coding or the quantization tables. These
types of errors can be detected by redundancy hardware or an error checking code.
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In coding of the differential DC coefficients, another part of JPEG, if a small
numerical error occurs that is coupled with the Huffman coding lookup operations, the
result becomes very difficult to detect. The compressing of the block of AC coefficients
containing inherent runs of zeros, involves either Huffman or arithmetic coding, is other
major fault tolerance challenges. The JPEG mode also complicates the protection
process. When the operating mode changes, the format of ultimate binary stream at the
output is also changed, and the fault detection process must be adequately developed in
order to handle errors occurring under these different modes of operations. Formatting
the compressed bit stream with frame headers, and markers is extremely important. It
allows the decoder to recognize and carry out the proper tasks for processing the
incoming stream. Sending an improperly formatted image may not be detected until the
decoder begins decompressing it.

There have been meaningful results on some of the fault tolerance challenges
enumerated in the proposed work. The fault protection methods are applied to the DCT,
the lookup operations in Huffman coding, quantization and markers generation. These
topics are central to the JPEG standard’s fault tolerance capabilities. Self-checking
techniques are developed specifically targeted to each stage to protect its software
routines or hardware from temporary faults. By the addition of information, resources,
or time beyond what is needed for normal system, the benefits for these costs are the
additional capabilities in the system: more reliable, better performance in critical
operating environments.

Since the proposed research will develop the Fault Tolerant techniques for the JPEG
data compression, it is important to understand the JPEG standards and algorithms,
determine possible errors in each stage of the compression system. The development of
the hardware and software redundancy intends to protect the system from error and
minimize the change of the output stream format. For error detection at the decoder, the
JPEG compressed data output may contain extra information in the form of error
checking codes. This codes, if occur, will be inserted into proper locations of the data
stream without violation of the compression standard.

To  simplify the work, we will only solve the error detection problem for basedline
JPEG standard, which is 8-bit sample precision gray scale sequential Discrete Cosine
Transform with Huffman coding. Other JPEG modes contain similar fault tolerant
challenges. The key aspects of the proposed research follow:

•  Main steps that take place in an image and in an image compression process.

• The expected input/output data format, and all possible errors due to the

faults in computation, memory, or data transfer existence in each stage.

• Reaction to the errors by realizing an algorithm or a hardware subsystem to detect
and possibly process the errors
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Objectives (Questions to be Answered)

1.  What hardware redundancy models are used in the JPEG compression system?

2.  What kind of algorithms are used?

3. How to calculate any potential of errors?

4.  How the fault detection system interacts with the principle system?

Overview of Progress

We have conducted an extensive overview JPEG compression system and standards,
fault detection schemes, focusing on the following topics:

• Discrete Cosine Transform: fast algorithm, matrix decomposition.

• Entropy coding: Constructing tables

• Quantization: Scalar quantizer, human perception about quantization error

• Marker segment structures.

• Modeling the errors in each stage

• Error detection schemes for each stage.
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2 JPEG Image Compression Standard

The following subsections provide the important information about JPEG
compression system and standard

2.1 Image Overview

2.1.1 Representation of Image

In most computer displays, the screen image is composed of discrete units called pixels.
Each pixel occupies a small rectangular region on the screen and displays one color at a
time. The pixels are arranged so that they form a 2-dimensional array.

As the amount of disk space and memory has increased along with the speed of
processors, the use of bitmap images has expanded as well. The major draw back with
bitmap images is the amount of data required to hold them. An 800 600×  image with 24
bits per pixel requires 1 440 000, , bytes of memory o display or disk space to store.
Compression is usually used to reduce the space an image file occupies on disk, allowing
large number of images to be stored.

2.1.3 YCbCr  Color Model

In RGB , colors are composed of three component values that represent the relative
intensities of red, green, and blue. RGB  is not the only color model in use. JPEG images
are almost always stored using a three-component color space known as YCbCr . The Y ,
or luminance, component represents the intensity of the image. Cb  and Cr  are the
chrominance components. Cb  specifies the blueness of the image and Cr give the
redness. The relation between the

YCbCr  andRGB  models as used in JPEG is represented in the equation

Y R G B

Cb R G B

Cr R G B

R Y Cr

G Y Cb Cr

B Y Cb

Sample ecision

Sample ecision

Sample ecision

Sample ecision Sample ecision

Sample ecision

 
 

 

 

  

 

= + +

= − − + +

= − − +

= + −

= − − − −

= + −

0299 0587 0114

01687 0 3313 05 2

05 0 4187 0 0813 2

1402 2

0 34414 2 0 71414 2

1722 2

. . .

. . .

. . .

. ( )

. ( ) . ( )

. ( )

Pr /2

Pr /2

( Pr )/2

Pr /2 Pr /2

Pr /2

(1)

We can see the Y component contributes the most information to the image. Unlike the
RGB  color model, where all components are roughly equal, YCbCr concentrates the
most important information in one component. This makes it possible to get greater
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compression by including more data fromY component than from Cb  and Cr

components.

2.2 JPEG

2.2.1 Overview

This section will covers the fundamentals of JPEG compression. JPEG is an acronym for
“Join Photographic Experts Group.” The JPEG standard is fairly complex because it
defines a number of related image compression techniques.The power of the JPEG
format is that, for photographic images, it gives the greatest (up to 20 times or more)
image compression of any bitmap format in common use.

Many implementations of the JPEG standard support only the basic lossy
compression algorithm. The elements of this algorithm are illustrated in Figure 2
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Figure 1  The basic parts of an encoder.

Unsigned image sample values are first offset to obtain a signed representation. These
samples are collected into 8 8×  blocks and subject to the DCT (Discrete Cosine
Transform). The transform coefficients are individually quantized and then coded using
variable length codes (also called Huffman codes). Various other techniques, such as
DPCM and run-length coding are used to improve the compression efficiency.

The quantization and coding processes are controlled by parameter tables, which are
compressor may choose to optimize for the image or application at hand. The tables
must be explicitly recorded in the code-stream, regardless of whether any attempt is
made to optimize these parameters. Many compressors simply use the example tables
described in the standard, with no attempt at customization.

2.2.2 JPEG Compression Modes

The JPEG standard defined four compression modes: Hierarchical, Progressive,
Sequential and lossless. Figure 1 shows the relationship of major JPEG  compression modes and
encoding processes.
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JPEGJPEGJPEG

HuffmanHuffmanHuffman ArithmeticArithmeticArithmetic HuffmanHuffmanHuffman ArithmeticArithmeticArithmetic

SequentialSequentialSequential ProgressiveProgressiveProgressive LosslessLosslessLossless HierarchicalHierarchicalHierarchical
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8-bit88--bitbit 12-bit1212--bitbit 8-bit88--bitbit 12-bit1212--bitbit 8-bit88--bitbit 12-bit1212--bitbit 8-bit88--bitbit 12-bit1212--bitbit

Figure 2 Elements of the basic JPEG algorithm

� Sequential
Sequential-mode images are encoded from top to bottom. Sequential mode supports
sample data with 8 and 12 bits of precision. In the sequential JPEG, each color
component is completely encoded in single scan. Within sequential mode, two
alternate entropy encoding processes are defined by the JPEG standard: one uses
Huffman encoding; the other uses arithmetic coding.

� Progressive
In progressive JPEG images, components are encoded in multiple scans. The
compressed data for each component is placed in a minimum of 2 and as many as 896
scans. The initial scans create a rough version of the image, while subsequent scans
refine it.

� Hierarchical
Hierarchical JPEG is a super-progressive mode in which the image Is broken down
into a number of subimages called frames. A frame is a collection of one or more
scans. In hierarchical mode, the first frame creates a low-resolution version of image.
The remaining frames refine the image by increasing the solution.

2.2.3 Baseline JPEG

Baseline JPEG decompressor supports a minimal set of features. It must be able to
decompress image using sequential DCT-based mode. For baseline compression the bit
depth must be B = 8 ; however, it is convenient to describe a more general situation. The

image samples are assumed to be unsigned quantities in the range [ , ]0 2 1 B − . The level

offset subtract 2 1B−  from every sample value so as to produce signed quantities in the

range [ ]− −− −2 2 11 1B B,  . The purpose of this is to ensure that all the DCT coefficients will
be signed quantities with a similar dynamic range.

The image is partitioned into blocks of size 8 8× . Each block is then independently
transformed using the 8 8×  DCT. If the image dimensions are exact multiples of 8, the
blocks on the lower and right hand boundaries may be only partially occupied. These
boundary  blocks must be padded to the full 8 8×  block size and processed in an
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identical fashion to every other block. This illustrate in Figure 3. The compressor is free
to select the  value used to pad partial boundary blocks.

8 8

Padding for lower boundary blocks

Figure 3 Image partition into 8 8×  blocks for JPEG compression.

Usually, it is replicated the final row or column of actual image samples into the missing
locations. Given x x j jb b[ ] [ , ]j ≡ 1 2  denotes the array of level shifted sample values for the

bth block. Also, let y y k kb b[ ] [ , ]k ≡ 1 2  denote the 8 8×  array of DCT coefficients formed from

these samples. The indices k1  and k2 represent vertical and horizontal frequency,
respectively. The DCT coefficients are given by
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For N = 8 , k 0= , from (2) the “DC” coefficient for block b  is
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so that B + 3  bits are required to represent the integer part of the DC coefficients. The
remaining 63 coefficients in each block are called “AC” coefficients.

In this proposal, we consider only one image component (monochrome image), and
the blocks are processed in raster order, from left to right and from top to bottom. Each
DCT coefficient is subjected to uniform scalar quantization. The quantization indices
qb [ ]k , are give by.

| [ ] |[ ] sgn( [ ]) b
b b

yq y round
 =   ∆ k

kk k   (4)

where ∆k  is the quantization step size at spatial frequency k  in block. They are
collected in an 8 8×  array known as a quantization table or Q-table, which is used for
every DCT block. The Q-table entries must be integers in the range [ , ]0 255 . The
decompressor uses a mid-point reconstruction rule to recover approximate versions of the
original DCT coefficients.
)
y q k kb b[ ] [ ], ,k kk= ≤ ≤∆   0 81 2 (5)
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At low bit-rates, most of the AC coefficients must be quantized to 0 since every non-
zero coefficient requires at least 2 bits to code.  JPEG uses a simple DPCM scheme to
exploit some of the redundancy between the DC coefficients of adjacent blocks. The
quantity which actually coded for block b is the difference, δb , between qb [ ]0 and qb−1[ ]0 .

δb
b bq q b

q b
=

− >
=






−[ ] [ ],

[ ]

0 0
0
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0

0

0
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Figure 4 DPCM with quantizer outside the feedback loop
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Figure 5 DPCM with quantizer inside the feedback loop

Figure 4 illustrates processing DC coefficients, yb [ ]0 , at the compressor and
decompressor. DPCM is a lossless tool for efficiently coding the quantization indices.
Accordingly, the quantizer is not included inside the DPCM feedback loop.

The processing can be done also in a lossy DPCM structure, where the quantizer is
include in the feedback loop as illustrated in Figure 5. It has the property that
) )
y yb b O b[ ] [ ]0 0− =−1 ∆ δ    (7)
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or δb b bq q= − −[ ] [ ]0 01 . This shows the outside and inside feedback loops are equivalent.

2.2.4 Category Codes
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As described by Figures 2, 4 and 5, the symbol δb , which represent the DC
coefficients are to be coded using a variable length code (VLC). The number of possible
symbols can be very large because the integer part of the DC coefficients are B + 3  bit
quantities and the smallest quantiation step size is 1. The range of possible values for

the magnitude δb  is

0 8 2 1 2 3≤ ≤ − ≤ +δb
B B( ) (10)

There are approximately 2 4B+  possible different δb symbols. In similar, the total number

of possible AC symbols is approximately 2 3B+ . The DC or AC symbol, s , is mapped to
an ordered pair, ( , )c u , which we call a “category code.” The “size category,”c , is
subjected to variable length coding, and u  contains exactly c  bits appended to c

without coding. The c  is defined to be the smallest number of bits that can represent

the magnitude of s . That is s c≤ −2 1 , or

 c s= +log ( )2 1 (11)

When c = 0 , s must be zero and there is no need for u . When s > 0 , u  contains a 1

followed by the c−1  least significant bits of s . When s < 0  , u  consists of a 0 followed

by the one’s complement of the c−1  least significant bits of s . Table 2 identifies 215

different symbols all have similar probabilities so that little is lost by leaving them
uncoded. On the other hand, the size categories can be expected to have a high non-
uniform.

Baseline Encoding Example

This section gives an example of Baseline compression and encoding of a single 8x8
sample block. For right now we omit the operation of a complete JPEG baseline encoder,
including creation of interchange format information (parameters, headers, quantization
and Huffman tables. This example should help to make concrete much of foregoing
explanation. Figure 6(a) is an 8×8 block of 8-bit samples. After subtracting 128 from
each sample for the required level-shift, the 8×8 block is input to the FDCT. Figure 6(b)

139 144 149 153 155 155 155 155

144 151 153 156 159 156 156 156

150 155 160 163 158 156 156 156

159 161 162 160 160 159 159 159

159 160 161 162 162 155 155 155

161 161 161 161 160 157 157 157

162 162 161 163 162 157 157 157

162 162 161 161 163 158 158 158
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-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1

-7.1 -1.9 0.2 1.5 0.9 -0.1 0.0 0.3

-0.6 -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3

1.8 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0

-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8

-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4
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(a) Source image samples (b)  Forward DCT coefficients

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
            

� � � � � � � � � �

� � � � 	 	 	 	 	 	

� � � � 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

(c) Quantization table (d) Quantized coefficients

15   0   15   0   --2   2   --1   1   --1   1   --1   0   0   1   0   0   --1   0      …       01   0      …       0

55 zeros

(e)  Quantized coefficients in zig-zag order

15   0   15   0   --2   2   --1   1   --1   1   --1   0   0   1   0   0   --1   0      …       01   0      …       0

55 zeros

((22)()(33)   ()   (11,,22)()(--22)   ()   (00,,11)()(--11)   ()   (00,,11)()(--11)   ()   (00,,11)()(--11)   ()   (22,,11)()(--11)   ()   (00,,00))

--1212

(Runlength, Size) (Amplitude)

Symbol-1 Symbol-2

(f) Intermediate sequence of symbols

Figure 6 DCT and quantization example

shows the resulting DCT coefficients. Figure 6(c) is the example quantization table for
luminance components. Figure 6(d) shows the quantized DCT coefficients, normalized by
their quantization table entries as specified in equation (4). Assume the quantized DC
term of the previous block is 12, then their difference is +3. Thus, the intermediate
representation for the DC component is (2)(3) (use 2 bits and amplitude is 3). Figure
6(e) shows the quantized AC coefficients in zig-zag order. In Figure 6(f), the first
nonzero coefficient is –2, preceded by a zero-run of 1. This yields a representation of
(1,2)(-2). Next terms are the three consecutive nonzeros with amplitude –1. This means
each is preceded by a zero-run of length zero. This yields the sequence (0,1)(-1) (0,1)(-1)
(0,1)(-1). The last nonzero coefficient is –1 preceded by two zeros to be represented by
(2,1)(-1). The final symbol representing this 8x8 block is EOB, or (0,0).
The sequence symbols is (2)(3), (1,2)(-2), (0,1)(-1), (0,1)(-1), (0,1)(-1), (2,1)(-1), (0,0)
The codes themselves must be assigned. From the  Table 2, the differential-DC VLC is
(2) 110
From Table 1, the AC luminance VLCs for this example are:
(0,0) 1010                             (1,2) 11011
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(0,1) 00                                (2,1) 11100

The VLIs specified in section 2.2.4 are
(3) 11
(-2)     01
(-1)      0
Thus, the bit-stream for this 8x8 example block is as follows:
110 11  11011 01  00 0  00 0  00 0  11100 0  1010
We need 31 bits to represent 64 coefficients, which compression of 0.5 bits per sample

Table 1 Basedline entropy coding Symbol-1 Structure

C0C0
C1C1
C2C2
C3C3
C4C4
C5C5
C6C6
C7C7
C8C8
C9C9
C10C10

1010 (EOB)
0000
0101
100100
10111011
1101011010
11110001111000
1111100011111000
11111101101111110110
11111111100000101111111110000010
11111111100000111111111110000011

11001100
1101111011
11110011111001
111110110111110110
1111111011011111110110
11111111100001001111111110000100
11111111100001011111111110000101
11111111100001101111111110000110
11111111100001111111111110000111
11111111100010001111111110001000

1110011100
1111100111111001
11111101111111110111
111111110100111111110100
11111111100010011111111110001001
11111111100010101111111110001010
11111111100010111111111110001011
11111111100011001111111110001100
11111111100011011111111110001101
11111111100011101111111110001110

111010111010
111110111111110111
111111110101111111110101
11111111100011111111111110001111
11111111100100001111111110010000
11111111100100011111111110010001
11111111100100101111111110010010
11111111100100111111111110010011
11111111100101001111111110010100
11111111100101011111111110010101

Size Z0 Z1 Z2 Z3

Runlength

C0C0
C1C1
C2C2
C3C3
C4C4
C5C5
C6C6
C7C7
C8C8
C9C9
C10C10

1010 (EOB)
0000
0101
100100
10111011
1101011010
11110001111000
1111100011111000
11111101101111110110
11111111100000101111111110000010
11111111100000111111111110000011

11001100
1101111011
11110011111001
111110110111110110
1111111011011111110110
11111111100001001111111110000100
11111111100001011111111110000101
11111111100001101111111110000110
11111111100001111111111110000111
11111111100010001111111110001000

1110011100
1111100111111001
11111101111111110111
111111110100111111110100
11111111100010011111111110001001
11111111100010101111111110001010
11111111100010111111111110001011
11111111100011001111111110001100
11111111100011011111111110001101
11111111100011101111111110001110

111010111010
111110111111110111
111111110101111111110101
11111111100011111111111110001111
11111111100100001111111110010000
11111111100100011111111110010001
11111111100100101111111110010010
11111111100100111111111110010011
11111111100101001111111110010100
11111111100101011111111110010101

Size Z0 Z1 Z2 Z3

Runlength

C0C0
C1C1
C2C2
C3C3
C4C4
C5C5
C6C6
C7C7
C8C8
C9C9
C10C10

Size

Runlength

111011111011
11111110001111111000
11111111100101101111111110010110
11111111100101111111111110010111
11111111100110001111111110011000
11111111100110011111111110011001
11111111100110101111111110011010
11111111100110111111111110011011
11111111100111001111111110011100
11111111100111011111111110011101

11110101111010
1111111011111111110111
11111111100111101111111110011110
11111111100111111111111110011111
11111111101000001111111110100000
11111111101000011111111110100001
11111111101000101111111110100010
11111111101000111111111110100011
11111111101001001111111110100100
11111111101001011111111110100101

11110111111011
111111110110111111110110
11111111101001101111111110100110
11111111101001111111111110100111
11111111101010001111111110101000
11111111101010011111111110101001
11111111101010101111111110101010
11111111101010111111111110101011
11111111101011001111111110101100
11111111101011011111111110101101

1111101011111010
111111110111111111110111
11111111101011101111111110101110
11111111101011111111111110101111
11111111101100001111111110110000
11111111101100011111111110110001
11111111101100101111111110110010
11111111101100111111111110110011
11111111101101001111111110110100
11111111101101011111111110110101

Z4 Z5 Z6 Z7

111011111011
11111110001111111000
11111111100101101111111110010110
11111111100101111111111110010111
11111111100110001111111110011000
11111111100110011111111110011001
11111111100110101111111110011010
11111111100110111111111110011011
11111111100111001111111110011100
11111111100111011111111110011101

11110101111010
1111111011111111110111
11111111100111101111111110011110
11111111100111111111111110011111
11111111101000001111111110100000
11111111101000011111111110100001
11111111101000101111111110100010
11111111101000111111111110100011
11111111101001001111111110100100
11111111101001011111111110100101

11110111111011
111111110110111111110110
11111111101001101111111110100110
11111111101001111111111110100111
11111111101010001111111110101000
11111111101010011111111110101001
11111111101010101111111110101010
11111111101010111111111110101011
11111111101011001111111110101100
11111111101011011111111110101101

1111101011111010
111111110111111111110111
11111111101011101111111110101110
11111111101011111111111110101111
11111111101100001111111110110000
11111111101100011111111110110001
11111111101100101111111110110010
11111111101100111111111110110011
11111111101101001111111110110100
11111111101101011111111110110101

Z4 Z5 Z6 Z7
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C0C0
C1C1
C2C2
C3C3
C4C4
C5C5
C6C6
C7C7
C8C8
C9C9
C10C10

Size

Runlength

111111000111111000
111111111000000111111111000000
11111111101101101111111110110110
11111111101101111111111110110111
11111111101110001111111110111000
11111111101110011111111110111001
11111111101110101111111110111010
11111111101110111111111110111011
11111111101111001111111110111100
11111111101111011111111110111101

111111001111111001
11111111101111101111111110111110
11111111101111111111111110111111
11111111110000001111111111000000
11111111110000011111111111000001
11111111110000101111111111000010
11111111110000111111111111000011
11111111110001001111111111000100
11111111110001011111111111000101
11111111110001101111111111000110

111111010111111010
11111111110001111111111111000111
11111111110010001111111111001000
11111111110010011111111111001001
11111111110010101111111111001010
11111111110010111111111111001011
11111111110011001111111111001100
11111111110011011111111111001101
11111111110011101111111111001110
11111111110011111111111111001111

11111110011111111001
11111111110100001111111111010000
11111111110100011111111111010001
11111111110100101111111111010010
11111111110100111111111111010011
11111111110101001111111111010100
11111111110101011111111111010101
11111111110101101111111111010110
11111111110101111111111111010111
11111111110110001111111111011000

Z8 Z9 Z10 Z11

111111000111111000
111111111000000111111111000000
11111111101101101111111110110110
11111111101101111111111110110111
11111111101110001111111110111000
11111111101110011111111110111001
11111111101110101111111110111010
11111111101110111111111110111011
11111111101111001111111110111100
11111111101111011111111110111101

111111001111111001
11111111101111101111111110111110
11111111101111111111111110111111
11111111110000001111111111000000
11111111110000011111111111000001
11111111110000101111111111000010
11111111110000111111111111000011
11111111110001001111111111000100
11111111110001011111111111000101
11111111110001101111111111000110

111111010111111010
11111111110001111111111111000111
11111111110010001111111111001000
11111111110010011111111111001001
11111111110010101111111111001010
11111111110010111111111111001011
11111111110011001111111111001100
11111111110011011111111111001101
11111111110011101111111111001110
11111111110011111111111111001111

11111110011111111001
11111111110100001111111111010000
11111111110100011111111111010001
11111111110100101111111111010010
11111111110100111111111111010011
11111111110101001111111111010100
11111111110101011111111111010101
11111111110101101111111111010110
11111111110101111111111111010111
11111111110110001111111111011000

Z8 Z9 Z10 Z11

C0C0
C1C1
C2C2
C3C3
C4C4
C5C5
C6C6
C7C7
C8C8
C9C9
C10C10

Size

Runlength

11111110101111111010
11111111110110011111111111011001
11111111110110101111111111011010
11111111110110111111111111011011
11111111110111001111111111011100
11111111110111011111111111011101
11111111110111101111111111011110
11111111110111111111111111011111
11111111111000001111111111100000
11111111111000011111111111100001

1111111100011111111000
11111111111000101111111111100010
11111111111000111111111111100011
11111111111001001111111111100100
11111111111001011111111111100101
11111111111001101111111111100110
11111111111001111111111111100111
11111111111010001111111111101000
11111111111010011111111111101001
11111111111010101111111111101010

11111111111010111111111111101011
11111111111011001111111111101100
11111111111011011111111111101101
11111111111011101111111111101110
11111111111011111111111111101111
11111111111100001111111111110000
11111111111100011111111111110001
11111111111100101111111111110010
11111111111100111111111111110011
11111111111101001111111111110100

11111111001
11111111111101011111111111110101
11111111111101101111111111110110
11111111111101111111111111110111
11111111111110001111111111111000
11111111111110011111111111111001
11111111111110101111111111111010
11111111111110111111111111111011
11111111111111001111111111111100
11111111111111011111111111111101
11111111111111101111111111111110

Z12 Z13 Z14 Z15

(run = 16)
11111110101111111010
11111111110110011111111111011001
11111111110110101111111111011010
11111111110110111111111111011011
11111111110111001111111111011100
11111111110111011111111111011101
11111111110111101111111111011110
11111111110111111111111111011111
11111111111000001111111111100000
11111111111000011111111111100001

1111111100011111111000
11111111111000101111111111100010
11111111111000111111111111100011
11111111111001001111111111100100
11111111111001011111111111100101
11111111111001101111111111100110
11111111111001111111111111100111
11111111111010001111111111101000
11111111111010011111111111101001
11111111111010101111111111101010

11111111111010111111111111101011
11111111111011001111111111101100
11111111111011011111111111101101
11111111111011101111111111101110
11111111111011111111111111101111
11111111111100001111111111110000
11111111111100011111111111110001
11111111111100101111111111110010
11111111111100111111111111110011
11111111111101001111111111110100

11111111001
11111111111101011111111111110101
11111111111101101111111111110110
11111111111101111111111111110111
11111111111110001111111111111000
11111111111110011111111111111001
11111111111110101111111111111010
11111111111110111111111111111011
11111111111111001111111111111100
11111111111111011111111111111101
11111111111111101111111111111110

Z12 Z13 Z14 Z15

11111110101111111010
11111111110110011111111111011001
11111111110110101111111111011010
11111111110110111111111111011011
11111111110111001111111111011100
11111111110111011111111111011101
11111111110111101111111111011110
11111111110111111111111111011111
11111111111000001111111111100000
11111111111000011111111111100001

1111111100011111111000
11111111111000101111111111100010
11111111111000111111111111100011
11111111111001001111111111100100
11111111111001011111111111100101
11111111111001101111111111100110
11111111111001111111111111100111
11111111111010001111111111101000
11111111111010011111111111101001
11111111111010101111111111101010

11111111111010111111111111101011
11111111111011001111111111101100
11111111111011011111111111101101
11111111111011101111111111101110
11111111111011111111111111101111
11111111111100001111111111110000
11111111111100011111111111110001
11111111111100101111111111110010
11111111111100111111111111110011
11111111111101001111111111110100

11111111001
11111111111101011111111111110101
11111111111101101111111111110110
11111111111101111111111111110111
11111111111110001111111111111000
11111111111110011111111111111001
11111111111110101111111111111010
11111111111110111111111111111011
11111111111111001111111111111100
11111111111111011111111111111101
11111111111111101111111111111110

Z12 Z13 Z14 Z15

(run = 16)

Table 2 Based line entropy coding for Symbol s
Size c Symbol s Code

0 0 0

1 -1 1 10

2 -3 -2 2 3 110

3 -7 -6 -5 -4 4 5 6 7 1110

4 -15 -14 -13 -12 … 12 13 14 15 11110

5 -31 -30 -29 -28 … 28 29 30 31 111110

6 -63 -62 -61 -60 … 60 61 62 63 1111110

7 -127 -126 -125 -124 … 124 125 126 127 11111110

8 -255 -254 -253 -252 … 252 253 254 255 111111110

9 -511 -510 -509 -508 … 508 509 510 511 1111111110

10 -1023 -1022 -1021 -1020 … 1020 1021 1022 1023 11111111110

11 -2047 -2046 -2045 -2044 … 2044 2045 2046 2047 111111111110

12 -4095 -4094 -4093 -4092 … 4092 4093 4094 4095 1111111111110

13 -8191 -8190 -8189 -8188 … 8188 8189 8190 8191 11111111111110

14 -16383 -16382 -16381 -16380 … 16380 16381 16382 16383 111111111111110

15 -32767 -32766 -32765 -32764 … 32764 32765 32766 32767 1111111111111110

16 32768 1111111111111111

3 Fault Tolerant In Fast Discrete Cosine Transform
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3.1 Overview of DCT

DCT based graphics compression usually employs an 8×8 DCT. For this reason, there
has been extensive study of this particular DCT. Equation  (12)  is the one dimensional
(1D) N-element DCT. Equation (13) is corresponding equation for the 1D N-element
inverse DCT.
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The DCT has the property that, for a typical image, most of the visually significant
information about  the image is concentrated in just a few coefficients of the DCT. For
this reason, the DCT is often used in image compression applications. The DCT is at the
heart of the JPEG standard lossy image compression algorithm.
The two-dimensional DCT of an M-by-N matrix X is defined as follows.
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The values y pq are called the DCT coefficients of X. The DCT is an invertible transform,

and its inverse is given by
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The inverse DCT equation can be interpreted as meaning that any M-by-N matrix A
can be written as a sum of functions of the form
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These functions are called the basis functions of the DCT. The DCT coefficients, then,
can be regarded as the weights applied to each basis function.
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There were existing many fast algorithms of 1D and 2D DCTs [1]-[4]. Those
algorithms achieved good improvements in computation complexities. Particularly, the
algorithm [1] results arithmetic complexity of (N/2)log(N) multiplications and
(3N/2)log(N)-N+1 additions for input sequence with radix 2 length (N = 2m). It based
on direct decomposition of the DCT. The derivation of the algorithm related to the
application of the Kronecker matrix product as a construction tool. The sequential
splitting method was used for proofing the correctness of the algorithm.

The approach in [3] processed the two-dimensional case directly, rather than treating
it naively as a row-column implementation of the one-dimensional case. Whereas the
method in [4] proposed the fast algorithm for the 2-D DCT, achieving a the purpose of
reducing the hardware complexity for  the parallel implementation,  slight increase in

time complexity. It requires N/2 1-D DCT modules and small number of multiplications.

The 2D forward and inverse transforms can be written as a of three items matrix
product Z=AXAT  and X=ATZA, where AAT = IN. The decomposition to a triple matrix
product requires 2N3 multiplications to be performed, which requires 2N multiplies to be
computed per input sample.

The 2D DCT can be broken down into 1D DCT’s (or IDCT’s). The first computes Y
= AX (or ATX) and the second computes Z = YAT (or YA). The N×N matrix-matrix
multiply has been separated into N matrix-vector products. Thus, the basic computation
performed by the DCT (IDCT) is the evaluation of the product between the (N×N)
matrix and the (N×1) vector. Each 1D DCT (or IDCT) unit must be capable of
computing N multiplies per input sample to perform a matrix vector product. If the
input block X is scanned column by column, the intermediate product Y = AX (or ATX)
is also computed column by column. However, since the entire row of Y has to be
computed prior to the evaluation of the next 1D DCT, the intermediate result Y must
be stored in an on-chip buffer. Since columns are written into the buffer and rows are
read from it, it is commonly called the transposed memory.

The first 1D DCT/IDCT unit operates on rows of A (or AT ) and columns of X, while
the second 1D DCT unit operate on the rows of AT (or A) is equivalent to a row of
A(AT), the second 1D DCT/IDCT is unnecessary if we can multiplex the first 1D
DCT/IDCT unit between the column of X and the row of Y. However, the 1D
DCT/IDCT unit now processes samples at twice the input sample rate. Thus the 1D
DCT/IDCT  unit must be capable of computing 2N multiplies per input sample.

3.2 Fault Tolerant Model for the DCT

Fault tolerance has been a major issue for the VLSI based Discrete Cosine Transform
(DCT) networks. The DCT is a unitary transform that can be expressed using matrix
factorizations. The constituent factor matrices are sparse and represent simple single
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computational patterns. In general C  is an N N×  unitary matrix and the input data are
collected in a vector x , the transform produces a vector y

y C x= ⋅ (17)

The unitary matrix C  can be expanded as a product of factor matrices Ai ’s, which each
corresponding to a stage of a fast algorithm. The modeling effects are achieved with a

generic single error εr
k( )  inserted at the input of a stage. The output error pattern vr

k( )  is
a direct consequence of the specific features of the fast algorithm as encapsulated in the
structure of the component matrices. We express a fast algorithm for the DCT on 8
points using the matrix factorization. By setting C k k( ) cos( / )= 2 32π , the 8-point DCT
matrix can be simplified in the form
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We will index rows of C8  from 0 to 7. Let P( ,1)8  be the permutation matrix acting on the

rows of C8  (orP C( ,1)8 8 ) reordering them as follows : 0, 2, 4, 6, 1, 3, 5, 7. Let P( , )8 2  be the

permutation matrix acting on the columns of C8  (orC P8 8 2( , ) ) keeping the first four

columns fixed and reversing the order of the last four columns them as follows : 0, 1, 2,
3, 7, 6, 5, 4. These permutation which are given explicitly
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Let In be the n n× identity matrix. Let F =
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we have G P G P R4 41 4 41
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The matrix G4 can be viewed as an element in the regular representation of the matrix

G4 can be viewed as an element in the regular representation of the polynomial ring in

the variable u  modulo u4 1+ . The top left 4 4× block  of (20) equals 2  times the  4
point DCT matrix C4 . It yields a similar block diagonalization. Let P42 be the

permutation matrix acting on the rows of C4  reordering them follows: 0,2,1,3.

Let P43  the permutation matrix acting on the columns of C4  by keeping the two first

columns fixed and reversing the order of the last two columns. Let R F I41 4= ⊗
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Let G̃2  be the bottom right 2 2×  block of (24). We define G2  by reverse the order of the

columns of G̃2

G G
1

1
G G

1
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G R2 2 2 2 2 2
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6 2
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Also, the 2 2×  subblock on the top left of (24) is the 2-point DCT matrix C2
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Where G1 4= [ ( )]C . Substitute G̃2  and C2  from (25) and (26) into (24) we obtain
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We have 
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; then (27) can be written
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From (28), solve for C4 , we have:
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Substitute into (29), we have C S
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From (22), solve for G̃4 , we have

G̃ P G R P4 41
1

4 4
1

41= − − (30)
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Thus the cosine transform matrix will be
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The expression (31) becomes C P K B B B8 8 8 1 2 3=
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Figure 7 Modeling Fault Produced Errors in 8-point DCT

Based on the factorization of the transform matrix C8 , the model of error is shown in

Figure 7. As we see, a generic single error εr
k( )  is inserted at the input of a stage. The

output err pattern vr
k( )  is a direct consequence of the specific features of the fast

algorithm as encapsulated in the structure of the component matrices.

3.3 Proposed Error Detection Algorithm for the DCT

This leads to a protection design methodology that uses real number parity values,
similar to all previous FFT fault tolerance techniques [5-11]. Two comparable parity
values are calculated, one from the input data vector and the other from the output
transform coefficients in vector y. The parity values are both based on a weighting
vector b, and calculated by taking the inner product of appropriate vectors and are
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Figure 8 Protection in the 8-point DCT

comparable parity numbers that are subtracted to form a syndrome. The parity-
checking operation involves a totally self-checking checker adapted for real number
comparisons [12]. This is summarized in Figure 8. A design algorithm was developed
using the concept of dual linear spaces that are affiliated naturally with the output error
pattern viewed as a single-dimensional subspace. The code design method is diagrammed
in Figure 8 and Matlab programs have been tested in designing protection for 2-D fast
DCT algorithms. The preliminary results indicate that previous FFT protection methods
have to be modified considerably.

Figure 9 describes the concurrent error detection scheme for the 1D-DCT network.
From the definition of N-point DCT in equation (12), if we multiply the coefficient ky
with a weight factor kF , then we have the equation
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If kF s are known, the expression inside the square bracket of (37) can be precomputed.

Let 
1

0

(2 1)
cos

2

N

n k k
k

k nb F
N

π
α

−

=

+
= ∑  be the weight factor at the input line nx  of the DCT

network. By selecting the weight factor ( 1)/kF k N= + (more theorems are found in

[16]), the precomputed weight factors 0 7, ...,b b  are shown below

By selecting the weight factor ( 1)/kF k N= + (more useful theorems are found in [16]),
for 8N =  we have the following results

b b b b

b b b b

0 2 2864 1 1 6865 2 0 6945 3 0 8128

4 0 7754 5 0 4605 6 0 1848 7 0 0188

 =   . ;   =  - . ;   =   . ;   =  - . ;  
 =   . ;   =  - . ;   =   . ;   =   . ;

 (38)

At the output, the weight factors kF s  can be decomposed into the sum of the powers of
1
2 . For 8N = , the decompositions are shown below.
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Figure 9  Concurrent Error Detection designed for 8-point DCT

In Figure 9, the block nb s represent for the precomputed constants to be multiplied with

data input (0),..., ( 1)x x N − . At the output of the DCT network, the lines connect

between the coefficients kX s with the 1, 2, 3 bits right shift determined by the
decomposition as shown in (39)

3.4 Some Experiment Results

The experiment started by computing the DCT of a luminance image sample without
the influence of error. This gives us the correct image of coefficients as shown in Figure
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10. In the next step, a random noise with the variance equal to 10% of the image
variance is injected at an arbitrary line and arbitrary stage of the DCT network shown
in the Figure 8.

    
Figure 10   Luminance sample image Y (left) and its DCT coefficient image (right)

In our experiment, the noise in added into the coefficients in the fourth output line of
the first stage. The noise levels are presented in Figure 11. The noise is assumed to be
injected once per transform of a line in a 8x8 data block. The intermediate coefficients
with error enter the input lines of the next stage. The next stage’s intermediate output
will have error spread to the more than one line. Finally, all coefficients X(0) to X(7) at
the last stage’s output very likely contain errors.

Figure 11  Noise injection pattern at stage 1 line 4 of the DCT networks.

It is hard to predict how the errors propagate from stage to stage. In this circumstance
the weight factor scheme becomes a useful tool to check errors occur inside the DCT
network. By collecting all error values injected into the system and comparing the

differences between the weight sums P  and P ′ , we can show the checking system
responding to error input.
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Figure 12 The responding to errors injected into the DCT network. Left:   When no noise injection
Right: The noise injection values (+) and the difference  between P’ and P (*)

 Figure 12 shows how the errors are reflected at the checker output. The top figure

shows a very small difference between the input and the output weights P  and P ′ . The
reason for the nonzero differences is round off errors due to the finite resolution of

computing system. In the bottom figure, the values of | |P P ′−  reflect errors occurred.
Those signal can trigger the recomputing the input data.

If the error threshold is setup low enough, then most of the errors can be detected by the
self-checking checker. However, if we set the threshold too low, the checker may pick up
the round off errors an consider those to be the errors due to the system fault or the
injected noise. Thus, we need to find a good threshold, which separates the errors due to
computer resolution limited and the computer fault or noise.
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Figure 13 Detection performance of the checker vs. the setup threshold

Figure 13 gives the error detection performance versus the setup threshold. At the small

setup threshold, the checker pick up most the errors occurred. The performance is
getting worse when the threshold is getting larger. With a high resolution computing
system, the errors due to fault and noise can be detected up to 100%

4 Fault Tolerant in Huffman Source coding Stage
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4.1 Overview of Huffman Codes

Huffman codes are widely used and very effective technique for compression data;
saving of 20% to 90% are typical, depending on the characteristics of the data being
compressed. We consider the data to be a sequence of characters. Huffman’s greedy
algorithm uses a table of the frequencies of occurrence of characters to build up an
optimal way of representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly. We
observe that the characters in the file occur with frequencies given by Figure 14

 a  b  c  d  e  f

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Figure 14 A character coding problem.

The data file contains only the characters a-f, with the frequencies indicated. If each
character is assigned as three bit codeword, the file can be encoded in 300,000 bits.
Using the variable length code shown, the file can be encoded in 224,000 bits, which
saves approximately 25%. In fact, this is an optimal character code for this file. Once
alphabet symbols have been defined, the compression efficiency can be improved by
using shorter code words for more probable symbols and longer codewords for the less
probable symbols. This variable-length codewords belong to entropy coding scheme.
Huffman coding is one of the entropy coding techniques that JPEG uses in its
compression standard. We see here only codes in which no codeword is also a prefix of
some other codeword. Such codes are called prefix codes. It is possible to show that the
optimal data compression achievable by a character code can always be achieved with a
prefix code.

Encoding is always simple for any binary character code; we just concatenate the
codewords representing each character of the file. For example, with a variable length
prefix code of Figure 14, we code the 3-character abc as 0 101 100 0101100⋅ ⋅ = ,  where we
use “⋅” to denote concatenation.

The decoding process needs a convenient representation for the prefix code so that the
initial codeword can be easily picked off. A binary tree, whose leaves are the given
characters provides one such presentation. We interpret the binary codeword for a
character as the path from the root to that character, where 0 means “go to the left
child”, and 1 means “go to the right child”. Figure 15 shows the trees for the two codes
of the example in Figure 14. Each leaf is labeled with a character and its frequency of
occurrence. Each internal node is labeled with a sum of the frequencies of the leaves in
its subtree.
An optimal code for a file is always represented by a full binary tree, in which every
nonleaf node has two children. The fixed length code as shown in Figure 15(left), is not
a full binary tree: there are codewords beginning 10…., but none beginning 11…. If we
restrict to the full binary tree, we can say that if C is the alphabet from which the
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Figure 15 Trees corresponding to coding schemes in Fig.14. Left: The tree corresponding to the fixed-
length code a=000,…,f=101. Right: The tree corresponding to the optimal prefix code a = 0, b = 101,
c=110, d=111, e= 1101, f = 1100.

characters are drawn and all character are positive, then the tree for the optimal prefix
code has exactly |C | leaves, one for each letter of the alphabet, and exactly |C |-1
internal nodes. Given a tree T  corresponding to a prefix code, it is a simple matter to
computer the number of bits required to code a file. For each character c  in C , let f c( )

denote the frequency of c  in the file and let d cT ( )  denote the depth of c ’s leaf in the

tree. d cT ( )  is also the length of the codeword for character c . The number of bits
required to encode a file is

B T f c d cT
c C

( ) ( ) ( )=
∈
∑ (40)

4.2 Constructing a Huffman Code

Huffman invented a greedy algorithm that constructs an optimal prefix code, now
called a Huffman code. In the pseudocode that follows, we assume that C  is an object

with a defined frequency f c[ ] . The algorithm builds the tree T  corresponding to the
optimal code in a bottom-up manner. It begins with a set of |C | leaves and performs a

sequence of C −1  “merging” operations to create a final tree. A min-priority queue Q ,

keyed on f , is used to identify the two least frequent objects to merge together. The
result of the merger of two objects is a new object whose frequency is the sum of the
frequencies of the two objects that were merged.

HUFFMAN ( )C

1. n C←

2. Q C←

3. for i ←1  to n −1
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4.  do allocate a new node z

5.  left z x ExtractMin Q[ ] ( )← ←

6.  right z y ExtractMin Q[ ] ( )← ←

7.  f z f x f y[ ] [ ] [ ]← +

8.  INSERT Q z( , )

9. return ExtractMin Q( )

Line 2 initializes the min-priority queue Q  with the characters in C . The for loop in
lines 3-8 repeatedly extract the two nodes x  and y  of lowest frequency from the queue,
and replaces them in the queue with a new node z  representing their merger. The
frequency of z  is computed as the sum of frequencies of x  and y  in line 7. The node z
has x  as its left child and y  as its right child. This order is arbitrary; switching the left
and right child of any node yields a different code of the same cost.) After n −1  mergers,
the one node left in the queue – the root of the tree – is returned in line 9.

4.3 Fault Tolerant Issues in Huffman Codes

The problem with tree structures is that they are very sensitive to memory errors,
lacking exploitable redundancy. As we have seen from the previous part, trees are
constructed by using pointers to link nodes together and each node carries information
about itself, its parent and children. Therefore, if one internal node disappears as a
result of a memory error (pointer corruption, memory cell corruption) then all the nodes
below that one are lost.  Detecting and correcting errors can be done but cost additional
computations. For example, an error-correcting code could be used to protect the
content of each cell by parsing, checking each cell. This task can be done only if the tree
structure is not corrupted by memory error or any other reasons. After a correction for
an element, the updating the tree to maintain some properties usually requires a large of
running time.

To overcome the difficulty of making the Huffman algorithm fault tolerant, table can
be used instead of tree. Each table has a table head, which is the address of the first
item. Table head allows us to access entire table’s content by computing the actual
address by the displacement from head to an item in the table. Protection of table head
requires a small computation cost. With our design scheme, error detection must be
available for the required table lookup procedures at the Huffman encoder. The
codewords have variable lengths so the encoder cannot employ fixed-width memory.

A possible Huffman encoding structure is shown in Figure 16. The (run, size) input
symbol accesses a pointer table that indicates the length of the corresponding Huffman
codeword. This symbol is also used to indicate where the code for the RUN-SIZE symbol
is located in memory storage. The variable length codeword is assembled in an output
buffer available for other formatting operations. Figure 16 also indicates a protection
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method. Parity bits associated with each selected codeword are stored and comparable
with parity bits recalculated from the output buffer.
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Figure 16 Huffman Encoding for Table 1 with Parity Checking

Note that Table 2 identify the size category for the DC Huffman differences. The extra
bits to complete the coding of the sign and magnitude of the nonzero AC coefficients are
exactly the same scheme as for different DC coding. When the AC coefficient s  is

positive, the extra bits contain a 1 followed by the size−1  least significant bits of s .

When s < 0  , the extra bits consist of a 0 followed by the one’s complement (inversion of
bit pattern) size−1  least significant bits of s . The error detection for the additional
bits can be completed in the Figure 17 must be available for table lookup procedures
The integer AC coefficient s  and the size  parameter access a pointer table that
indicates the address of the additional code bits. The parity bits associated with each
selected codeword are stored in the pointer table. The upper path of the diagram shows

Category s, size abs

(size-1) least
significant bits

Sign
bit

Parity
Calculation

Pointer
Table

Comparator

AC Additional
Bits Output

Parity Bits

Huffman
Code

Storage

s

1-complement

Control

Error
indicator

Figure 17 Huffman encoding for category code in Table 2 with parity checking

how the additional bits and the parity bits are generated. The comparator compares the
generated parity and those stored in the pointer table.

4.4 Overview of Residue Codes
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A residue code is a separable code created by appending the residue of a number to
that number. The code word is constructed as D|R, where D is the original data and R
is the residue of that data. The residue generation is determining the residue of the data.
The residue of a number is the remainder generated when the number is divided by an
integer. For example, suppose we have an integer N and we divide N by another integer
m, N may be written as an integer multiple of m as

N = I �  m+r
where r is the remainder, sometimes called the residue, and I is the quotient. The quality
m is called the check base, or the modulus. The primary advantage of the residue codes
are they are invariant to the operation of addition, subtraction, and the residue can be
handed separately from the data during the addition or subtraction

rc

AdderAdder

CompareCompare

Error indicator

Data InputD1 D2

Residue
Generator
Residue

Generator

mod-m
Adder

mod-m
AdderSum S

Output
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                                Figure 18  Structure of an adder designed using the separable residue code
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process. The structure of an adder that uses the separate residue code for error detection
is shown in Figure  18. The two data D1 and D2 are added to form a sum word S. The
residues r1 and r2 of D1 and D2, respectively, are also added using modulo-m adder,
where m is modulus used to encode D1 and D2. If the operation is performed correctly,
the modulo-m addition of r1 and r2 yield the residue rs of the sum S. A separate circuit is
then used to calculate the residue of S. If the calculated residue rc differs from rs, an
error has occurred in one part of the process. For instance, given the modulus m = 3, the
above table  shows the residue output corresponding to the integer input. The detection
of errors using the residue code is applied in the Huffman encoders for the DC and AC
coefficients as shown in the following section.
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4.5 Error Detection for Decoding DC Coefficients

Figure 19 describes error checking for the DC decoder. The DC Huffman code is divided
into two binary code sections concatenate together: The first section consists of c
number of consecutive 1’s ending with a single 0 bit which indicates the “size category”
code in the code Table 2. The second section contains exactly c bits that indicate the
DC value. Let B be the decimal value of the second section. If the most significant bit of

B is zero, then the DC value is negative with magnitude equal to 2 1c B− − . If the most
significant bit of B is one, then the DC value is positive with magnitude equal to B.

DC 
Decoder

DC  Residue
 Code Table

DC Huffman
Input Code

Address

Compare
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value

Residue 
Generator

Error 
IndicatorResidue

Code

+

1 Block 
Delay
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Figure 19  Error Detection System for DC Decoder

The error detection for the DC Huffman decoder is shown in Figure 19. The DC Huffman
bit stream enters the DC decoder. The DC decoder compute the equivalent DC value,
along with the address of its DC residue code table. The DC value at the output of the
DC decoder enters to the residue generator. Both residue codes come out from the DC
residue code table and the residue generator are compared in the comparator. If they are
matched, no error is occurred. Otherwise, the error indicator is activated and send the
error signal to decoder error handler for further process.

4.6 Error Detection for Decoding AC Coefficients

The error detection algorithm for the AC coefficients is more complicated than that
for the DC coefficients because the AC code is a combination of two groups of bits. The
first group, a Huffman codeword, indicates the size and zero run-length. If this group of
bits is 1010, the end of block (EOB) is reached. If the group is 11111111001 then the
number of zeros run-length is 15 and the nonzero AC coefficient will be determined form
the next codeword. The second group indicates the AC value just like what has been
done for the DC value. Note that Table 2 is used for both DC and AC Huffman
decoders. Figure 20 shows error checking for AC Huffman code. The two groups of AC
bit stream represent for (ZeroRun, Size)(Amp) enters the decoder. The first group is
used to generate an appropriate address to access the ZeroRun storage. The output of
the ZeroRun storage contains the number of zero run-length Z. The (Size, Amp) is used
to issue an address to the AC Value Storage. At the same time, the (Size, Amp) also
enters the AC Value Reconstruction unit to recompute the AC value. This AC
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coefficient is saved in an AC Block Buffer and, at the same time, it is routed the
Comparator along with the value comes from the AC value Storage . If they do not
match, the output of the comparator will show an error signal.

 

AC code stream
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Figure 20. Error Detection System for AC Decoder

When the ‘end of block’ code stream is reached, the number of AC coefficients in the
AC Block Buffer must be 63 (in the context of 8x8 2D-DCT image block).  The block
length checker verify the correctness of the block length. If the block length is
incorrect(smaller or larger than 63), an error signal will occur. Otherwise, the content of
the Buffer will be transferred to the de-quantization block for further processing.

5 Fault Tolerant in Quantization Stage

5.1 Error detection system for quantization stage

The quantization process discards information that is visually imperceptible. Every

element in the 8¥8 transform coefficients, is divided by a pre-selected integer, the
Quantum(i,j), taken from the quantization table.
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Figure 21 Error checking for the Quantization of a DCT coefficient
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The elements that matter most to the picture will be divided by the  smaller step size.

| ( , ) |
( , ) sgn( ( , ))

( , )
DCT i jQuantizedValue i j DCT i j Round

Quantum i j

 
 = ×   

(41)

Only if the high-frequency components get up to unusually large values will they be
encoded as non-zero values. At the decoding, the de-quantization formula operates in
reverse.

²( , ) ( , ) ( , )DCT i j QuantizedValue i j Quantum i j= × (42)

Distortion errors due to the quantization process are always present and such errors in a
typical DCT i j( , )  coefficient may be modeled with an additive disturbance.

( , ) | ( , ) |
sgn( ( , )) r

DCT i j DCT i j
DCT i j Round

q q
ε

 
 = × +  

(43)

rε  is a roundoff error an ( , )q q i j@  is the quantum at the row i, column j. It is clearly

satisfied 1/2rε ≤ . Therefore, the DCT i j( , )  may be expressed as

( , )
( , ) sgn( ( , )) r

DCT i j
DCT i j q DCT i j Round q

q
ε

 
 = × × + ⋅  

(44)

The quantity rqε ε⋅@  is the quantization error that degrades the image quality slightly.

Error detection for quantization begins with determining if the quantization values are
read properly from the quantization table storage. Assume the quantum ( , )q i j  and the

( , )DCT i j  are checked earlier. Figure 21 shows the error checking for the quantization

operations. The ( , )DCT i j  value taken absolute | ( , ) |DCT i j . This | ( , ) |DCT i j  is divided

by the quantum factor ( , )q i j . The quotient is rounded and then multiplied with sign of

( , )DCT i j , which is 1 or -1. The quantized value output is transferred to the next coding
block. The quantization error ε  is determined by subtracting the quantized
²( , ) ( , ) ( , )DCT i j q i j QuantizedValue i j×@  from the ( , )DCT i j  input. The ratio between ε

and ( , )q i j  is the subject to be checked. By using the 1/2±  thresholds we can decide if
error occurred in the quatization process.

5.2 Error Protection for Dequantization

The critical task in dequantization is multiplication. Each coefficient in a DCT block
is scaled up by the same factor as it was scaled down in the encoder. Hence, the data
read from the quantization tables and the multiplication operations are need to be
checked. Since the equation (42) represents for the dequantization operation, low-cost
residue code is efficient to detect its errors from a computational resource viewpoint. In

the low-cost codes, the number base is typically taken to be of the form 2 1ab = − , where
a is integer greater than 1. The residue of the code word (operand) A  is obtained by

performing a modulo 2 1a −  addition of the a  bits in the code word. This procedure may
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be simplified if the a  bits are divided into k  groups in which each group contain
l a k= ÷  bits. The quotient a k÷  must be an integer. If these groups are formed, the

modulo 2 1l − addition of the l  bits for each of the k  groups can be used to generate the
residue of A  [14,15]. By apply this method in multiplication of two residues, we only
needs a-bit multiplication.
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Figure 22 Residue Error Detection System for Multiplication Operations

Figure 22 shows the error check system for the dequantization. The residue codes of the
quantization table  are precalculated and stored in a table along with the quantization
table content. When a ( , )QDCT i j  is arrived from the previous stage, it is multiplied with

an appropriate element ( , )Q i j  in the quantization table yields the reconstructive

coefficient ²( , )DCT i j . In the other path, a residue code ( , )resq i j′  of ( , )QDCT i j  is

generated and then multiplied with the precalculated residue code ( , )resq i j . At the same

time, the residue code 2( , )r i j  of ²( , )DCT i j  is generated. The code 2( , )r i j  is compared

with 1( , )r i j  at the output of modulo b  multiplication. If no error in the process, 1( , )r i j
is equal to 2( , )r i j . The signal at the output of the comparator indicate the error status
of the dequantization process.

6 Fault Tolerant in the JPEG Data Stream

In this section we will deal with the fault tolerant issues in the JPEG data stream.
First of all, we need to review the information about baseline DCT process frames and
extended sequential frames. These are identical except that extended sequential frames
can use 12-bit or 8-bit samples and up to four DC or AC Huffman tables, whereas
baseline DCT JPEG support only 8-bit samples and up to two DC and AC Huffman

tables, these two frames are decoded in exactly the same manner.

6.1 Procedures and compressed data structure

JPEG compressed data contains two classes of segments: entropy coded segments and
marker segments. Entropy coded segments contain the entropy coded data, whereas
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marker segments contain header information, tables and other information required to
interpret and decode the compressed image data. Marker segments are always begin with
a marker, a unique two-byte code that identify the function of the segment.

A JPEG compression process consist of a single frame or a sequence of frames. Each
frame is composed of one or more scans through the data, where a scan is a single pass
through the data for one or more components of the image. At the beginning of each
frame, the control procedures generate a frame header that contains parameter values
needed for decoding the frame. Similarly, at the beginning of each scan, the control
procedures generate a scan header that contains parameter values needed for decoding
the scan. Each frame and scan header starts with a marker that can be located in the
compressed data without decoding the entropy-coded segments. Marker segments
defining quantization tables, entropy coding tables, and other parameters may precede
the frame and scan headers. Figure  23 illustrate the structure of compressed image data
stream.

Start Of Image
(SOI)
marker

Table
marker
Segment

Frame
Header

Table
marker
Segment

Scan
Header

Entropy
Coded

Segment

End Of Image
(EOI)
marker

Figure 23 Structure of typical compressed image data stream

Scan header are always followed by one or more entropy-coded segments. The input
data for the scan may be divided into fixed interval called restarted intervals, and the
data in each restarted interval are compressed into a single entropy-coded segment.
When a scan contains more than one entropy coded-segment, the segments are separated
by special two-byte codes called a restarted markers that can be located in the
compressed data without decoding. The encoding and decoding of each entropy-coded
segment is done independently of the other entropy-coded segments in the scan.

6.2 Image ordering

One of the more complex of JPEG is the interleaving of data from image components

during the compression process. This interleaving makes it possible to decompress the
image, convert from a luminance-chrominance representation to a red-green-blue display
output. A JPEG compressed image data stream contains a single image that can have
up to 255 unique components. Each component of the image is represented internally as
the rectangular array of samples. The rectangular arrays of samples are processed from
left to right along rows, and from top row to bottom row. The data are decoded and
returned to the application in the same order in which they were presented to the
encoder.

6.3 Data units for DCT-based and lossless processes

A data unit is the smallest logical unit of source data that can be processed in a given
JPEG mode of operation. In DCT-based modes, the component arrays are divided into
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8 8×  blocks. Therefore, the data unit for the DCT based processes is a single 8 8×  block
of samples. The block in the component are processed from left to right along block
rows, and from the top block row to the bottom block row.
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Figure 24 The orientation of samples for forward DCT computation

Figure 24 shows an image component which has been partitioned into 8 8×  blocks for
the DCT computations. It also shows the orientation of the samples. The definitions of
block partitioning and sample orientation also apply to any DCT decoding process and
the output reconstruction image.

For the coding processes, data units are assembled into groups called minimum coded
units (MCU). In scans with only one component, the data is non-interleaved and the
MCU is one data unit. In scans with more than one component, the data are interleaved
and the MCU defines the repeating pattern of interleaved data units. The order and the
number of data units in the MCU for interleaved data are determined from the
horizontal and vertical sampling factors and the components in the scan. LetHi  and Vi

be the number of samples in the ith  component relative to the other components in the
frame. When the data are interleaved, the sampling factors define a two dimensional

array of data units, H Vi i×  in size for the ith  component of the frame. If the 1 2, ,...,Ns

components in the scan correspond to frame components c c cN s1 2, ,..., each MCU in the

scan is constructed by taking H Vc ci i
×  data units from frame component ci , for

i Ns= 1 2, ,..., . Within each H Vi i×  array of data units, the data units are ordered from
left to right and from top row to bottom row. Processing always starts at the upper left
corner of each component array. Figure 25(a) shows a small image with twice as many
luminance blocks horizontally as chrominance component blocks. The sampling factors
are therefore ( , )H V= =2 1  for the luminance Y , and ( , )H V= =1 1  for the Cb  and
Cr chrominance components. When the data units for all three components are
interleaved in a single scan, the ordering of the data units would be:
YY CbCr YY Cb Cr YYCb Cr YYCb Cr1 2 1 1 3 4 2 2 5 6 3 3 7 8 4 4, , ,   , where each group YYCbCr forms a MCU.

In the Figure 25(b),  the sampling factors are  ( , )H V= =1 2  for the luminance Y , and
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( , )H V= =1 1  for the Cb  and Cr chrominance components. In this case, the ordering of

the data units would be YY CbCr YY CbCr YYCb Cr YYCb Cr1 3 1 1 2 4 2 2 5 7 3 3 6 8 4 4, , ,   .
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Figure 25 Three-component image with chrominance sub-sampled

6.4 Marker Overview

Markers serve to identify the various structural parts of the compressed data formats.
Most markers start marker segments containing a related group of parameters; some
markers stand alone. All markers are assigned two-byte codes: an X’FF’ byte followed by
a byte which is not equal to 0 or X’FF’. Any marker optionally be preceded by any
number of X’FF’. Because of this special code-assignment structure, markers make it
possible for a decoder to parse the interchange format and locate its various part
without having to decode other segments of image data.

Marker segments consist of marker followed by a sequence of related parameters. The
first parameter in a marker segment is the two-byte length parameter. This length
parameter encodes the number of bytes in the marker segment, include the length
parameter and excluding the two byte marker. The marker segments identified by the
SOF and SOS marker codes are referred to as headers: the frame header and the scan
header respectively.

1 2 3 4 5 6 7 8 9 10 11

FF DB 0009 Parameters

Data offset address

Data content (bytes)

Quantization table parameters (7 bytes)

Length of sequence of parameters (2 bytes)

Define Quantization table code

Marker Prefix

Figure 26 a marker with the following sequence of parameters

In generating the entropy-coded segments, 0xFF bytes are occasionally created. To
prevent accidental generation of markers in the entropy coded segments, each occurrence
of 0xFF byte is followed by a “stuffed” zero byte. All marker segments and entropy-
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coded segments are followed by another marker. In Huffman coding, one-bits are used to
pad the entropy-coded data to achieve byte alignment for the next marker. Because a
leading one-bit sequence is always a prefix for a longer code, padding with one-bits
cannot create valid Huffman codes that might be decoded before the marker is identified.
The markers fall into two categories: those without parameters and those followed by  a
variable-length sequence of parameters of known structure. For the markers with
parameters, the first parameter is a two- bytes parameter giving the length (in bytes) of
the sequence of parameters. This length includes the length parameter itself, but
excludes the marker that defines the segment

6.5  Application Markers (APPn )

The APP APP1 15−  markers hold application-specific data. The hold information beyond
what is specified in the JPEG standard. The format of these markers is application
specific. The length field after the marker can be used to skip over the marker data. If an
application need sot store information beyond the capabilities of JPEG, it can create
APPn markers to hold this information. An APPn can appear anywhere within the JPEG
data stream. An application that processes APPn markers should check not only the
marker identifier, but also the application name. Figure 27 specifies the marker segment
structure for an application.

APPn Lp AP1… APLp-2
  Figure 27 application data segment

6.6 Comment marker (COM)

Comment marker is used to hold comment strings. This marker should be used for plain
text. It may appear anywhere within JPEG file.

COM Lc CM1… CMLc-2
  Figure 28 structure of a comment segment

6.7   Define Huffman Table (DHT)

The DHT marker defines (or redefines) Huffman tables. A single DHT marker can define
multiple tables; however, baseline mode is limited to two of each type, and progressive
and sequential modes are limited to four. The only restriction on the placement of DHT
markers is that if a scan requires a specific table identifier and class, it must be defined
by a DHT marker earlier. Figure 29 illustrates the structure of Huffman table segment.
Each Huffman table is 17 bytes of fixed data followed by a variable filed of up to 256
additional bytes. The first fixed byte TcTh  contains the identifier for the table. The
next 16, L L1 16,..., , form an array of unsigned of one-byte integers whose elements give
the number of Huffman codes for each possible code length. The sum of the 16 code
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DHT Lh Symbol length assignment Tc L1 Th L2 L16 

V1,1 V1,2 V1,L1 V2,1 V2,2 V2,L2 V3,1 V3,2 V3,L16 

Multiple (t=1,…,n) 

Figure 29 structure of Huffman table segment

lengths is the number of values in the Huffman table. The values are 1 byte each and
follow the length counts. The value n  in the Figure 29 is the number of Huffman tables
in the marker segment. The value of Lh  relates with n  and the length of each Huffman
table by the equality

Lh m n mt
t

n

t
t

n

= + + = + +
= =
∑ ∑2 17 2 17

1 1

( )  (45)

where mt  be the number of parameters, which follows the 16 Li
t( )  parameters for

Huffman table t  and is given by  m Lt i
t

i

=
=
∑ ( )

1

16

(46)

6.8   Error detection algorithm for Define Huffman Table (DHT)

The error checking for the DHT marker will check for the relation between parameters
and the value range of parameters. Assume S  DHT marker segment array that was
created and stored in the memory. The algorithm for error checking DHT marker is
shown in the Fig. 30. The algorithm is created based on the checksum results obtained
from the equations (45) and (46). The DHT ERR CHECKER S_ _ ( )  algorithm read and
check the parameters as shown below

DHT ERR CHECKER S n_ _ ( , )

1. DHT ← Extract S( , )2
2. if DHT FFC≠ 4
3.  then  return false

4. Lh ← Extract S( , )2
5. Q n← +2 17
6. for t = 1  to n
7.  do  TcTh ← Extract S( , )1
8.  if TcTh XEE&0 0≠
9.  then  return false

10.  L ← 0
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11.  for i ← 1  to 16
12.  do L Extract Si ← ( , )1

13.  if  Li
i≥ 2

14.  then  return false

15.  L L Li← +
16.  Q Q L← +
17.  for i ← 1  to 16
18.  do for j = 1  to Li

19.  do V Extract Si j, ( , )← 1

20.  if Vi j
i

, ≥ 2

21.  then  return false

22. if  Q Lh≠
23.  then return false

24. return true

The way the algorithm works is explained below with assumption that the number of
Huffman tables n  is known. Line 1 extracts the DHT marker. Line 2 check for the
valid DHT marker, which is 0xFFC4. If it is invalid, return false  in line 3. Line 4
extract length Lh . Line 5 stores the initial value as shown in the equality 45. Lines 6-
21 extract parameters from the marker stream. Line 6 set up the number of for loops
equal to n . Lines 7-9 extract and check for the value of Th  and Tl . Since each of Tc

and Th  only contain value 0 or 1 for the baseline DCT, the and bit TcTh XEE&0
must yield 0. We use this property to check for the validate of these parameters. Line
10 set a intermediate parameter L  to zero. Lines 11-15 extract 16 parameters Li s,

S,nS,n Lh←Extract(S,2)
Q ←2+17n

t ←1

LhLh←←Extract(S,2)Extract(S,2)
Q Q ←←2+172+17nn

tt ←←11

Tch←Extract(S,1)TchTch←←Extract(S,1)Extract(S,1)

NoNo

L←0
i ←1
LL←←00
i i ←←11

YesYes

Li ←Extract(S,1)Li Li ←←Extract(S,1)Extract(S,1)

NoNo

L ←L+Li
i ←i+1

L L ←←L+LiL+Li
i i ←←i+1i+1

TchTch&&xEExEE
= 0 ?= 0 ?

Li Li ≥≥22ii ??

i i >16>16 ??
NoNo

i ←1
Q ←Q+L

i i ←←11
Q Q ←←Q+LQ+L

j ←1j j ←←11

Vij ←Extract(S,1)VijVij ←←Extract(S,1)Extract(S,1)

VijVij ≥≥22ii ??
YesYes

Error
Error

YesYesError

j ←j+1j j ←←j+1j+1

j >Li ?j >Li ?

NoNo

NoNo
YesYes

YesYes

i >16 ?i >16 ?
NoNo

i ←i+1i i ←←i+1i+1

t ←t+1t t ←←t+1t+1

YesYes

t > n ?t > n ?
YesYes

NoNo Q = Q = LhLh ??
NoNo

Error

YesYes

Passed 
(Correct Format)

S,nS,n Lh←Extract(S,2)
Q ←2+17n

t ←1

LhLh←←Extract(S,2)Extract(S,2)
Q Q ←←2+172+17nn

tt ←←11

Tch←Extract(S,1)TchTch←←Extract(S,1)Extract(S,1)

NoNo

L←0
i ←1
LL←←00
i i ←←11

YesYes

Li ←Extract(S,1)Li Li ←←Extract(S,1)Extract(S,1)

NoNo

L ←L+Li
i ←i+1

L L ←←L+LiL+Li
i i ←←i+1i+1

TchTch&&xEExEE
= 0 ?= 0 ?

Li Li ≥≥22ii ??

i i >16>16 ??
NoNo

i ←1
Q ←Q+L

i i ←←11
Q Q ←←Q+LQ+L

j ←1j j ←←11

Vij ←Extract(S,1)VijVij ←←Extract(S,1)Extract(S,1)

VijVij ≥≥22ii ??
YesYes

Error
Error

YesYesError

j ←j+1j j ←←j+1j+1

j >Li ?j >Li ?

NoNo

NoNo
YesYes

YesYes

i >16 ?i >16 ?
NoNo
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Error
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Passed 
(Correct Format)

Figure 30 Algorithm for error checking DHT marker
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each  contains the number of DHT codes with length i . Since the number of code of

length i  cannot exceed 2 1i − , line 13 check for the value of Li . Line 14 returns false if

Li ’s value is invalid. Line 15 add accumulate the value of Li  into L . Lines 16 extracts
and checks the validate for the values of  Huffman code. Since the value of an i -bit code

Vi j,  cannot exceed 2 1i− , therefore line 20 checks for this condition and line 21 returns

false  if the code is invalid. Line 22 checks for the total length of the DHT marker
segment have been computed and the parameter Lh  records for that length. Line 23
returns false   if the two values are not matching. Line 24 returns true  to complete the
algorithm.

6.9 Define Restart Interval

The DRI marker specifies the number of MCUs between restart markers within the
compressed data. Figure 31 specifies the marker segment which defines the restart
interval The value of the 2-byte length field Lr  is always 4. There is only one data

DRI Lr Ri

Figure 31 structure define start interval segment

field Ri  in the marker define the restart data interval. If Ri = 0 , then the restart
marker are not used. A DRI marker with nonzero restart interval can be used to re-
enable restart markers later in the image. A DRI marker may appear anywhere in the
data stream to define or redefine the start interval, which remains in effect until the end
of the image or until another DRI marker changes it. A DRI must appear somewhere in
the file for a compressed data segment to include restart markers. Restart markers assist
in error recovery. If the decoder finds corrupt scan data, it can use the restart marker ID
and the restart interval to determine where in the image to resume decoding. The
following formula can be used to determine the number of MCUs to skip:

MCUs to skip =  Restart Interval CurrentMarkerID  LastMarkerID) MOD × + −(( )8 8

6.10  Restart Marker Processing

Restart markers are used to create independently encoded blocks of MCU. The restart
interval specifies the number of MCUs between restart markers. A JPEG decoder needs
to maintain a counter of MCUs processed between restart markers. When an image
contains no restart markers, every MCU, except for the first, depend upon the previous
MCU being decoded correctly. If the encoded data for an MCU get corrupted (e.g. while
the data is being transmitted over a telephone line), each subsequence MCU will be
incorrectly decoded.

Restart markers are placed on byte boundaries. Any fractional bits in the input
stream that have not been used are discarded before the restart marker is read. The only
processing that takes place after the reading of a restart marker is resetting the DC
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difference values for each component in the scan to zero. If the decoder does not find a
restart marker at the specified restart interval, the stream is corrupt. The valid restart
markers are occurred in the order RST RST RST0 2 7, , ...,  RST RST RST0 2 7, , ..., .

 If restart markers are used, decoder can use them to recover from corrupt compressed
data. Since restart markers are placed in the output stream in sequence, decoders can
compare the last one read before the corrupt data was encountered to the current one
and use the restart interval to determine where in the image the decoding should
resume. This works as long as the corruption in the compressed stream does not span
eight restart markers. If it does, the decoder will not be able to match the remaining
compressed data to its correct location within the image.

6.11  Define Quantization Table (DQT)

The DQT marker defines the quantization tables used in an image. A DQT marker can
define multiple quantization tables (up to 4). Figure 32 specifies the marker segment
which defines one or more quantization table. The quantization table definition follows
the marker’s length field. The value of the length field Lq  is the sum of the sizes of the
tables plus 2 (for the length field). The next 1 byte PqTq  contains information about
the table. If the 4-bit number Pq  is zero, the quantization table values are one byte each
and entire table definition is 65 bytes long. If the value of  Pq  is 1, the size of each
quantization value is 2 bytes and the table definition is 129 bytes long. Two byte
quantization values may be used only 12-bit sample data.

DQT Lq Pq Q0Tq Q1 Q63

Figure 32 structure define quantization table segment

The 4 low-order bits Tq   assign a numeric identifier to the table, which can be 0,1,2 or
3. The information byte is followed by 64 quantization values that are stored in JPEG
zigzag order. DQT markers can appear anywhere in the compressed data stream. The
only restriction is if a scan requires a quantization table, it must have been defined in a
previous DQT marker.

6.12   Error Checking for Start Of Frame (SOFn)

The SOFn marker defines a frame. Although there are many frame types, all have the
same format. The SOF marker consists of a fixed header after the marker length followed
by a list of structures that define each component used by the frame. The structure of
the fixed header is shown in Figure 33. Components are identified by an integer N f  in

the range 0 to 255.  The markers and parameters are defined belowSOFn  starts of frame
marker; marks the beginning of the frame parameters. The subscript n  identifies
whether the encoding process is basedline sequential, extended sequential, progressive, or
lossless as well as coding procedure is used.

Lf : frame header length; specifies the length of the frame header
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SOFnSOFn Lf  P Y X  Nf Component-Spec.
Parameters

 C1  H1  V1  Tq1  C2  H2  V2  Tq2  CNf HNf VNf  Tq2

Figure 33 Structure of Frame Marker Segment

P : sample precision in bits for the samples of the components in the frame

Y : number of lines; specifies number of lines in the source image. This shall be equal
to the number of lines in the component with the maximum number of vertical
samples. Value 0 indicates that the number of lines shall be defined by the DNL
markers and parameters marker and parameters at the end of the first scan.

X : number of samples per line; specifies the number of samples per line in the source
image. This shall be equal to the number of samples per line in the component
with the maximum number of horizontal samples

Nf : number of image components in frame; specifies number of sources image
components in the frame. The value of Nf  shall be equal to the number of sets of
frame component specification parameters (C H Vi i i, ,  and Tqi ) present in the
frame.

C i component identifier; assigns a unique label to the i th  component in the sequence
of frame component specification parameters. These values will be used in the scan
headers to identify the components in the scan. The value of C i  shall be different

from the values of C1  through C i−1

H i ,Vi  horizontal/vertical sampling factors; specifies the number of horizontal/vertical

units, respectively, of component  C i  in each MCU when more than component is
encoded in a scan.

Tqi quantization table selector; select one of four possible quantization tables to use for

dequantization of DCT coefficients of component C i . If the decoding process uses the
dequantization procedure, this table shall have been specified by the time the decoder is
ready to decode the scan(s) containing component C i , and shall not be re-specified until

all scans containing C i  have been completed. The field sizes of frame header are
summary  in the table 3

Based on the above structure, the flow of SOFn marker segment is shown in Figure 34

We are going to design an error checking algorithm for the SOFn marker. The algorithm
works based on the structure and value range of the fields we already know. Assume the
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 Table 3 Frame header field sizes assignment

Parameter Symbol Size (bits)
Marker (0xFFC0-3,5-7,9-B,D-F)
Frame header length
Sample precision
Number of lines
Number of samples/line
Number of components in frame
Frame component specification
(i=1..Nf)

Component ID
Horizontal sampling factor
Vertical sampling factor
Q. table destination selector

SOFn

Lf
P
Y
X
Nf

Ci

Hi

Vi

Tqi

16
16
8
16
16
8

8
4
4
8

Error checking Algorithm For SOF

 Lf  P  Y  X Nf  Ci
 Hi

 Vi Tqi

 i = 1  to Nf

 SOFn

Figure 34 Structure of Frame Marker Segment

frame marker segment was created and stored in memory as an array S . The algorithm
will check the structure of S  and the valid values of its parameters. The procedure
SOF ERR CHECKER S_ _ ( ) accepts S  as an input. To simplify the algorithm, we limit
to checking for the SOF  segment for the baseline DCT. In this mode, the marker SOF

is 0XFFC0 (hexadecimal number), the value of P is 8; H Vi i,  are in the range 1-4, and

Tqi  is in the range 0-3. The procedure SOF ERR CHECKER S_ _ ( ) is shown below.
Line 1 extracts two bytes from the SOF segment. This is the SOF marker. Line 2 checks
for the valid marker. If the invalid marker is found, it return the false  flag to inform the
error. Otherwise SOF  is valid, the process is continue. Line 4 extract the Lf  parameter.
Line 5-7 extract and check the P  parameter. If this P  is invalid, it return
SOF ERR CHECKER S_ _ ( )

1. SOF ← Extract S( , )2
2. if SOF FFC≠ 0
3.  then  return false

4. Lf ← Extract S( , )2

5. P ← Extract S( , )1
6. if P ≠ 8
7.  then  return false

8. Skip S( , )4
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9. Nf Extract S← ( , )1
10. if  Lf Nf≠ +8 3
11.  then return false

12. for i = 1 to Nf

13.  do skip S( , )1 > skip one byte for C i

14.  tmp Extract S← ( , )1

15.  H tmpi ← >>( ) &4 0 0  x F

16.  V tmpi ← & x0F0

17.  if  H i ∉ [ , ]14  or Vi ∉ [ , ]14
18.  then  return false

19.  Tq Extract S← ( , )1

20.  if Tq ∉ [ , ]0 3
21.  then  return false

22. return true

false  to the caller. Line 8 skips four bytes contain Y  and X parameters. Line 9 extracts
1 byte for the Nf  parameter. Lines 10-11 check for the valid relationship between Lf

and Nf . Each iteration in the loop lines 12-21 read 3 bytes from S  and checks for the
validate values of H Vi i, ,Tqi  parameters. Line 13 skips the parameter C i  because the

range of this parameter is 0-255. Lines 14-16 extract H i  and Vi  parameters. Lines 17-18

return false  if either one of these  H i  and Vi  parameters contains an invalid value. Line
19-21 extract and check for the parameter Tp . Line 22 returns true  indicates the
structure SOF  marker is correct.

6.13 Error Checking for Start Of Scan (SOS)

The SOS marker marks the beginning of compressed data for a scan in JPEG stream. Its
structure is illustrated in Figure 35. The descriptor for each component is goes after the
component count Ns . The component descriptor are ordered in the same sequence in
which the component are ordered within MCUs in the scan data. While not all of the

 TaNsTdNs

Ta1

SOS Ls  Ns Component-Spec.
Parameters

 Cs1 Td1  Cs2 Td2Ta2  CsNs

 Ss  Se Ah Al

Figure 35 Structure of SOS  marker segment

components from the SOFn marker must be present, their order in the SOS marker and
the SOFn must match. The component identifier in the scan descriptor must match a
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component identifier value defined in the SOFn marker. The AC and DC Huffman table
identifiers must match those of Huffman tables defined in a previous DHT marker. An
SOS marker must occur after the SOFn marker. It must be preceded by DHT markers
that define all of the Huffman tables used by the scan and DQT markers that define
allthe quantization tables used by the scan components. The marker and parameters
shown in figure 35 are defined below.

SOS : start of scan marker; mark the beginning of the scan parameters.

Ls : scan header length; specifies the length of the scan header

Ns : number of image components in the scan; specifies the number of source image
components in the scan. The value of Ns  shall be equal to the number of sets of
scan component specification parameters (Cs Tdj j,  and Ta j ) present in the scan.

Cs j : scan component selector; selects which of the Nf  image components specifies in the

frame parameters shall be the j th  component in the scan. Each Cs j  shall match

one of the C i  values specified in the frame header, and the ordering in the scan
header shall follow the ordering in the frame header. If Ns > 1, the order of the
interleaved components in the MCU is Cs1  first, Cs2  second, etc..

Td j , Ta j : DC/AC entropy coding table selector; selects one of four DC/AC entropy

coding tables needed for decoding of the DC/AC coefficients of component Cs j .

The DC/AC entropy table selected shall have been specified by the time the
decoder is ready to decode the current scan.

Ss : start of spectral or predictor selection; In the DCT modes of operation, this
parameter specifies the first DCT coefficient in each block which shall be coded in

the scan. This parameter shall be set to zero for the sequential DCT processes.

Se : end of spectral selection; specifies the last DCT coefficient in each block which

shall be coded in the scan. This parameter shall be set to 63 for the sequential
DCT processes

Ah : this parameter specifies the point transform used in the preceding scan for the
band coefficients specified by Ss  and Se . This parameter shall be set to zero for
the first scan of each band of coefficients and no meaning in the lossless mode.

Al : successive approximation bit position low or point transform; in the DCT modes of
operation this parameter specifies the point transform. This parameter shall be set
to zero for the sequential DCT processes.

Error checking Algorithm

The error checking algorithm for the SOS marker segment is designed based on the SOS
structure and its the valid value ranges of parameters. To simplify the algorithm, we
limit to checking for the SOS  segment for the baseline DCT. The size and value ranges
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of the parameters in the SOS  are described in the Table 4.  We are going to develop an
algorithm to check for the valid SOS  marker. Figure 36 describes the flow of the SOS

  Table 4 Start of scan header sizes and value range of parameters

Parameter size(bits) baseline DCT value

Ls

Ns

Cs j

Td j

Ta j

Ss

Se

Ah

Al

16

8

8

4

4

8

8

4

4

6 2+ ×Ns

1-4

0-255

0-3

0-3

0

63

0

0

marker segment. The stream of SOS  marker segment is generated and store in memory
as shown in the Figure 37. The algorithm SOS ERR CHECKER S_ _ ( ) extracts the data
from the memory and step-by-step check for each parameter.

 Ls Ns  Cs Td  Ss  Se Ah

 i = 1 toNs

 SOS Ta  Al

Figure 36 Flow of SOS  marker segment

 

Memory  SSOS

Generator SOS ERR CHECKER S_ _ ( )

Error
indicator

Figure 37 Error checking diagram for SOS  marker segment

SOS ERR CHECKER S_ _ ( )

1. SOS ← Extract S( , )2
2. if SOS FFDA≠
3.  then  return false

4. Ls ← Extract S( , )2

5. Ns ← Extract S( , )1
6. if Ls Ns≠ +6 2
7.  then  return false

8. for i = 1 to Ns

9.  do sk ip S( , )1 > skip one byte for Cs
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10.  tmp Extract S← ( , )1

11.  Td tmp← >>( ) &4 0 0  x F
12.  Ta tmp← &  x0F0
13.  if  Td > 1 or Ta > 1
14.  then  return false

15. Ss Extract S← ( , )1
16. if Ss ≠ 0
17.  then  return false

18. Se Extract S← ( , )1
19. if Se ≠ 63
20.  then  return false

21. Ahl Extract S← ( , )1
22. if Ahl ≠ 0
23.  then  return false

24. return true
Line 1 of the SOS ERR CHECKER S_ _ ( ) extracts two bytes from the SOS  segment.

Lines 2-3 check for the SOS  marker code. If it is not valid, return false . Lines 4-5
extract Ls  and Ns  parameters. Line 6 checks the equality relation between Ls  and Ns .
If this equality is not satisfied, it returns false  in line 7. The loop in lines 8-14 extracts
Cs Td Ta, ,  parameters  from the memory. Since the range of the one-byte Cs  is 0-255,
line 9 skips this parameter. Lines 10-12 extract and compute Td  and Ta . Lines 13-14
check for the validate of Td  and Ta . If these parameters are not 0 or 1, it returns false .
Lines 15-23 extract and check for the Ss Se Ah Al, , ,  parameters. If any of those is invalid,
the procedure return false . Line 24 return true  indicates the SOS  structure is correct.

6.14 Compressed Data Format

Figure 38 specifies the order of the high constituent parts of the interchange format,
which begins by an SOI marker, a frame, and ends with EOI marker. The structure of
frame begins with the frame header and shall contains one or more scans. A frame
header may be preceded by one or more table-specification or simultaneous marker
segments . If a DLN (Define Number of Lines) segment is present, it shall immediately
follow the first scan. For DCT-based  process each scan shall contain from one to to four
image components. If 2 to 4 components are contained within the scan, they shall be
interleaved within the scan.

The scan structure begins with a scan header and contains one or more entropy coded
data segments. Each scan header may be preceded by one or more table specification or
miscellaneous marker segments. If restarted is not enabled, there will be only one
entropy coded segment. If restart is enabled, the number of entropy-coded segments is
defined by the size of the image and the defined restart interval. In this case the restart
marker shall follow each entropy coded segment except the last one.

To detect the error for the entire compressed data output, we break it into segments
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SOISOISOI

Table/misc.Table/misc.Table/misc.

Frame HeaderFrame HeaderFrame Header

[Table/misc.][Table/misc.][Table/misc.]

<MCU1>,… <MCURi><MCU<MCU11>,… <MCU>,… <MCURiRi>>

RST0
RSTRST00

<MCUm>,… <MCULast-1><MCU<MCUmm>,… <MCU>,… <MCULastLast--11>>

RSTLast-1
RSTRSTLastLast--11

<MCUn>,… <MCULast><MCU<MCUnn>,… <MCU>,… <MCULastLast>>

[DNL segment][DNL segment][DNL segment]

[Scan 2][Scan 2][Scan 2]

[DNL segment][DNL segment][DNL segment]

[Scan Last][Scan Last][Scan Last]

EOIEOIEOI

Scan 1Scan 1

Scan 2Scan 2

Scan LastScan Last

FrameFrame

Entropy Coded Segment Entropy Coded Segment 00: ECS: ECS00

Entropy Coded Segment Entropy Coded Segment lastlast--11: ECS: ECSlastlast--11

Entropy Coded Segment Entropy Coded Segment lastlast: ECS: ECSlastlast

       Figure 38 compressed image data

and perform the error checking for each segment, one at a time. If any errors are
detected in a marker segment, this segment will be processed again. The error checking
algorithm for each segment is described detail in section 6.

7 Proposal for Future Work

7.1 Fault Tolerant for JPEG 2000 Image Compression Standard

The JPEG committee has recently released its new image coding standard, JPEG
2000, which will serve as a supplement for the original JPEG standard introduced in
1992. Rather than incrementally improving on the original standard, JPEG 2000
implements an entirely new way of compressing images based on the wavelet transform,
in contrast to the discrete cosine transform (DCT) used in the original JPEG standard.
The significant change in coding methods between the two standards leads one to ask:
What prompted the JPEG committee to adopt such a dramatic change? The answer to
this question comes from considering the state of image coding at the time the original
JPEG standard was being formed. At that time wavelet analysis and wavelet coding
were still very new technologies, whereas DCT-based transform techniques were well
established. Early wavelet coders had performance that was at best comparable to
transform coding using the DCT. The comparable performance between the two
methods, coupled with the considerable momentum already behind DCT-based
transform coding, led the JPEG committee to adopt DCT-based transform coding as the
foundation of the lossy JPEG standard.
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Since the new JPEG standard is wavelet based, a much larger audience including
hardware designers, software programmers, and systems designers will be interested in
wavelet-based coding. One of the tasks in the future works is to comprehend the details
and techniques of wavelet coding to better understand the JPEG 2000 standard. In
particular, the work will focus on the fundamental principles of wavelet coding, try to
clarify the design choices made in wavelet coders. The work will analyze the description
of the tiling, multicomponent transformations, quantization and entropy coding
(particularly is the arithmetic coding). Some of the most significant features of the
standard are the region of interest coding, scalability, visual weighting, error resilience
and file format aspects. Since the JPEG2000 compression standard will be largely used
in the generations to come, the research and design techniques for improving system
reliability become essentially tasks today. By using the redundancy techniques, we can
provide the new compression system a better performance. The alternate data paths
provided by parallel components (or subsystems) will be able to detect and process any
computer faults happen.

7.2 Overview of the JPEG2000 Compression System

The JPEG 2000 compression engine is illustrated in block diagram form in Figure 39. At

the encoder, the discrete wavelet  transform is applied on the source image data. The
transform coefficients are then quantized and entropy coded (using arithmetic coding)
before forming the output code stream (bit stream). The decoder is the reverse of the
encoder. The code stream is first entropy decoded, dequantized, and inverse discrete
wavelet transformed, thus resulting in the reconstructed image data. Although this
general block diagram is similar to the one for the conventional JPEG, there are radical

Discrete
Wavelet 

Transform 

DiscreteDiscrete
Wavelet Wavelet 

Transform Transform 

Source Source 
Image Image 
DataData

QuantizationQuantizationQuantization
Entropy 
Coding

(arithmetic)

Entropy Entropy 
CodingCoding

(arithmetic)(arithmetic)

Compressed Compressed 
Image DataImage Data

Discrete
Wavelet 
Inverse 

Transform 

DiscreteDiscrete
Wavelet Wavelet 
Inverse Inverse 

Transform Transform 

Reconstructed Reconstructed 
Image DataImage Data

Entropy 
Decoding

(arithmetic)

Entropy Entropy 
DecodingDecoding

(arithmetic)(arithmetic)

Compressed Compressed 
Image DataImage DataDequantizationDequantizationDequantization

Sample Data
Partition

Sample DataSample Data
PartitionPartition

Figure 39 General block diagram of the JPEG2000 (a) encoder (b) decoder

differences in all of the processes of each block of the diagram. A quick overview of the
whole system is as follows:

� The source image is decomposed into components.

� The image components are (optionally) decomposed into rectangular tiles. The tile
component is the basic unit of the original or reconstructed image.
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� A wavelet transform is applied on each tile. The tile is decomposed into different
resolution levels.

� The decomposition levels are made up of subbands of coefficients that describe the
frequency characteristics of local areas of the tile components, rather than across the
entire image component.

� The subbands of coefficients are quantized and collected into rectangular arrays of
“code blocks.”

� The bit planes of the coefficients in a code block (i.e., the bits of equal significance
across the coefficients in a code block) are entropy coded.

� The encoding can be done in such a way that certain regions of interest can be coded
at a higher quality than the background.

� Markers are added to the bit stream to allow for error resilience.
The code stream has a main header at the beginning that describes the original image
and the various decomposition and coding styles that are used to locate, extract,
decode and reconstruct the image with the desired resolution, fidelity, region of
interest or other characteristics. For the clarity of presentation we have decomposed
the whole compression engine into three parts: the preprocessing, the core processing,
and the bit-stream formation part, although there exist high inter-relation between
them. In the preprocessing part the image tiling, the dc level shifting and the
component transformations are included. The core processing part consists of the
discrete transform, the quantization and the entropy coding processes. Finally, the
concepts of the precincts, code blocks, layers, and packets are included in the bit
stream formation part.

7.3 Preprocessing and Component Transformations

Image Tiling The term “tiling” refers to the partition of the original (source) image into
rectangular non-overlapping blocks (tiles), which are compressed independently, as
though they were entirely distinct images (Fig. 40). All operations, including component
mixing, wavelet transform, quantization and entropy coding are performed
independently on the image tiles (Fig. 41). The tile component is the basic unit of the
original or reconstructed image. Tiling reduces memory requirements, and since they are
also reconstructed independently, they can be used for decoding specific parts of the
image instead of the whole image. All tiles have exactly the same dimensions, except
maybe those at the boundary of the image. Arbitrary tile sizes are allowed, up to and
including the entire image (i.e., the whole image is regarded as one tile). Components
with different subsampling factors are tiled with respect to a high resolution grid, which
ensures spatial consistency on the resulting tile components. Smaller tiles create more
tiling artifacts compared to larger tiles. In other words, larger tiles perform visually
better than smaller tiles. Image degradation is more severe in the case of low bit rate
than the case of high bit rate. It is seen, for example, that at 0.125 b/p there is a quality
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difference of more than 4.5 dB.
JPEG 2000 supports multiple component images. Different components need not have

the same bit depths nor need to all be signed  or unsigned. For reversible (i.e., lossless)
systems, the only requirement is that the bit depth of each output image component
must be identical to the bit depth of the corresponding input image component.
Component transformations improve compression and allow for visually relevant
quantization. The standard supports two different component transformations, one

DC level
Shifting

Color
Component

Transformation

Tiling

JPEG2000
Encoding

JPEG2000
Encoding

JPEG2000
Encoding

Compressed
Image Data

DWT on each tile of
each component

Figure 41 Tiling, dc-level shifting, color transformation and DWT of each image component

irreversible component transformation (ICT) that can be used for lossy coding and one
reversible component transformation (RCT) that may be used for lossless or lossy
coding, and all this in addition to encoding without color transformation. The block
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diagram of the JPEG 2000 multicomponent encoder is depicted in Fig. 41 . (Without
restricting the generality, only three components are shown in the figure. These
components could correspond to the RGB of a color image.) Since the ICT may only be
used for lossy coding, it may only be used with the 9/7 irreversible wavelet transform.

7.4 Embedded Image Coding Using Zerotrees of Wavelet (EZW) Coefficients

The EWZ algorithm is simple, yet remarkable effective, image compression algorithm.
The algorithm is based on the parent-child dependencies of subband. The  Figure 42
shows the tree structure of the coefficients in subbands of a tile component. The arrow
points from the subband of the parents to the subband of the children. The lowest
frequency subband is the top left, and the highest frequency subband is at the bottom
right. The right figure shows the wavelet tree consisting of all of the descendents of a
single coefficient in subband LL3.  The coefficient in LL3 is a zerotree root if it is
insignificant and all of its descendants are insignificant. The wavelet coefficients are
sliced into K+1 binary arrays (or bit-planes). The first such bit-lane consists of the sign
bit of each index. Each of the K magnitude bit-planes is coded into two passes. The first
pass codes all refinement bits, while the second pass codes everything else (all bits not
coded in the first pass). The refinement pass codes a bit for each coefficient that is
significant (due to its significant bit having been coded in a previous bit-plane). The

HL1

HH1LH1

HL2

LL3

HH2LH2

HL3

LH3 HH3

     

Figure 42 Parent-child dependency property of subbands

significant pass codes a bit for each coefficient that is not yet significant. In the
Significant pass, each significant coefficient is visited in raster order from within LLD,
then within HLD then LHD, HHD ,HLD-1 and so on, until it reaches HH1. The coding is
accomplished via a 4-ary alphabet

POS = Significant positive; NEG = Significant Negative
ZTR = Zero Tree Root;  IZ = Isolate Zero
Z = for a zero when there are no children
As the scan of insignificant coefficients progress through subbands, any bit known
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Figure 43 Example of 3-scale wavelet transform of a 8x8 image.

already to be zero is not coded again.

In the refinement pass, a refinement bit is coded for  each significant coefficient. A
coefficient is significant if it has been coded POS or NEG in a previous bit plane. Its
current refinement bit is simply its corresponding bit in the current bit plane. The
simple example in Figure 43 is used to highlight the order of operations in the EZW
algorithm. The first threshold is determined by

   
T

wi j

0 2 2 322 2 63

= = =log (max(| |)),
log ( ))



59

The following are the steps to be considered

1)  The coefficient has magnitude 63 which is greater than threshold 32, and is positive
so a positive symbol is generated. After decoding this symbol, the decoder knows the
coefficient in the interval [32,64) whose center is 48.

2)  Even though the coefficient 31 is insignificant with respect to the threshold 32, it has
a significant descendant two generations down in subband LH1 with magnitude 47.
This the symbol for an isolate zero is generated.

3)  The magnitude 23 is less than 32 and all descendants in HH2 and HH1 are
insignificant. A zero tree symbol is generated, and no symbol will be generated for
any coefficient in subband HH2 and HH1 during the significant pass.

4)  The magnitude 10 is less than 32  and all descendants (-12, 7, 6, -1) also have
magnitudes less than 32. Thus the zerotree has a violation of the decaying spectrum
hypothesis. The entire tree has magnitude less than threshold 32 so it is a zerotree.

5)  The magnitude 14 in LH2  is insignificant with respect to 32. Its children are (-1, 47,
-3, 2). Since its child with magnitude 47 is significant, an isolated zero symbol is

 generated.

6)  No symbols were generated from HH2 which would ordinarily precede HL1 in the

 scan. Since HH1 has no descendants, the entropy coding can resume using a 3-
symbol alphabet where IZ and ZTR symbols are merged into the Z (zero) symbol.

7)  The magnitude 47 is significant with respect to 32. In the future dominant passes,
this position will be replaced with the value 0, so that for the next dominant pass at
the threshold 16, the parent of the coefficient, which has magnitude 14, can be coded
using a zero tree coded symbol.

The code symbols for the significant pass of q0 are given by

Pos  Neg  IZ ZTR

Pos  ZTR ZTR ZTR ZTR  IZ  ZTR  ZTR

Z  Z  Z  Z  Z  Pos  Z  Z

The sign plane and first three magnitude bitplanes for the quantized coefficients are
shown in the Figure 43. The significant pass contains four significant coefficients q[0,0],
q[0,1], q[0,2], q[4,3]. The code symbols for the refinement pass q1[0,0], q1[0,1], q1[0,2],
q1[4,3] = 1,0,1,0. The q1 significance pass has added two more significant coefficients
q[1,0] and q[1,1]. One bit must be coded for each of the (now six) significant coefficiens
during the q2 refinement pass. The order to code the coefficients such that the bits
formed by  q0[i,j] q1[i,j]=3, then q0[i,j] q1[i,j]=2, and q0[i,j] q1[i,j]=1. The symbol coded in
the refinement pass are thus

q2[0,0], q2[0,2], q2[0,1], q2[4,3], q2[1,0], q2[1,1] = 1,0,0,1,1,0.
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The coding continues with the q2 significance pass, the q3 refinement pass, and so on.

7.5 The Work Plan for the JPEG2000 Standard

The main goal of the future research are exploring the structures of the JPEG2000
compression system, modeling all possible hardware and software errors in its
compression stages. The obvious technique for error detection and correction is adding
redundancy hardware or software to the compression system. Although a redundancy
subsystem itself can encounter some faults, the probability of both main compression
stage and it error checker to be failed is quite small. One can further enhance the
reliability for the error checking systems by providing repair for the failed system. The
error checking and correcting subsystem for each stage will not affect the standard and
the algorithm assigned to that stage. Modeling the number of software errors and the
frequency with which they cause the system failures requires approaches that differ from
hardware reliability.

Software is made more reliable by testing to find and remove errors, thereby lowering
the error probability. Our main goal in the software error detection and correction for
the JPEG2000 standard is to design the error detection/correction algorithms the
intermediate data structures and the final data compression format as we have shown in
the traditional JPEG compression system. As we processed the fault tolerant strategies
for the conventional JPEG, we will design error detection models and correction
strategies for the JPEG2000 image compression system, including the analysis of the
JPEG2000 image compression standard, system, operations on different data types, data
structures and fault models for each compression stage. After that, we will design the
redundancy subsystem to detect and handle these error. The error performance,
compression performance and all overheads will be evaluated via computer simulations.
The analysis and design the error checking system for JPEG2000 image coding include
the works on the following stages

� Data ordering stage. In this stage, we will analyze following techniques
Image division into components
Image division into tiles and tile-components
Tile-component division into resolution & sub-bands
Division of the sub-bands into code-blocks
Error checking model for the data ordering stage
Design a redundancy system to detect error that works with the proposed model

� Arithmetic entropy coding stage.
Description of the arithmetic encoder
Arithmetic decoding procedure
Binary encoding
Error checking model for the Arithmetic entropy coding stage
Design an error detection scheme that works with the proposed model
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� Discrete wavelet transformation of tile components
Subband coding
Wavelet transform basics
Orthogonal and biorthogonal wavelet transform
Reversible and irreversible filtering
Zerotrees of wavelet coefficients
Inverse discrete wavelet transform
Error checking model for every operation in the DWT
Design an error detection scheme that works with the proposed model

� Coefficient bit modeling
Code-block scan pattern
Decoding passes over the bit-planes
Initialize and terminating
Error checking model for the coefficient bit processing stage
Design an error detection scheme that works with the proposed model

� Sample data partitions
 tile partition
 code block and precincts 
 packet construction

� JPEG2000 file format syntax
 file format scope
 grayscale/color/palettized/multi-component specification architecture
  box definition

Design error checking algorithms for the JPEG2000 file format

� Code stream syntax
 Header and marker segments
 Construction of the code stream

Design error checking algorithms for header, marker segments and data stream

7.6 Evaluations the Fault models Performance

The performance of the designed fault models will be evaluated using the Matlab
programming tool. With the convenient syntax and the build in data structure, we can
be easily to generate the error detection system that is fitted with the our design models
and specifications. The error checking performance is evaluated by generate different
sources of errors. Then these errors are injected into the compression system at
appropriate locations and rates. At the output, we will receive the corrupted data image,
and the error indicator signals. The fault detection performance will based on the
analysis of the corrupted data, the error injection and the error detection signals. Matlab
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supports the timing  for all operations. This tool will be used to evaluate the time cost
due to the present of the redundancy error checking system. Although this time
overhead is not applicable into practice, the percentage of time overhead can give us a
meaningful quantity for the system we design. The compression performance will be
evaluated using the size of the compressed data output (with or without the error
correction codes involved) and the original data input.

Conclusions

As we have seen, the approach to fault tolerance design in JPEG compression and
decompression systems is redundancy, that is, to have an additional element to detect
and handle errors if an operating element fails. Fault-tolerant, in general, is necessary in
the JPEG compression system in order to raise the level of safety. Since a failure  could
end up with a defective image and can jury or kill many people.

There are various ways to employ redundancy to enhance the reliability of the
compression system. Beside that, we employed software redundancy. Although all copies
of the same software will have the same fault and should process the same scenario
identically. However, there are some errors due to the interactions of the inputs, the
state of the hardware, and any residual faults. In this proposal we will not intend to
build different independent versions of the software to provide software reliability. We
will only design the redundancy algorithms to check for the valid data values and data
structures. For example, we designed the error check algorithm for the definition
Huffman table segment. This algorithm works with the assumption there is no existence
of hardware errors.

Since JPEG 2000 implements an entirely new way of compressing images based on
the wavelet transform, arithmetic coding, and many others different techniques, the fault
tolerant schemes for the new compression system needed to be modified. I plan to work
on fault tolerant designs for the new JPEG 2000 compression system. The tasks are
organized in similar way to those have been done for the conventional JPEG.
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Appendices

A. Mathematical Preliminaries for Lossless Compression

Compression schemes can be divided into two classes, lossy and lossless. Lossy
compression schemes involve the loss of some information, and data that have been
compressed using a lossy scheme generally cannot be recovered exactly. Lossless schemes
compress data without loss of information, and the original data can be recovered
exactly from the compressed data. In this appendix, some of the ideas in information
theory that provide the framework for the development of lossless data compression
schemes are briefly reviewed.

A.1 Introduction of Information Theory

The self-information quantity, by Shannon is determined based on the occurrence
probability of occurrence of an event. If P A( )  is the probability that the event A  will
occur, then the self-information associated withA  is given by

i A P Ab( ) log ( )=−  (a1)

Thus, if the probability of information is low, the amount of self-information associated
with it is high and vice-versa. The information obtained from the occurrence of two
independent events is the sum of the information obtained from the occurrence of the
individual events. Suppose A  and B  are two independent events. The self-information
associated with the occurrence of both events A  and event B   is

i AB P AB P A P B P A P B i A i Bb b b b( ) log ( ) log ( ) ( ) log ( ) log ( ) ( ) ( )=− =− =− − = + (a2)

The unit of information depends on the base of the log. If we use log base 2, the units is
bits; if we use the log base e, the unit is nats; and if we use the log base 10, the unit is
hartleys. If we have a set of independent events Ai , which are set of outcomes of some
experiment � , such that

∪A Si = (a3)

where S  is the sample space, then the self-information associated with the random
experiment is given by

H P A i A P A P Ai i i b i= =−∑ ∑( ) ( ) ( )log ( ) (a4)

This quantity is called the entropy associated with the experiment. One of the many
contributions of Shannon was he showed that if the experiment is a source that puts out
symbols Ai  from a set � , then the entropy is a measure of the average of the number of
binary symbols needed to code the output of the source. Shannon showed that the best
that the lossless compression scheme can do is to encode the output of a source with an
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average number of bits equal to the entropy of the source. For general source �  with
alphabet � = {1,2,…,m} that generates a sequence {X X1 2, ,...}, the entropy is given by

H S( )= lim
n

n
n
G

→∞

1 (a5)

where

G P X i X i X i P X i X i X in n n n n
i

m

i

m

i

m

n

=− = = = = = =
===

∑∑∑ L ( , ,..., )log ( , ,..., )1 1 2 2 1 1 2 2
111 21

(a6)

and {X X1 2, ,...} is a sequence of length n from the source. If each element in the
sequence is independent and identically distributed (iid), then we can show that

G n P X i P X in
i

m

=− = =
=

∑ ( )log ( )1 1 1 1
11

(a7)

and (a5)   becomes

H S P X P X( ) ( )log ( )=−∑ 1 1 (a8)

For most sources Equations (a5) and (a8) are not identical. If we need to distinguish
between the two, we will call the quantity computed in (a8) the first-order entropy of
the source, while the quantity in (a5) will be referred to as the entropy of the source. For
example, consider a source 1 1 1( , )S=S P  for which each source symbol is equally likely to

occur, that is, for which ( ) 1/i is p q= =1P , for all 1,2,...,i q= . Then

( )1 1
1

1

1
( ) ,..., lg lg

q

iq q
i i

H S H p q
p=

= = =∑ (a9)

On the other hand, for a source 2( , )S=2 2S P ,where 1 1p =  and 0ip =  for all
2,3,...,i q= , we have

( )2 1
1

1
( ) 1,0,...,0 lg 0H S H p

p
= = =  (a10)

The previous example illustrates why the entropy of a source is often thought of as a
measure of the amount of uncertainty in the source. The source 1S , which emits all
symbols with equal probability, is in a much greater state uncertainty than the source

2S , which always emits the same symbol. Thus, the greater entropy, the greater the
uncertainty in each sample and the more information is obtained from the sample.

A.2 Probability Model

Good models for sources lead to more efficient compression algorithms. In general, in
order to develop techniques that manipulate data using mathematical operations, we
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need to have a mathematical model for the data. The better the model, the more likely it
is that we will come up with a satisfactory technique.

The simplest statistical model for the source is to assume that each letter that is
generated by the source is independent of every other letter, and each occurs with the
same probability. This is so called the ignorance model, as it would generally be useful
only when we know nothing about the source. For a source that generates letters from
an alphabet 

�
= {a a aM1 2, ,..., }, we can have a probability model {P a P a P aM( ), ( ),..., ( )1 2 }.

Given a probability model with the independent assumption, we can compute the
entropy of the source using the equation (a8). By using the probability model, we can
also construct some very efficient codes to represent the letters in 

�
. Of course, these

codes are only efficient in our mathematical assumptions are in accord with reality. If
the assumption of independence does not fit with the observation of the data, we can
find better compression schemes if we discard this assumption. We then come up with a
way to describe the dependence of elements of the data sequence on each other.

A.3 Markov Models

One of the most popular ways of representing dependence in the data is through the use
of Markov models. For models used in lossless compression, we use a specific type of
Markov process called a discrete time Markov chain. Let {xn } be a sequence of
observations. This sequence is said to follow a kth-order Markov model if

P x x x P x x xn n- n k n n- n k( | ,..., ) ( | ,..., ,...)1 1− −= (a11)

Thus, knowledge of the past k symbols is equivalent to the knowledge of the entire past
history of the process. The values taken on by the set {x x xn k1 2, , ..., − } are called the
states of the process. If the size of the source alphabet is l, then the number of states is

l k . The most commonly used Markov model is the first-order Markov model, for which

P x x P x x xn n n n n( | ) ( | , ,...)− − −=1 1 2 (a12)

Equations (a11) and (a12) indicate the existence of dependence between samples. If we
assumed that the dependence was introduced in a linear manner, we could view the data
sequence as the output of a linear filter driven by white noise. The output of such a filter
can be given by the difference equation

x xn n n= +−ρ ε1  (a13)

where εn  I a white noise process. This model is often used when developing coding

algorithms for speech and images. The entropy of a finite state process with states Si  is
simply the average value of the entropy at each state:

H P S H Si i
i

M

=
=
∑ ( ) ( )

1

(a14)
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B. Fast Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a crucial part of modern image and sound
compression. It is used in JPEG, MPEG video, MPEG audio, and Digital VCR, to name
just a few. Mathematically, the DCT provides a way to break a complex signal down
into separate components, and does so in a way that’s nearly optimal for compression.

The DCT converts  a single block of data into a collection of DCT coefficients.
Intuitively, these coefficients can be though as the representing different frequency
components. The first coefficient (the DC coefficient) is simply the average of the entire
block. Later coefficients (the AC coefficients) represent successively higher frequencies.
For image compression, higher frequency roughly corresponds to finer detail.

A typical compression  algorithm starts by breaking the data into small blocks. A
DCT is applied to each block. Each coefficients is then multiplied by a fixed weight;
higher frequency values coefficients typically use smaller weights. The result is that the
higher frequency values become small, zeros usually predominate. Finally, standard
compression techniques such as Huffman, arithmetic coding, or simple run-length coding
are used to pack the coefficients into a small number of bits. Decompression works in
reverse. First, the bits are encoded to yields a series of weighted coefficients. Then, each
coefficient is divided by a corresponding weight and an Invert DCT is used to recover
the final values.

However, the computational overhead of the DCT is an obstacle to efficient
implementation of these compression algorithms. In a typical DCT-based
encoder/decoder, DCT calculations alone can easily take up 50 percent of the CPU time
for the entire program. Since the DCT has been recognized as one of the standard
techniques in image compression, an algorithm which rapidly computes DCT has become
a key component in image compression.

This project will explore several fast algorithms for computing the 8-point DCT and
IDCT. These algorithm will be presented by the diagrams and then translating into
matlab and C codes.

B.1 Overview The 1D and 2D DCTs

DCT based graphics compression usually employs an 8×8 DCT. For this reason, there
has been extensive study of this particular DCT. Equation  (1)  is the one dimensional
(1D) N-element DCT. Equation (2) is corresponding equation for the 1D N-element
invert DCT.
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The DCT has the property that, for a typical image, most of the visually significant
information about  the image is concentrated in just a few coefficients of the DCT. For
this reason, the DCT is often used in image compression applications. The DCT is at the
heart of the JPEG standard lossy image compression algorithm.
The two-dimensional DCT of an M-by-N matrix X is defined as follows.
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The values y pq are called the DCT coefficients of X. (Note that matrix indices in

MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix elements
X(1,1) and Y(1,1) correspond to the mathematical quantities x 00  and y 00 , respectively.)
The DCT is an invertible transform, and its inverse is given by
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The inverse DCT equation can be interpreted as meaning that any M-by-N matrix A
can be written as a sum of functions of the form
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Figure 44: The 64 Basis Functions of an 8-by-8 Matrix
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These functions are called the basis functions of the DCT. The DCT coefficients, then,
can be regarded as the weights applied to each basis function. For 8-by-8 matrices, the
64 basis functions are illustrated by the image as show on Figure 44.

For an M-by-M matrix X, T*X is an M-by-M matrix whose columns contain the one-
dimensional DCT of the columns of X. The two-dimensional DCT of X can be computed
as Y=T*X*TT. Since T is a real orthonormal matrix, its inverse is the same as its
transpose. Therefore, the inverse two-dimensional DCT of Y is given by TT*Y*T.

B.2 Fast Algorithms of The 4 and 8-point DCTs

There were existing many fast algorithms of 1D and 2D DCTs achieved good
improvements in computation complexities. Particularly, the algorithm. results
arithmetic complexity of (N/2)log(N) multiplications and (3N/2)log(N)-N+1 additions
for input sequence with radix 2 length (N = 2m). It based on direct decomposition of the
DCT. The derivation of the algorithm related to the application of the Kronecker matrix
product as a construction tool. The sequential splitting method was used for proofing
the correctness of the algorithm.

The 2D forward and inverse transforms can be written as a triple matrix product
Z=AXAT  and X=ATZA, where AAT = IN. The decomposition to a triple matrix product
requires 2N3 multiplications to be performed, which requires 2N multiplies to be
computed per input sample. The 2D DCT can be broken down into 1D DCT’s (or
IDCT’s). The first computes Y = AX (or ATX) and the second computes Z = YAT (or
YA). The N×N matrix-matrix multiply has been separated into N matrix-vector
products.. Thus, the basic computation performed by the DCT (IDCT) is the evaluation
of the product between the (N×N) matrix and the (N×1) vector. Each 1D DCT (or
IDCT) unit must be capable of computing N multiplies per input sample to perform a
matrix vector product. If the input block X is scanned column by column, the
intermediate product Y = AX (or ATX) is also computed column by column. However,
since the entire row of Y has to be computed prior to the evaluation of the next 1D
DCT, the intermediate result Y must be stored in an on-chip buffer. Since columns are
written into the buffer and rows are read from it, it is commonly called the transposed
memory.

The first 1D DCT/IDCT unit operates on rows of A (or AT ) and columns of X, while
the second 1D DCT unit operate on the rows of AT (or A) is equivalent to a row of
A(AT), the second 1D DCT/IDCT is unnecessary if we can multiplex the first 1D
DCT/IDCT unit between the column of X and the row of Y. However, the 1D
DCT/IDCT unit must now process samples at twice the input sample rate. Thus the 1D
DCT/IDCT  unit must be capable of computing 2N multiplies per input sample. The
following section exploits the features of the 1D DCT/IDCT to reduce the computation
overhead of the basic building block. Consider for the case N = 8, the 8×8 basic DCT
matrix, can be written as
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Even rows of A are symmetric and odd rows are anti symmetric. By exploiting this
symmetry in the rows of an A, and separating the even and odd rows, we get
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After we pulled out the constant out off the square matrices and the replaced a b g, ...,  by
the following symbols

a b c c c d c e s f s g s→ → → → → → →1 1 2 3 3 2 1, , , , , ,      (8)
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Without loss of general, we can omit the scale constants1 2 2/  in the equations (10) and
(11). Equation (10) can be split into two equations:
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Similar, the equation (11) can be split into two equations
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The signal flow graph for the equations (12) and (13) is shown on Figure 45, where the
outputs named 0, 4, 2, 6, 3, 5 are obviously identical to their equations in (12) and
(13a). The outputs 1,7 need to be verified equivalent to the equation (13b). From the
Figure 45, we get
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The last lines of the equations (14a) and (14b) are identical to equation (13b).
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Figure 45 Fast  8-element 1D DCT

Note that in the Figure 45, the boxes C1 and C3 perform the rotation operations

o i i o i ix x y y x y= + =− +2 6 16 2 6 16 2 6 16 2 6 16cos( / ) sin( / ), sin( / ) cos( / )π π π π   

o i i o i i1 1 4 4 1 43 16 3 16 3 16 3 16= + =− +cos( / ) sin( / ), sin( / ) cos( / )π π π π          

o i i o i i2 2 3 3 2 316 3 16 16 16= + =− +cos( / ) sin( / ), sin( / ) cos( / )π π π             
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Figure 46 Flow diagram notation

B.3 Implementation the Fast Algorithm and its C Code

The starting point for a 2D DCT is a fast  1D DCT. Figure 45 is a flow diagram for
our fast algorithm.  If we step through the diagram, it is remarkably routine to convert
this diagram into efficient code. To demonstrate the process, it is convenience to
consider  the converting of four-point DCT diagram in Figure 47 into C code. The input
Figure 47(a) are labeled x0 through x3, and x4 is an additional variable we need for our
computations. In Figure 47(b),  the sum x0+x3 is stored in x4. In Figure 47(c), the
difference x0-x3 is stored in x0, and x3 is now available for Figure 47(d). The remaining
add/subtract pairs are calculated following the same pattern. This strategy will optimize
the memory that used for variables.

For the rotation part, we can use a temporary variable to reduce the calculations to only
three multiplications. By applying the formula from Figure 47(f) into the four-point
DCT, we let

temp A B= +( ) cos( / )2 3 8π (15a)

C temp B

D temp A
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= + − −

2 3 8 3 8

2 3 8 3 8
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( sin / cos / )

π π
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(15b)

From 15(a) and 15(b), we conduct the output C and D by using only three

(a) Inputs (b) x4 = x0+x3 (c) x0 -= x3

(d) x3 = x1+x2 (e) x1 -= x2, complete diagram (f) Rotation block

Figure 47 Flow diagram for 4 element DCT

multiplications instead of four as shown in Figure 47(f). Assume we used 10-bit fixed
point for the constants in the rotation. This means, at the end of algorithm, we shift the
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outputs of the rotation to the right by 10 bits. Before doing so, we add the constants
with 512, which is ½ in 10-bit fixed-point arithmetic. This properly rounds the result,
and significantly improves the accuracy.

B.4 Performance

Although optimizing a program for speed often requires sacrificing accuracy, fast
DCT algorithms can actually be more accurate than slower algorithms. The reason is
each multiplication involves some loss of accuracy due to round off. Algorithms with
fewer multiplications are therefore not only faster, but also more accurate. The only
place that practical DCT implementations sacrifice accuracy is by using fix-point rather
than floating-point arithmetic. With careful attention to rounding, however, even fixed-
point implementations can be extremely accurate.

The DCT testing program computes the DCT in two different ways, and compares
the results. The reference version is a direct implementation of the formulas using double
precision floating-point. The measurements of interest are: How much error outputs are?
How fast the algorithms achieved compare to the direct computation using the formula?
Another way to measure the error is to compute the mean square error.

Simulation were carried out on the set of 10,000 8×8 block. These blocks were
generated by the random number generator that is shown in the code. Simulation
carried out for the different lower and upper bounds on the random numbers: (L= -
256,H=255); (L=H=5) and (L=H=300). Figure 48 plots the peak and the overall mean
square error for the case (L=-256,H=255). An internal wordlength of 20 bits has been
found to be adequate.

The error characteristics of the process are summarized in Table 5-7
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Figure 48 Peak (left) and Overall (right) mean square error vs. wordlength
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Table 5 Characteristics of the process
L, H = -256, 256 L, H = 300 L, H = 5

Peak MSE 0.1822  3.2312e-027  7.8886e-031
Overall MSE 0.1182  3.2312e-027  7.8886e-031
Peak pixel error 1.5989  5.6843e-014  8.8818e-016
Peak pixel mean error 0.0625  5.6843e-014  8.8818e-016
Overall mean error 0.00063 -5.6843e-014 -8.8818e-016

Table  6 : Testing 4-Element 1-D Forward DCT Implementation:
 Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.039445 0 0 0
Overall mean square error 0.039445
Maximum mean square error 0.500000
Fast algorithm Speed 0.248µs(based on 10000000 iterations)

Reference algorithm Speed 7.100µs  (based on 100000 iterations)

Table  7 : Testing 4-Element 1-D IDCT Implementation
Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.012555 0 0 0
Overall mean square error 0.012555
Maximum mean square error 0.500000
Fast algorithm Speed 6.000µs(based on 10000000 iterations)

Reference algorithm Speed 0.247µs  (based on 100000 iterations)

Table  8 : Testing 8-Element 1-D DCT Implementation
Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.065125 0 0 0
Overall mean square error 0.065125
Maximum mean square error 0.500000
Fast algorithm Speed 0.770µs(based on 1000000 iterations)

Reference algorithm Speed 33.000µs  (based on 10000 iterations)

Table  9 : Testing 8-Element 1-D IDCT Implementation
Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.04505 0 0 0
Overall mean square error 0.045050
Maximum mean square error 0.500000
Fast algorithm Speed 0.440µs(based on 1000000 iterations)

Reference algorithm Speed 16.000µs  (based on 10000 iterations)

Table  10 : Testing 8x8-Element 2-D DCT Implementation
Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.0282125 0 0 0
Overall mean square error 0.028213
Maximum mean square error 0.109375
Fast algorithm Speed 3.900000µs    (based on 100000 iterations)

Separable method 270.0000µs    (based on 1000 iterations)

Reference algorithm Speed 2200.000µs    (based on 100 iterations)

Table  11 : Testing 8x8-Element 2-D IDCT Implementation
Probability of error value > 0: error value >1: error value >2: error value >3:

error 0.18025 0 0 0
Overall mean square error 0.180250
Maximum mean square error 0.375000
Fast algorithm Speed 4.400000µs    (based on 100000 iterations)

Separable method 280.0000µs    (based on 1000 iterations)

Reference algorithm Speed 2200.000µs    (based on 100 iterations)
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In this proposed algorithm, the number of multiplications are halved since the (N×N)
×(N×1) matrix-vector multiply has been replaced by two [(N/2) ×(N/2)] ×[(N/2) ×1]
matrix-vector multiplies. Moreover, these two can be computed in parallel.
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B.6 FAST DCT Source Code

// cdct8x8test.cpp : Defines the entry point for the console application.

#include "stdafx.h"
static const double PI=3.14159265358979323;

/***************************************************************************/
void InitRandom() { srand(time(0)); }
int Random() { return rand(); }

/*
 * 2-d Forward DCT implemented directly from the formulas.
 * accurate, but very slow.
 * The ouput is 1/4 the definition of 2D DCT
 */
static void
dct2dRef(int (*data)[8]) {

double output[8][8] = {{0}};
short x,y,n,m;

for(y=0;y<8;y++) {
for(x=0;x<8;x++) {

for(n=0;n<8;n++) {
for(m=0;m<8;m++) {

output[y][x] += data[n][m]
*cos(PI * x * (2*m+1)/16.0) * cos(PI * y * (2*n+1)/16.0);

}
}

}
}

for(y=0;y<8;y++) {
for(x=0;x<8;x++) {

if(x==0) output[y][x] /= sqrt(2);
if(y==0) output[y][x] /= sqrt(2);
data[y][x] = (int)floor(output[y][x]/16 + 0.5);

}
}

}

/***************************************************************************/

/*
 * 2-d Forward DCT implemented in terms of 1-D DCT
 */
static void
dct2dSeparable(int (*data)[8]) { /* pointers to 8 element arrays */

double work[8][8] = {{0}};
int row,col;
for(row=0;row<8;row++) {

short x,n;
for(x=0;x<8;x++) {

for(n=0;n<8;n++)
work[row][x] += data[row][n] * cos(PI * x * (2*n+1)/16.0);

work[row][x] /= 4.0; /* typical weighting */
if(x == 0) work[row][x] /= sqrt(2.0);

}
}

for(col=0;col<8;col++) {
short x,n;
for(x=0;x<8;x++) {

double result=0;
for(n=0;n<8;n++)
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result += work[n][col] * cos(PI * x * (2*n+1)/16.0);
if(x==0) result /= sqrt(2.0);
result /= 4.0;
/* Assign final result back into data */
data[x][col] = (int)floor(result + 0.5); /* Round correctly */

}
}

}

/***************************************************************************/
/* Note that the 1-D DCT algorithm in LL&M results in the output
 * scaled by 4*sqrt(2) (i.e., 2 1/2 bits).  After two passes,
 * I need to scale the output by 32 (>>5). The output is 1/4 of definition
 */
static void
dct2dTest(int (*dctBlock)[8]) {
  static const int c1=1004 /*cos(pi/16)<<10*/, s1=200 /*sin(pi/16)<<10*/;
  static const int c3=851 /*cos(3pi/16)<<10*/, s3=569 /*sin(3pi/16)<<10*/;
  static const int r2c6=554 /*sqrt(2)*cos(6pi/16)<<10*/, r2s6=1337;
  static const int r2=181; /* sqrt(2)<<7 */
  int row,col;

  for(row=0;row<8;row++) {
    int x0=dctBlock[row][0], x1=dctBlock[row][1], x2=dctBlock[row][2],
      x3=dctBlock[row][3], x4=dctBlock[row][4], x5=dctBlock[row][5],
      x6=dctBlock[row][6], x7=dctBlock[row][7], x8;

    /* Stage 1 */
    x8=x7+x0; x0-=x7; x7=x1+x6; x1-=x6; x6=x2+x5; x2-=x5; x5=x3+x4; x3-=x4;

    /* Stage 2 */
    x4=x8+x5; x8-=x5; x5=x7+x6; x7-=x6;
    x6=c1*(x1+x2); x2=(-s1-c1)*x2+x6; x1=(s1-c1)*x1+x6;
    x6=c3*(x0+x3); x3=(-s3-c3)*x3+x6; x0=(s3-c3)*x0+x6;

    /* Stage 3 */
    x6=x4+x5; x4-=x5; x5=x0+x2;x0-=x2; x2=x3+x1; x3-=x1;
    x1=r2c6*(x7+x8); x7=(-r2s6-r2c6)*x7+x1; x8=(r2s6-r2c6)*x8+x1;

    /* Stage 4 and output */
    dctBlock[row][0]=x6;  dctBlock[row][4]=x4;
    dctBlock[row][2]=x8>>10; dctBlock[row][6] = x7>>10;
    dctBlock[row][7]=(x2-x5)>>10; dctBlock[row][1]=(x2+x5)>>10;
    dctBlock[row][3]=(x3*r2)>>17; dctBlock[row][5]=(x0*r2)>>17;
  }

  for(col=0;col<8;col++) {
    int x0=dctBlock[0][col], x1=dctBlock[1][col], x2=dctBlock[2][col],
      x3=dctBlock[3][col], x4=dctBlock[4][col], x5=dctBlock[5][col],
      x6=dctBlock[6][col], x7=dctBlock[7][col], x8;

    /* Stage 1 */
    x8=x7+x0; x0-=x7; x7=x1+x6; x1-=x6; x6=x2+x5; x2-=x5; x5=x3+x4; x3-=x4;

    /* Stage 2 */
    x4=x8+x5; x8-=x5; x5=x7+x6; x7-=x6;
    x6=c1*(x1+x2); x2=(-s1-c1)*x2+x6; x1=(s1-c1)*x1+x6;
    x6=c3*(x0+x3); x3=(-s3-c3)*x3+x6; x0=(s3-c3)*x0+x6;

    /* Stage 3 */
    x6=x4+x5; x4-=x5; x5=x0+x2;x0-=x2; x2=x3+x1; x3-=x1;
    x1=r2c6*(x7+x8); x7=(-r2s6-r2c6)*x7+x1; x8=(r2s6-r2c6)*x8+x1;

    /* Stage 4 and output */
    dctBlock[0][col]=(x6+16)>>5;  dctBlock[4][col]=(x4+16)>>5;
    dctBlock[2][col]=(x8+16384)>>15; dctBlock[6][col] = (x7+16384)>>15;
    dctBlock[7][col]=(x2-x5+16384)>>15; dctBlock[1][col]=(x2+x5+16384)>>15;
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    dctBlock[3][col]=((x3>>8)*r2+8192)>>14;
    dctBlock[5][col]=((x0>>8)*r2+8192)>>14;
  }
}

/***************************************************************************/
/*
 * 2-d IDCT implemented directly from the formulas.
 * Very accurate, very slow. ouput is not scaled compared to formula
 */
static void
idct2dRef(int (*data)[8]) {

double output[8][8] = {{0}};
short x,y,m,n;
for(y=0;y<8;y++) {

for(x=0;x<8;x++) {
output[y][x]=0.0;
for(n=0;n<8;n++)

for(m=0;m<8;m++) {
double term = data[n][m]

* cos(PI * m * (2*x+1)/16.0) * cos(PI * n * (2*y+1)/16.0);
if(n==0) term /= sqrt(2);
if(m==0) term /= sqrt(2);
output[y][x] += term;

}
}

  }
  for(y=0;y<8;y++) {
    for(x=0;x<8;x++) {
      output[y][x] /= 4.0;
      data[y][x] = (int)floor(output[y][x] + 0.5); /* Round accurately */
    }
  }
}

/***************************************************************************/

static void
idct2dSeparable(int (*data)[8]) {
  double work[8][8] = {{0}};
  int row,col;
  for(row=0;row<8;row++) {
    short x,n;
    for(x =0;x<8;x++){
      work[row][x]   = data[row][0] / sqrt(2.0);
      for(n=1;n<8;n++)

work[row][x] += data[row][n] * cos(PI * n * (2*x+1)/16.0);
    }
  }

  for(col=0;col<8;col++) {
    short x,n;
    for(x=0;x<8;x++) {
      double result = work[0][col] / sqrt(2.0);
      for(n=1;n<8;n++)

result += work[n][col] * cos(PI * n * (2*x+1)/16.0);

      /* Assign final result back into data */
      result /= 4.0;
      data[x][col] = (int)floor(result + 0.5); /* Round correctly */
    }
  }
}
/***************************************************************************/

static void
idct2dTest(int (*dctBlock)[8]) {
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  int row,col;

  for(row=0;row<8;row++) {
    static const int c1=251 /*cos(pi/16)<<8*/, s1=50 /*sin(pi/16)<<8*/;
    static const int c3=213 /*cos(3pi/16)<<8*/, s3=142 /*sin(3pi/16)<<8*/;
    static const int r2c6=277 /*cos(6pi/16)*sqrt(2)<<9*/, r2s6=669;
    static const int r2=181; /* sqrt(2)<<7 */

    /* Stage 4 */
    int x0=dctBlock[row][0]<<9, x1=dctBlock[row][1]<<7, x2=dctBlock[row][2],
      x3=dctBlock[row][3]*r2, x4=dctBlock[row][4]<<9, x5=dctBlock[row][5]*r2,
      x6=dctBlock[row][6], x7=dctBlock[row][7]<<7;
    int x8=x7+x1; x1 -= x7;

    /* Stage 3 */
    x7=x0+x4; x0-=x4; x4=x1+x5; x1-=x5; x5=x3+x8; x8-=x3;
    x3=r2c6*(x2+x6);x6=x3+(-r2c6-r2s6)*x6;x2=x3+(-r2c6+r2s6)*x2;

    /* Stage 2 */
    x3=x7+x2; x7-=x2; x2=x0+x6; x0-= x6;
    x6=c3*(x4+x5);x5=(x6+(-c3-s3)*x5)>>6;x4=(x6+(-c3+s3)*x4)>>6;
    x6=c1*(x1+x8);x1=(x6+(-c1-s1)*x1)>>6;x8=(x6+(-c1+s1)*x8)>>6;

    /* Stage 1 and output */
    x7+=512; x2+=512; x0+=512; x3+=512;
    dctBlock[row][0]=(x3+x4)>>10;  dctBlock[row][1]=(x2+x8)>>10;
    dctBlock[row][2]=(x0+x1)>>10;  dctBlock[row][3]=(x7+x5)>>10;
    dctBlock[row][4]=(x7-x5)>>10;  dctBlock[row][5]=(x0-x1)>>10;
    dctBlock[row][6]=(x2-x8)>>10;  dctBlock[row][7]=(x3-x4)>>10;
  }

  for(col=0;col<8;col++) {
    static const int c1=251 /*cos(pi/16)<<8*/, s1=50 /*sin(pi/16)<<8*/;
    static const int c3=213 /*cos(3pi/16)<<8*/, s3=142 /*sin(3pi/16)<<8*/;
    static const int r2c6=277 /*cos(6pi/16)*sqrt(2)<<9*/, r2s6=669;
    static const int r2=181; /* sqrt(2)<<7 */

    /* Stage 4 */
    int x0=dctBlock[0][col]<<9, x1=dctBlock[1][col]<<7, x2=dctBlock[2][col],
      x3=((dctBlock[3][col]))*r2, x4=dctBlock[4][col]<<9,
      x5=((dctBlock[5][col]))*r2, x6=dctBlock[6][col],
      x7=dctBlock[7][col]<<7;
    int x8=x7+x1; x1 -= x7;

    /* Stage 3 */
    x7=x0+x4; x0-=x4; x4=x1+x5; x1-=x5; x5=x3+x8; x8-=x3;
    x3=r2c6*(x2+x6);x6=x3+(-r2c6-r2s6)*x6;x2=x3+(-r2c6+r2s6)*x2;

    /* Stage 2 */
    x3=x7+x2; x7-=x2; x2=x0+x6; x0-= x6;
    x4>>=6;x5>>=6;x1>>=6;x8>>=6;
    x6=c3*(x4+x5);x5=(x6+(-c3-s3)*x5);x4=(x6+(-c3+s3)*x4);
    x6=c1*(x1+x8);x1=(x6+(-c1-s1)*x1);x8=(x6+(-c1+s1)*x8);

    /* Stage 1, rounding and output */
    x7+=1024; x2+=1024;x0+=1024;x3+=1024; /* For correct rounding */
    dctBlock[0][col]=(x3+x4)>>11;  dctBlock[1][col]=(x2+x8)>>11;
    dctBlock[2][col]=(x0+x1)>>11;  dctBlock[3][col]=(x7+x5)>>11;
    dctBlock[4][col]=(x7-x5)>>11;  dctBlock[5][col]=(x0-x1)>>11;
    dctBlock[6][col]=(x2-x8)>>11;  dctBlock[7][col]=(x3-x4)>>11;
  }
}
/***************************************************************************/

void test2dAccuracy(int maxIterations,
    void (*testFunc)(int (*)[8]),
    char *testFuncName,
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    void (*referenceFunc)(int (*)[8]),
    char *referenceFuncName) {

  int input[8][8], reference[8][8], test[8][8];
  int iteration;
  int totalCoefficients=0; /* Total number of coefficients tested */
  int errorCoefficients[4]={0}; /* # coefficients out of range */
  double squareError=0; /* Total squared error over all coefficients */
  double maxSquareError=0; /* Largest squared error for any block */
  int i,j;
  printf("Testing Accuracy: %s (%d iterations, comparing to %s)\n",

 testFuncName,maxIterations,referenceFuncName);

  for(iteration=0;iteration<maxIterations;iteration++) {
    double thisSquareError = 0.0;
    /* Build random input values in range -128...127 */
    for(i=0;i<8;i++) {
      for(j=0;j<8;j++) {

int t = Random() & 0xff;
if(t > 127) t-= 256;
input[i][j] = t;

      }
    }

    /* Compute reference version */
    memcpy(reference,input,sizeof(input));
    (*referenceFunc)(reference);

    /* Compute test version */
    memcpy(test,input,sizeof(input));
    (*testFunc)(test);

    /* Count number of errors exceeding one */
    totalCoefficients += 64;
    for(i=0;i<8;i++) {
      for(j=0;j<8;j++) {

int err = test[i][j] - reference[i][j];
double err2 = (double)err * (double)err;
if(err < 0) err = -err;
{
  int k;
  for(k=0;k<4;k++)
    if(err > k) errorCoefficients[k]++;
}
squareError += err2;
thisSquareError += err2;

      }
    }
    if(thisSquareError > maxSquareError)
      maxSquareError = thisSquareError;
    if(thisSquareError > 100) {
      int i,j=0;
      printf("Bad Example: mean square error = %f\n",thisSquareError/64);
      printf("Input: ");  for(i=0;i<8;i++) printf("  %4d",input[i][j]);
      printf("\nRef:   ");  for(i=0;i<8;i++) printf("  %4d",reference[i][j]);
      printf("\nTest:  ");  for(i=0;i<8;i++) printf("  %4d",test[i][j]);
      printf("\n\n");
    }
  }

  {
    int k;
    printf("   Probability of error > 0: %g",

   (double)errorCoefficients[0] / (double)totalCoefficients);
    for(k=1;k<4;k++)
      printf(",  > %d: %g",k,

     (double)errorCoefficients[k] / (double)totalCoefficients);
    printf("\n");
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  }
  printf("   Overall mean square error: %f\n", squareError/totalCoefficients);
  printf("   Maximum mean square error: %f\n", maxSquareError / 64);
}

/***************************************************************************/
/*
 * Since the Random() function might not be infinitely fast,
 * I choose one set of random values for every hundred calls
 * to the test function.  That way, my time measures the function being
 * tested, not the random number generator.
 */
static void
test2dSpeed(int maxIterations, void (*testFunc)(int (*)[8]), char *funcName) {

int i,j,iterations;
static const int incr = 100;
int input[8][8],work[8][8];
clock_t start, finish;
double  duration;
start = clock();

   printf("   %s: ",funcName); fflush(stdout);
   for(iterations = 0; iterations < maxIterations; iterations+=incr) {
    /* Build random input values in range -128...127 */

for(i=0;i<8;i++) {
for(j=0;j<8;j++) {

int t = Random() & 0xff;
if(t > 127) t-= 256;
input[i][j] = t;

}
}
for(i=0;i<incr;i++) {

memcpy(work,input,sizeof(input));
(*testFunc)(work);

}
}
finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%f microseconds (based on %d iterations)\n",
duration/maxIterations * 1000000, maxIterations);

}

/***************************************************************************/
int main(int argc, char **argv) {
  InitRandom();

  printf("\nTesting 8x8-Element 2-D Forward DCT Implementation\n\n");
  {
    /* Double-check that Separable and Reference versions agree. */
    test2dAccuracy(100,dct2dSeparable,"dct2dSeparable",

   dct2dRef,"dct2dRef");
    /* Use faster separable version as reference now */
    test2dAccuracy(5000,dct2dTest,"dct2dTest",

   dct2dSeparable,"dct2dSeparable");

    printf("Measuring Speed\n");
    test2dSpeed(100,dct2dRef,"2d Ref");
    test2dSpeed(1000,dct2dSeparable,"2d Separable");
    test2dSpeed(100000,dct2dTest,"2d Test");
  }
  printf("\n\nTesting 8x8-Element 2-D IDCT Implementation\n\n");
  {
    test2dAccuracy(100,idct2dSeparable,"idct2dSeparable",

   idct2dRef,"idct2dRef");
    /* Use faster separable version as reference now */
    test2dAccuracy(5000,idct2dTest,"idct2dTest",

   idct2dSeparable,"idct2dSeparable");
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    printf("Measuring Speed\n");
    test2dSpeed(100,idct2dRef,"2d Reference");
    test2dSpeed(1000,idct2dSeparable,"2d Separable");
    test2dSpeed(100000,idct2dTest,"2d Test");
  }
  return 0;
}
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B.7 JPEG Image Compression Source Code

/************************** Start of BITIO.C *************************
 *
 * This utility file contains all of the routines needed to impement
 * bit oriented routines under either ANSI or K&R C.  It needs to be
 * linked with every program used in the entire book.
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include "bitio.h"
#include "errhand.h"

#define PACIFIER_COUNT 2047

BIT_FILE *OpenOutputBitFile( name )
char *name;
{
    BIT_FILE *bit_file;

    bit_file = (BIT_FILE *) calloc( 1, sizeof( BIT_FILE ) );
    if ( bit_file == NULL )
        return( bit_file );
    bit_file->file = fopen( name, "wb" );
    bit_file->rack = 0;
    bit_file->mask = 0x80;
    bit_file->pacifier_counter = 0;
    return( bit_file );
}

BIT_FILE *OpenInputBitFile( name )
char *name;
{
    BIT_FILE *bit_file;

    bit_file = (BIT_FILE *) calloc( 1, sizeof( BIT_FILE ) );
    if ( bit_file == NULL )

return( bit_file );
    bit_file->file = fopen( name, "rb" );
    bit_file->rack = 0;
    bit_file->mask = 0x80;
    bit_file->pacifier_counter = 0;
    return( bit_file );
}

void CloseOutputBitFile( bit_file )
BIT_FILE *bit_file;
{
    if ( bit_file->mask != 0x80 )
        if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack )
            fatal_error( "Fatal error in CloseBitFile!\n" );
    fclose( bit_file->file );
    free( (char *) bit_file );
}

void CloseInputBitFile( bit_file )
BIT_FILE *bit_file;
{
    fclose( bit_file->file );
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    free( (char *) bit_file );
}

void OutputBit( bit_file, bit )
BIT_FILE *bit_file;
int bit;
{
    if ( bit )
        bit_file->rack |= bit_file->mask;
    bit_file->mask >>= 1;
    if ( bit_file->mask == 0 ) {

if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack )
    fatal_error( "Fatal error in OutputBit!\n" );
else

        if ( ( bit_file->pacifier_counter++ & PACIFIER_COUNT ) == 0 )
putc( '.', stdout );

bit_file->rack = 0;
bit_file->mask = 0x80;

    }
}

void OutputBits( bit_file, code, count )
BIT_FILE *bit_file;
unsigned long code;
int count;
{
    unsigned long mask;

    mask = 1L << ( count - 1 );
    while ( mask != 0) {
        if ( mask & code )
            bit_file->rack |= bit_file->mask;
        bit_file->mask >>= 1;
        if ( bit_file->mask == 0 ) {

    if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack )
fatal_error( "Fatal error in OutputBit!\n" );

        else if ( ( bit_file->pacifier_counter++ & PACIFIER_COUNT ) == 0 )
putc( '.', stdout );

    bit_file->rack = 0;
            bit_file->mask = 0x80;
        }
        mask >>= 1;
    }
}

int InputBit( bit_file )
BIT_FILE *bit_file;
{
    int value;

    if ( bit_file->mask == 0x80 ) {
        bit_file->rack = getc( bit_file->file );
        if ( bit_file->rack == EOF )
            fatal_error( "Fatal error in InputBit!\n" );
    if ( ( bit_file->pacifier_counter++ & PACIFIER_COUNT ) == 0 )

    putc( '.', stdout );
    }
    value = bit_file->rack & bit_file->mask;
    bit_file->mask >>= 1;
    if ( bit_file->mask == 0 )

bit_file->mask = 0x80;
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    return( value ? 1 : 0 );
}

unsigned long InputBits( bit_file, bit_count )
BIT_FILE *bit_file;
int bit_count;
{
    unsigned long mask;
    unsigned long return_value;

    mask = 1L << ( bit_count - 1 );
    return_value = 0;
    while ( mask != 0) {

if ( bit_file->mask == 0x80 ) {
    bit_file->rack = getc( bit_file->file );
    if ( bit_file->rack == EOF )

fatal_error( "Fatal error in InputBit!\n" );
        if ( ( bit_file->pacifier_counter++ & PACIFIER_COUNT ) == 0 )

putc( '.', stdout );
}
if ( bit_file->rack & bit_file->mask )

            return_value |= mask;
        mask >>= 1;
        bit_file->mask >>= 1;
        if ( bit_file->mask == 0 )
            bit_file->mask = 0x80;
    }
    return( return_value );
}

void FilePrintBinary( file, code, bits )
FILE *file;
unsigned int code;
int bits;
{
    unsigned int mask;

    mask = 1 << ( bits - 1 );
    while ( mask != 0 ) {
        if ( code & mask )
            fputc( '1', file );
        else
            fputc( '0', file );
        mask >>= 1;
    }
}

/*************************** End of BITIO.C **************************/

Huffman Coding Source Code

/************************** Start of HUFF.C *************************
 *
 * This is the Huffman coding module used in Chapter 3.
 * Compile with BITIO.C, ERRHAND.C, and either MAIN-C.C or MAIN-E.C
 */

#include <stdio.h>
#include <stdlib.h>
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#include <string.h>
#include <ctype.h>
#include "bitio.h"
#include "errhand.h"
#include "main.h"

/*
 * The NODE structure is a node in the Huffman decoding tree.  It has a
 * count, which is its weight in the tree, and the node numbers of its
 * two children.  The saved_count member of the structure is only
 * there for debugging purposes, and can be safely taken out at any
 * time.  It just holds the intial count for each of the symbols, since
 * the count member is continually being modified as the tree grows.
 */
typedef struct tree_node {
    unsigned int count;
    unsigned int saved_count;
    int child_0;
    int child_1;
} NODE;

/*
 * A Huffman tree is set up for decoding, not encoding.  When encoding,
 * I first walk through the tree and build up a table of codes for
 * each symbol.  The codes are stored in this CODE structure.
 */
typedef struct code {
    unsigned int code;
    int code_bits;
} CODE;

/*
 * The special EOS symbol is 256, the first available symbol after all
 * of the possible bytes.  When decoding, reading this symbols
 * indicates that all of the data has been read in.
 */
#define END_OF_STREAM 256

/*
 * Local function prototypes, defined with or without ANSI prototypes.
 */
void count_bytes( FILE *input, unsigned long *long_counts );
void scale_counts( unsigned long *long_counts, NODE *nodes );
int build_tree( NODE *nodes );
void convert_tree_to_code( NODE *nodes,
                           CODE *codes,
                           unsigned int code_so_far,
                           int bits,
                           int node );
void output_counts( BIT_FILE *output, NODE *nodes );
void input_counts( BIT_FILE *input, NODE *nodes );
void print_model( NODE *nodes, CODE *codes );
void compress_data( FILE *input, BIT_FILE *output, CODE *codes );
void expand_data( BIT_FILE *input, FILE *output, NODE *nodes,
                  int root_node );
void print_char( int c );

/*
 * These two strings are used by MAIN-C.C and MAIN-E.C to print
 * messages of importance to the user of the program.
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 */
char *CompressionName = "static order 0 model with Huffman coding";
char *Usage = "infile outfile [-d]\n\nSpecifying -d will dump the modeling
data\n";

/*
 * CompressFile is the compression routine called by MAIN-C.C.  It
 * looks for a single additional argument to be passed to it from
 * the command line:  "-d".  If a "-d" is present, it means the
 * user wants to see the model data dumped out for debugging
 * purposes.
 *
 * This routine works in a fairly straightforward manner.  First,
 * it has to allocate storage for three different arrays of data.
 * Next, it counts all the bytes in the input file.  The counts
 * are all stored in long int, so the next step is scale them down
 * to single byte counts in the NODE array.  After the counts are
 * scaled, the Huffman decoding tree is built on top of the NODE
 * array.  Another routine walks through the tree to build a table
 * of codes, one per symbol.  Finally, when the codes are all ready,
 * compressing the file is a simple matter.  After the file is
 * compressed, the storage is freed up, and the routine returns.
 *
 */
void CompressFile(hWnd, input, output )
HWND hWnd;
FILE *input;
BIT_FILE *output;
{
    unsigned long *counts;
    NODE *nodes;
    CODE *codes;
    int root_node;

    counts = (unsigned long *) calloc( 256, sizeof( unsigned long ) );
    if ( counts == NULL )
//        fatal_error( "Error allocating counts array\n" );

MessageBox(hWnd , "Error allocating counts array", "Message 3", MB_OK);
    if ( ( nodes = (NODE *) calloc( 514, sizeof( NODE ) ) ) == NULL )
// fatal_error( "Error allocating nodes array\n" );

MessageBox(hWnd , "Error allocating nodes array", "Message 4", MB_OK);

    if ( ( codes = (CODE *) calloc( 257, sizeof( CODE ) ) ) == NULL )
fatal_error( "Error allocating codes array\n" );

    count_bytes( input, counts );
    scale_counts( counts, nodes );
    output_counts( output, nodes );
    root_node = build_tree( nodes );
    convert_tree_to_code( nodes, codes, 0, 0, root_node );
    compress_data( input, output, codes );
    free( (char *) counts );
    free( (char *) nodes );
    free( (char *) codes );
}

/*
 * ExpandFile is the routine called by MAIN-E.C to expand a file that
 * has been compressed with order 0 Huffman coding.  This routine has
 * a simpler job than that of the Compression routine.  All it has to
 * do is read in the counts that have been stored in the compressed
 * file, then build the Huffman tree.  The data can then be expanded
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 * by reading in a bit at a time from the compressed file.  Finally,
 * the node array is freed and the routine returns.
 *
 */
void ExpandFile(hWnd, input, output )
HWND hWnd;
BIT_FILE *input;
FILE *output;
{
    NODE *nodes;
    int root_node;

    if ( ( nodes = (NODE *) calloc( 514, sizeof( NODE ) ) ) == NULL )
MessageBox(hWnd , "Error allocating nodes array", "Expand File", MB_OK);

//      fatal_error( "Error allocating nodes array\n" );
    input_counts( input, nodes );
    root_node = build_tree( nodes );
    expand_data( input, output, nodes, root_node );
    free( (char *) nodes );
}

/*
 * In order for the compressor to build the same model, I have to store
 * the symbol counts in the compressed file so the expander can read
 * them in.  In order to save space, I don't save all 256 symbols
 * unconditionally.  The format used to store counts looks like this:
 *
 *  start, stop, counts, start, stop, counts, ... 0
 *
 * This means that I store runs of counts, until all the non-zero
 * counts have been stored.  At this time the list is terminated by
 * storing a start value of 0.  Note that at least 1 run of counts has
 * to be stored, so even if the first start value is 0, I read it in.
 * It also means that even in an empty file that has no counts, I have
 * to pass at least one count.
 *
 * In order to efficiently use this format, I have to identify runs of
 * non-zero counts.  Because of the format used, I don't want to stop a
 * run because of just one or two zeros in the count stream.  So I have
 * to sit in a loop looking for strings of three or more zero values in
 * a row.
 *
 * This is simple in concept, but it ends up being one of the most
 * complicated routines in the whole program.  A routine that just
 * writes out 256 values without attempting to optimize would be much
 * simpler, but would hurt compression quite a bit on small files.
 *
 */
void output_counts( output, nodes )
BIT_FILE *output;
NODE *nodes;
{
    int first;
    int last;
    int next;
    int i;

    first = 0;
    while ( first < 255 && nodes[ first ].count == 0 )

    first++;
/*



88

 * Each time I hit the start of the loop, I assume that first is the
 * number for a run of non-zero values.  The rest of the loop is
 * concerned with finding the value for last, which is the end of the
 * run, and the value of next, which is the start of the next run.
 * At the end of the loop, I assign next to first, so it starts in on
 * the next run.
 */
    for ( ; first < 256 ; first = next ) {

last = first + 1;
for ( ; ; ) {
    for ( ; last < 256 ; last++ )

if ( nodes[ last ].count == 0 )
    break;

    last--;
    for ( next = last + 1; next < 256 ; next++ )

if ( nodes[ next ].count != 0 )
    break;

    if ( next > 255 )
break;

    if ( ( next - last ) > 3 )
break;

    last = next;
};

/*
 * Here is where I output first, last, and all the counts in between.
 */

if ( putc( first, output->file ) != first )
    fatal_error( "Error writing byte counts\n" );
if ( putc( last, output->file ) != last )
    fatal_error( "Error writing byte counts\n" );
for ( i = first ; i <= last ; i++ ) {

            if ( putc( nodes[ i ].count, output->file ) !=
                 (int) nodes[ i ].count )

fatal_error( "Error writing byte counts\n" );
}

    }
    if ( putc( 0, output->file ) != 0 )

    fatal_error( "Error writing byte counts\n" );
}

/*
 * When expanding, I have to read in the same set of counts.  This is
 * quite a bit easier that the process of writing them out, since no
 * decision making needs to be done.  All I do is read in first, check
 * to see if I am all done, and if not, read in last and a string of
 * counts.
 */

void input_counts( input, nodes )
BIT_FILE *input;
NODE *nodes;
{
    int first;
    int last;
    int i;
    int c;

    for ( i = 0 ; i < 256 ; i++ )
nodes[ i ].count = 0;

    if ( ( first = getc( input->file ) ) == EOF )
fatal_error( "Error reading byte counts\n" );
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    if ( ( last = getc( input->file ) ) == EOF )
fa tal_error( "Error reading byte counts\n" );

    for ( ; ; ) {
for ( i = first ; i <= last ; i++ )
    if ( ( c = getc( input->file ) ) == EOF )

fatal_error( "Error reading byte counts\n" );
    else

nodes[ i ].count = (unsigned int) c;
if ( ( first = getc( input->file ) ) == EOF )
    fatal_error( "Error reading byte counts\n" );
if ( first == 0 )
    break;
if ( ( last = getc( input->file ) ) == EOF )
    fatal_error( "Error reading byte counts\n" );

    }
    nodes[ END_OF_STREAM ].count = 1;
}

/*
 * This routine counts the frequency of occurence of every byte in
 * the input file.  It marks the place in the input stream where it
 * started, counts up all the bytes, then returns to the place where
 * it started.  In most C implementations, the length of a file
 * cannot exceed an unsigned long, so this routine should always
 * work.
 */

void count_bytes( input, counts )
FILE *input;
unsigned long *counts;
{
    long input_marker;
    int c;

    input_marker = ftell( input );
    while ( ( c = getc( input )) != EOF )

counts[ c ]++;
    fseek( input, input_marker, SEEK_SET );
}

/*
 * In order to limit the size of my Huffman codes to 16 bits, I scale
 * my counts down so they fit in an unsigned char, and then store them
 * all as initial weights in my NODE array.  The only thing to be
 * careful of is to make sure that a node with a non-zero count doesn't
 * get scaled down to 0.  Nodes with values of 0 don't get codes.
 */
void scale_counts( counts, nodes )
unsigned long *counts;
NODE *nodes;
{
    unsigned long max_count;
    int i;

    max_count = 0;
    for ( i = 0 ; i < 256 ; i++ )
       if ( counts[ i ] > max_count )

   max_count = counts[ i ];
    if ( max_count == 0 ) {

counts[ 0 ] = 1;
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max_count = 1;
    }
    max_count = max_count / 255;
    max_count = max_count + 1;
    for ( i = 0 ; i < 256 ; i++ ) {

nodes[ i ].count = (unsigned int) ( counts[ i ] / max_count );
if ( nodes[ i ].count == 0 && counts[ i ] != 0 )
    nodes[ i ].count = 1;

    }
    nodes[ END_OF_STREAM ].count = 1;
}
/*
 * Building the Huffman tree is fairly simple.  All of the active nodes
 * are scanned in order to locate the two nodes with the minimum
 * weights.  These two weights are added together and assigned to a new
 * node.  The new node makes the two minimum nodes into its 0 child
 * and 1 child.  The two minimum nodes are then marked as inactive.
 * This process repeats until their is only one node left, which is the
 * root node.  The tree is done, and the root node is passed back
 * to the calling routine.
 *
 * Node 513 is used here to arbitratily provide a node with a guaranteed
 * maximum value.  It starts off being min_1 and min_2.  After all active
 * nodes have been scanned, I can tell if there is only one active node
 * left by checking to see if min_1 is still 513.
 */
int build_tree( nodes )
NODE *nodes;
{
    int next_free;
    int i;
    int min_1;
    int min_2;

    nodes[ 513 ].count = 0xffff;
    for ( next_free = END_OF_STREAM + 1 ; ; next_free++ ) {

min_1 = 513;
min_2 = 513;
for ( i = 0 ; i < next_free ; i++ )

            if ( nodes[ i ].count != 0 ) {
                if ( nodes[ i ].count < nodes[ min_1 ].count ) {
                    min_2 = min_1;
                    min_1 = i;
                } else if ( nodes[ i ].count < nodes[ min_2 ].count )
                    min_2 = i;
            }

if ( min_2 == 513 )
    break;
nodes[ next_free ].count = nodes[ min_1 ].count
                           + nodes[ min_2 ].count;

        nodes[ min_1 ].saved_count = nodes[ min_1 ].count;
        nodes[ min_1 ].count = 0;
        nodes[ min_2 ].saved_count =  nodes[ min_2 ].count;
        nodes[ min_2 ].count = 0;

nodes[ next_free ].child_0 = min_1;
nodes[ next_free ].child_1 = min_2;

    }
    next_free--;
    nodes[ next_free ].saved_count = nodes[ next_free ].count;
    return( next_free );
}
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/*
 * Since the Huffman tree is built as a decoding tree, there is
 * no simple way to get the encoding values for each symbol out of
 * it.  This routine recursively walks through the tree, adding the
 * child bits to each code until it gets to a leaf.  When it gets
 * to a leaf, it stores the code value in the CODE element, and
 * returns.
 */
void convert_tree_to_code( nodes, codes, code_so_far, bits, node )
NODE *nodes;
CODE *codes;
unsigned int code_so_far;
int bits;
int node;
{
    if ( node <= END_OF_STREAM ) {

codes[ node ].code = code_so_far;
codes[ node ].code_bits = bits;
return;

    }
    code_so_far <<= 1;
    bits++;
    convert_tree_to_code( nodes, codes, code_so_far, bits,
                          nodes[ node ].child_0 );
    convert_tree_to_code( nodes, codes, code_so_far | 1,
                          bits, nodes[ node ].child_1 );
}
/*
 * If the -d command line option is specified, this routine is called
 * to print out some of the model information after the tree is built.
 * Note that this is the only place that the saved_count NODE element
 * is used for anything at all, and in this case it is just for
 * diagnostic information.  By the time I get here, and the tree has
 * been built, every active element will have 0 in its count.
 */
void print_model( nodes, codes )
NODE *nodes;
CODE *codes;
{
    int i;

    for ( i = 0 ; i < 513 ; i++ ) {
if ( nodes[ i ].saved_count != 0 ) {

            printf( "node=" );
            print_char( i );
            printf( "  count=%3d", nodes[ i ].saved_count );
            printf( "  child_0=" );
            print_char( nodes[ i ].child_0 );
            printf( "  child_1=" );
            print_char( nodes[ i ].child_1 );

    if ( codes && i <= END_OF_STREAM ) {
printf( "  Huffman code=" );

                FilePrintBinary( stdout, codes[ i ].code, codes[ i ].code_bits
);

    }
    printf( "\n" );
}

    }
}
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/*
 * The print_model routine uses this function to print out node numbers.
 * The catch is, if it is a printable character, it gets printed out
 * as a character.  Makes the debug output a little easier to read.
 */
void print_char( c )
int c;
{
    if ( c >= 0x20 && c < 127 )
        printf( "'%c'", c );
    else
        printf( "%3d", c );
}

/*
 * Once the tree gets built, and the CODE table is built, compressing
 * the data is a breeze.  Each byte is read in, and its corresponding
 * Huffman code is sent out.
 */
void compress_data( input, output, codes )
FILE *input;
BIT_FILE *output;
CODE *codes;
{
    int c;

    while ( ( c = getc( input ) ) != EOF )
        OutputBits( output, (unsigned long) codes[ c ].code,
                    codes[ c ].code_bits );
    OutputBits( output, (unsigned long) codes[ END_OF_STREAM ].code,

code s[ END_OF_STREAM ].code_bits );
}

/*
 * Expanding compressed data is a little harder than the compression
 * phase.  As each new symbol is decoded, the tree is traversed,
 * starting at the root node, reading a bit in, and taking either the
 * child_0 or child_1 path.  Eventually, the tree winds down to a
 * leaf node, and the corresponding symbol is output.  If the symbol
 * is the END_OF_STREAM symbol, it doesn't get written out, and
 * instead the whole process terminates.
 */
void expand_data( input, output, nodes, root_node )
BIT_FILE *input;
FILE *output;
NODE *nodes;
int root_node;
{
    int node;

    for ( ; ; ) {
        node = root_node;
        do {
            if ( InputBit( input ) )
                node = nodes[ node ].child_1;
            else
                node = nodes[ node ].child_0;
        } while ( node > END_OF_STREAM );

if ( node == END_OF_STREAM )
            break;
        if ( ( putc( node, output ) ) != node )
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            fatal_error( "Error trying to write expanded byte to output" );
    }
}
/*************************** End of HUFF.C **************************/

DCT error Detection Matlab Program
close all;
clear all;
A = imread('rose','jpg');
[M,N,Z] = size(A);
N = floor(N/8);
M = floor(M/8);
A = double(A(1:8*M,1:8*N,:));
Y  = 0.299*A(:,:,1)+0.587*A(:,:,2)+0.114*A(:,:,3);
Cb = -0.1687*A(:,:,1)-0.3313*A(:,:,2)+0.5*A(:,:,3)+128;
Cr = 0.5*A(:,:,1)-0.4187*A(:,:,2)-0.0813*A(:,:,3)+128;
Y = Y-128;
[C8, P8, K8, B1, B2, B3, b] = dct8matrix;
F = [2.2864 -1.6865 0.6945 -0.8128 0.7754 -0.4605 0.1848 0.0188];
[Yf1, Errin,eDetect] = dct8x8(Y, M, N, P8, K8, B1, B2, B3, F*C8,F);

figure;
imagesc(Y);
colormap('gray');

figure;
imagesc(Yf1);
colormap('gray');

figure;
imagesc(abs(Errin));
colormap('gray');

figure;
imagesc(abs(eDetect));
colormap('gray');

figure;
stem(1:size(eDetect,2),abs(eDetect(4,:)),'b*');hold on;
stem(1.25:1:size(eDetect,2)+.25,abs(Errin(4,:)),'r+');hold off;
axis([0,50,0,max(max(eDetect(4,:)),max(Errin(4,:)))]);
%-------------------------------------------------------------
% DCT8 factorizes the 8-point transform matrix C8
% into five factors P8, K8, B1, B2, B3
% C8 = original DCT matrix
% P8,K8,B1,B2,B3 = matrix factor
% b = weight matrix

function [C8, P8, K8, B1, B2, B3] = dct8matrix
C8 =[ C(4)  C(4)  C(4)  C(4)  C(4)  C(4)  C(4)  C(4);

C(1)  C(3)  C(5)  C(7) -C(7) -C(5) -C(3) -C(1); 
   C(2)  C(6) -C(6) -C(2) -C(2) -C(6)  C(6)  C(2);
   C(3) -C(7) -C(1) -C(5)  C(5)  C(1)  C(7) -C(3);
   C(4) -C(4) -C(4)  C(4)  C(4) -C(4) -C(4)  C(4);
   C(5) -C(1)  C(7)   C(3) -C(3) -C(7)  C(1) -C(5);
   C(6) -C(2)  C(2) -C(6) -C(6)  C(2) -C(2)  C(6);
   C(7) -C(5)  C(3) -C(1)  C(1) -C(3)  C(5) -C(7)];

P81=[1 0 0 0 0 0 0 0;
0 0 1 0 0 0 0 0;
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0 0 0 0 1 0 0 0;
0 0 0 0 0 0 1 0;
0 1 0 0 0 0 0 0;
0 0 0 1 0 0 0 0;
0 0 0 0 0 1 0 0;
0 0 0 0 0 0 0 1];

P82 =[1 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0;
0 0 1 0 0 0 0 0;
0 0 0 1 0 0 0 0;
0 0 0 0 0 0 0 1;
0 0 0 0 0 0 1 0;
0 0 0 0 0 1 0 0;
0 0 0 0 1 0 0 0];

F   =  [1 1; 1 -1];

R8  = kron(F,eye(4));

P41 = [ 1 0 0  0;
0 1 0  0;
0 0 0 -1;
0 0 1  0];

P42 = [ 1 0 0 0;
0 0 1 0;
0 1 0 0;
0 0 0 1]; % P42*C4

P43 = [ 1 0 0 0;
0 1 0 0;
0 0 0 1;
0 0 1 0];   % C4*P43

R41 = kron(F,eye(2));
R4  = [0 0 0 1;

 0 0 1 0;
 0 1 0 0;
 1 0 0 0];

R2  = [0 1;1 0];
S4  = [1 1 0 0;

  1 -1 0 0;
  0 0 1 0;
  0 0 0 1];

S41 = inv(P42)*S4;
S42 = 2*[eye(2) zeros(2);zeros(2) R2]*inv(R41)*inv(P43);
P8  = inv(P81)*[S41 zeros(4);zeros(4) inv(P41)];
B1  = [S42 zeros(4);zeros(4) inv(R4)*P41];
B2  = 2*inv(R8);
B3  = inv(P82);
G1  = C(4);
G2  = [C(6) C(2);-C(2) C(6)];
G4  = [C(27) C(9) C(3)  C(1);

-C(1) C(27) C(9)  C(3);
-C(3) -C(1) C(27) C(9);
-C(9) -C(3) -C(1) C(27)];

K8  = [G1 0;0 G1];
K8  = [K8 zeros(2);zeros(2) G2];
K8  = [K8 zeros(4);zeros(4) G4];

%-------------------------------------------------------------
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function c = C(n)
c = cos(2*pi*n/32);

%-------------------------------------------------------------
function [Y, W, eDetect] = dct8x8(X, M, N, P8, K8, B1, B2, B3, b, F)

Y = 0*X;
W = Y;
eDetect = W;
line = 4;
stage = 1;
for m = 0:M-1

rs = 8*m+1:8*(m+1);
for n = 0:N-1

cs = 8*n+1:8*(n+1);
[Y(rs,cs), W(rs,cs),eDetect(rs,cs)] = ...
dct2trans(X(rs,cs), P8, K8, B1, B2, B3, b,line,stage,F);

end
end

%-------------------------------------------------------------
function [Y, W, Flag] = dct2trans(X, P8, K8, B1, B2, B3, b,line,stage,F)

W = 0*X;
Flag = W;
for k = 1:8

noi       = 0;%10*rand(1);
W(line,k) = noi;
Tmp(:,k)  = dctnoise(X(:,k),P8,K8,B1,B2,B3,noi,stage,line);
%Tmp(:,k) = P8*(K8*(B1*(B2*(B3*X(:,k)))));
Flag(line,k) =  F*Tmp(:,k)-b*X(:,k);

end
Tmp = Tmp';
for k = 1:8

noi     = W(line,k);
Y(:,k)  = dctnoise(Tmp(:,k),P8,K8,B1,B2,B3,noi,stage,line);
%Y(:,k) = P8*(K8*(B1*(B2*(B3*Tmp(:,k)))));

end
Y = Y';

%-------------------------------------------------------------
function Ye = dctnoise(X,P8,K8,B1,B2,B3,e,stage,line)

if (line < 1 | line >8)
disp('invalid line number');
Ye = '';
ret urn;

end
if (stage < 1 | stage > 5)

disp('invalid stage number');
Ye = '';
return;

end

X1 = B3*X;
if stage == 1

X1(line) = X1(line)+e;
end

X2 = B2*X1;
if stage == 2

X2(line) = X2(line)+e;
end
X3 = B1*X2;
if stage == 3

X3(line) = X3(line)+e;
end
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X4 = K8*X3;
if stage == 4

X4(line) = X4(line)+e;
end

X5 = P8*X4;
if stage == 5

X5(line) = X5(line)+e;
end
Ye = X5;

/************************** Start of BITIO.H *************************/

#ifndef _BITIO_H

#define _BITIO_H

#include <stdio.h>

typedef struct bit_file {

    FILE *file;

    unsigned char mask;

    int rack;

    int pacifier_counter;

} BIT_FILE;

BIT_FILE     *OpenInputBitFile( char *name );

BIT_FILE     *OpenOutputBitFile( char *name );

void          OutputBit( BIT_FILE *bit_file, int bit );

void          OutputBits( BIT_FILE *bit_file,

                          unsigned long code, int count );

int           InputBit( BIT_FILE *bit_file );

unsigned long InputBits( BIT_FILE *bit_file, int bit_count );

void          CloseInputBitFile( BIT_FILE *bit_file );

void          CloseOutputBitFile( BIT_FILE *bit_file );

void          FilePrintBinary( FILE *file, unsigned int code, int bits );

#endif  /* _BITIO_H */

/*************************** End of BITIO.H **************************/
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