
Fault Tolerant Huffman Coding for JPEG Image Coding System
Cung Nguyen

Department of Electrical and Computer Engineering,

University of California, Davis, CA 95616

Phone: (530) 756-3243− Fax: (530) 752-8428

email: cunguyen@ece.ucdavis.edu

Abstract−In this paper, the tolerance of Huffman Coding to memory faults is considered. Many pointer-

based and array-based data structures are highly nonresilient to faults. A single fault in a memory array or a

tree node may result in loss of entire data or an incorrect code stream. In this paper, a fault tolerant design

scheme is developed to protect the JPEG image compression system.

1 Introduction

Huffman codes are widely used and very effective technique for compression data; saving of 20% to 90%

are typical, depending on the characteristics of the data being compressed. Huffman coding starts by assign

the shorter code words for more probable symbols and longer codewords for the less probable symbols. This

variable-length codewords belong to entropy coding scheme. Huffman coding is one of the entropy coding

techniques that JPEG uses in its compression standard. There are only the codes in which no codeword is

also a prefix of some other codeword. Such codes are called prefix codes. It is possible to show that the

optimal data compression achievable by a character code can always be achieved with a prefix code.

The Huffman code assignment procedure is based on coding tree structure. This tree is developed by a

sequence of pairing operations in which the two least probable symbols are joined at a “node” to form two

“branches” of the tree. As the tree is constructed, each node at which two branched meet is treated as a

single symbol with a combined probability that is the sum of the probabilities for all symbols combined at

that node. Such described tree is so called a binary tree structure. In a binary tree structure there is a certain

probability that a node or a link can fail. The tree structure is physically static; if any node or link fails, the

tree structure no longer exists. For many applications, the binary tree structure must be maintained during

execution of a task. Redundant nodes and links must be employed for providing fault tolerance against node

and links failures. Fault tolerance issues in tree architectures have been studies by several researchers and

design procedures fork-fault-tolerant tree structures have been developed.

JPEG image compression standard applies the Huffman table instead of tree structure, the fault tolerant

design for this coding method must be modified.In this correspond, the fault tolerance issues in the Huffman

coding structure which using code table is considered. Each table has a table head, which is the address

of the first item. Table head provides the reference for accessing to the entire table’s content by computing

the actual address by the displacement from head to an item in the table. Protection of table head requires

1

a small computation cost. With our design scheme, error detection must be available for the required table

lookup procedures at the Huffman encoder. The codewords have variable lengths so the encoder cannot

employ fixed-width memory. Huffman’s greedy algorithm uses a table of the frequencies of occurrence of

characters to build up an optimal way of representing each character as a binary string.

In this report, the JPEG Huffman entropy coding system is analyzed. Beside that, the redundancy parity

checking codes are also introduced. These steps provide the background information for the further fault-

tolerant schemes to protect against failures. Finally, the computer simulation results for the fault protection

scheme are presented and the detailed reliability analysis and estimation are performed using C++ and

MATLAB programming.

2 Constructing of Huffman Code for JPEG

To simplify the problem, this section only discusses the JPEG Huffman entropy coder implementations for

the baseline mode operation. Baseline sequential coding is for images with 8-bit samples and uses Huffman

coding only, and its decoder can store only two sets of Huffman tables (one AC table and DC table per set).

Prior to entropy coding, there usually few nonzero and many zeros-valued coefficients. The task of entropy

coding is to encode these few coefficients efficiently. The description of Baseline sequential entropy coding

is given in two steps: conversion of quantized DCT coefficients into an intermediate sequence of symbols

and assignment of variable-length codes to the symbols.

In the intermediate symbol sequence, each nonzero AC coefficients is represented in combination with

the “runlength” of zero-valued AC coefficients which precede it in the zig-zag. Each such runlength-nonzero

coefficient combination is represented by a pair of symbols:

symbol-1 ⇔ (RUNLENGTH, SIZE)

symbol-2 ⇔ (AMPLITUDE)
(1)

symbol-1 represents two pieces of information, RUNLENGTH and SIZE.symbol-2 represents the single

piece of information designated AMPLITUDE, which is simply the amplitude of the nonzero AC coefficient.

RUNLENGTH is the number of consecutive zero-valued AC coefficients in the zig-zag sequence preceding

the nonzero AC coefficient being represented. SIZE is the number of bits used to encode AMPLITUDE.

RUNLENGTH represent zero-runs of length 0 to 15. Actual zero-runs in the zig-zag sequence can

be greater than 15, so thesymbol-1 value (15, 0) is interpreted as the extension symbol with runlength

= 16. There can be up to three consecutive(15, 0) extensions before the terminatingsymbol-1 whose

RUNLENGTH value complete the actual runlength. The terminatingsymbol-1 is always followed by a

singlesymbol-2 except for the case in which the last run of zeros include the last(63rd) AC coefficient. In

this frequent case, the specialsymbol-1 value(0, 0) means EOB (end-of-block) symbol, which terminates

the8×8 sample block.

2

The DC Huffman code is partitioned into two bit-groups: The first bit-group consists of consecutive 1s

ending with a single 0. Letk denotes the number of 1-bits in the first group; The second bit-group (with

k bits length) represents the difference (4DC) between the DC value of the current block and that of the

previous block. LetB denotes the equivalent decimal value of the second bit-group. IfB ≥ 2k−1, then

4DC = B. Otherwise,4DC = B − 2k + 1. Therefore, the DC value of the current block is the sum of

4DC and the DC value which is already decoded from the previous block.

The possible range of quantized AC coefficients determine the range of values which both the AM-

PLITUDE and the SIZE information must be represent. If the input data areN -bit integers, then the non-

fractional part of the DCT coefficients can grow by at most 3 bits. Baseline sequential has 8-bit integer

source samples in the range−27, 27 − 1, so quantized AC coefficient amplitudes are covered by integers

in the range[−210, 210 − 1]. The signed-integer encoding uses symbol-2 AMPLITUDE codes of 1 to 10

bits in length, so SIZE also represents values from 1 to 10, and RUNLENGTH represents values from

0 to 15 as discussed previously. Figure provides an example of baseline coding of a single 8×8 sample

15 9 -1 0 0 0 0 0

-2 -1 0 0 0 0 0 0

-1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

15 0 -2 -1 -1 -1 0 0 -1 0 ... 0

(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) (2,1)(-1) (0,0)

55 zeros

12

DC value of the
previous block

(0,1)(-1)

(15-12)

110 11 11011 01 00 0 00 0 00 0 11100 0 1010 Code stream

Symbols

Figure 1: Huffman coding processes for an 8×8 DCT block.

block. For the demonstration purpose, it omits the operation of complete JPEG interchange format infor-

mation (parameters, headers, quantization). The 8×8 block shows the resulting quantized DCT coefficients

of an image component. It involved the zig-zag arrangement, the appropriate intermediate symbol (RUN-

LENGTH, SIZE)(AMPLITUDE) pairs for the AC coefficients. More information about base-line run-length

and Huffman code can be found in [2] (pg. 190-201 and 441-449). Finally, the code stream for the block is

formed by applying the code Huffman code tables as shown in Tables 3 and 4.

3 Fault Tolerant Design for the JPEG Huffman Coding System

From the Huffman coding process as described in the previous section, the Huffman code tables play an

important role in constructing the code stream. Before coding, the Huffman code tables are loaded into

memory and will be available at all time. Since the code table may be error due to the flipped bits inside the

3

memory cells. This flipped will change a valid code into another code that may or may not already existed

in the code table. In any circumstance, the changing of code table will change the entire output stream.

Each code in the table associates with the row an column indices. These indices are not only used to find the

memory location for the code itself, but they also provide information about the zero runlength in the zigzag

sequence and the bit-size used to code the non-zero values of coefficients. A flipped bit occurred inside the

code table could change entire context of the block and yield a totally wrong code stream. Decoder will

not able to decode the block, even though only a partial of the block. Since the code table at the decoder

suppose to de identical to that of the encoder, the changing the code table at the encoder will not allow the

decoder to continue its decoding process as soon it encounters the corrupted code stream.

3.1 Single bit Error Detection Design for Huffman Code Table

To analyze the effects of the errors in the code table, assume that the decoder will will be able to skip the

rest of bits represent for the remain coefficients of the current 8×8 block as soon an error is detected. The

rest coefficients of the current block are filled with zeros and starts to the next block. With this decoding

method, the reconstructed image is degraded and large of its details will be lost. Figure 2 shows the original

original image Reconstructed image with error

Figure 2: Original (left) and reconstructed (right) images under the memory fault effects. In this case, the
error correction function was not activated. The coding for an 8×8 DCT blocks is skipped when error is
detected in the Huffman code table

and reconstructed images using the above decoding strategy in case flipped bits occurred in the encoder’s

Symbol-1 code table (In this case, the code bits at (C1,Z4) flipped from 111011 to 111100, (C1,Z5) flipped

from 1111010 to 1111011 and the code at (C2,Z0) flipped from 01 to 10). The reconstructed mean square

errors for Red, Green and Blue components are 179.5, 206.8, and 246.9, respectively. The bypass of error

coefficients creates artifact phenomenon due to the great jumps in image levels between the adjacent blocks.

4

To improve the quality of the reconstructed image, the Huffman code table needs to be strengthen such that

it can be corrected if some errors occur. One effective way is to add the parity check bits to each row and

column of the code table. The code table’s size is 11×16 and each table item is represented by maximum

16 bits. There are 17 sixteen-bit words are used for parity check, which 11 words are for row parity, and 16

words are for column parity. The organization of parity bits are shown in Figure 3. Assume the code table

contents are located inside the 11×16 array. The 11st row is used to store the parity check bits for the codes

in every column. Similar, the 16th column is used to store the parity check bits for the codes in every row.

Before coding process, the 16 parity check bits for each column are formed by XOR all the code words in

ZERO RUNLENGTH INDEX

10...10

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

S
IZ

E
 I

N
D

E
X

COLUMN PARITY CHECK BITS

R
O

W
 P

A
R

IT
Y

 C
H

E
C

K
 B

IT
S

16 bits word

16 bits
word

10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10 10...10

10...10
10...10
10...10
10...10
10...10
10...10
10...10
10...10
10...10
10...10
10...10

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9

C10

Figure 3: Row and column parity check bit design for the AC Huffman code table

that column. Similar, the row parity check bits are formed by XOR all the code words of the same row. To

check for the correctness of a table item, the parity check bits for the row and column whose intersection

is located at the current table item. These reconstructed parity bits are then compared with the correspond

precalculated parity row and column parity bits. If both row and column parity are not matched, the error

was occurred in the current code item. This error checking method only works if no more than one error bit

occurs at the same bit position in a table row or column. For instance, the code item at row 1 column 2 is

being considered. Assume 4th bit is flipped from 1 to 0, and no 4th bits occur to other items in row 1 and

column 2. If that condition is violated, false or miss detection may occur depend on particular situation.

3.2 Single bit Error Correction Design for Huffman Code Table

The error detection scheme as shown in the previous section is the most simple way to detect errors occur

inside the 2-dimension code table. Since the detection always followed by error handle processes. If the

fault tolerance design only stop at the fault detection, the error handle must either repeat the work or skip

the rest coefficients of that 8×8 data block, and encode for the next one. In either case, the time overhead is

possibly high and the quality of the entire image will be lower due to the errors still remain in the code table.

5

To overcome this problem, error correction using biresidue codes can be applied to correct all the single bit

errors inside the Huffman code table.

Biresidue codesThis is the separate code with two or more residue checks. LetA1 andA2 be the check

bases; and the code needs to be checked isN ∈ Zm. Givenm = 2k − 1, Ai can be chosen such that

A1 = 2c − 1, A2 = 2d − 1 for positive integersc andd such thatc dividesk andd also dividesk. For each

baseAi {i = 1, 2}, the low-cost residue code for each codewordN is created. For the symbol-1 Huffman

code table as shown in Table 3, the maximum length of each codeword is 16 bits long. Therefore, if the

check bases are selected to beA1 = 3 andA2 = 511, then the low-cost residue codes have lengthsc = 2

andd = 9. In this case, the data occupy 18 bits long. To see how the biresidue codes are formed, consider

an 18-bit codeN = 110111010011. Its check codes|N |3 and|N |511 are to be generated. For the check

code|N |3, N is divided into bytes of length 2 starting from right, and these bytes are added modulo 3 (i.e.,

with an end-around-carry as in 1’s complement number).

Let N = 00|00|00|11|01|11|01|00|11 = 3539. The 2-bit bytes are added as follows.

11
00
11

01
11 01

11

1
01

01
01
10

10
11

100
1

01

101
1

10

1 23 10 2C N= = =
100

Figure 4: The residue code computation for a 18-bitN modulo 3

Similar, the 9-bit bytes are added as follows

000000110
111010011
111011001

2 2511 111011001 473C N= = =

Figure 5: The residue code computation for a 18-bitN modulo 511

The single bit error correction is done by computation the syndromes of a 3-tuple(N, C1, C2) is given by

s(N, C1, C2) = (s1, s2) = (|N − C1|3, |N − C2|511) (2)

It is assumed here that the three components of the code are processed is separate units, called the data,

checker 1 and checker 2, respectively, and therefore at most one of the components of the result will be

erroneous at any given time. A triple(N,C1, C2) is a codeword if and only ifs(N, C1, C2) = (0, 0). For a

codeword(N,C1, C2), consider the three separate cases of errors:

1. Error in the data unit. LetN ′, C1, C2 denote the erroneous word due to an error in the data, such that

N ′ = |N + e|218−1. Then the syndrome

s(N ′, C1, C2) = s(e, 0, 0) =
(|N ′ − C1|3, |N ′ − C2|511

)
= (|e|3, |e|511) (3)

6

2. Error checker 1. The erroneous word is of the form (N,C ′
1, C2) whereC ′

1 = |C1 + e|3. Its syndrome

s(N,C ′
1, C2) =

(|N − C ′
1|3, |N − C2|511

)
= (| − e|3, 0) (4)

3. Error in checker 2. The erroneous word is of the form (N, C1, C
′
2) whereC ′

2 = |C2 + e|511. Its

syndrome

s(N, C1, C
′
2) =

(|N − C1|3, |N − C ′
2|511

)
= (0, | − e|511) (5)

From the above three cases, the syndromes=(s1, s2) indicates the erroneous status

s1 = 0, s2 = 0 : no error; s1 6= 0, s2 6= 0 : error in the data

s1 6= 0, s2 = 0 : error in checker 1; s1 = 0, s2 6= 0 : error in checker 2

For the cases when there is an error in one of the checkers, it can be easily corrected by computing the check

value fromN . When the error is in the data unit, the syndromes corresponding to the set of single errors

must be distinct as shown in the table1. Evidently, the syndromes are all clearly distinct fori = 0, 1, . . ., 17.

However fori = 18, the syndromes(218, 0, 0) = (1, 1) = s(20, 0, 0). Thus the code can correct single

errors in the data unit fork = 18 More information about biresidue code can be found in [1].

Table 1: Syndromes of single errors for the biresidue code withk = 18, c = 2 andd = 9
i Syndromes(2i, 0, 0) s(m0 − 2i, 0, 0) i Syndromes(2i, 0, 0) s(m0 − 2i, 0, 0)

0 (1,1) (2,510) 9 (2,1) (1,510)
1 (2,2) (1,509) 10 (1,2) (2,509)
2 (1,4) (2,507) 11 (2,4) (1,507)
3 (2,8) (1,503) 12 (1,8) (2,503)
4 (1,16) (2,495) 13 (2,16) (1,495)
5 (2,32) (1,479) 14 (1,32) (2,479)
6 (1,64) (2,447) 15 (2,64) (1,447)
7 (2,128) (1,383) 16 (1,128) (2,383)
8 (1,256) (2,255) 17 (2,256) (1,255)

3.3 Experiment results

The proposed single error detection and correction is implemented in software using visual C programming.

First, the raw data image is transformed by the 2-dimensional discrete cosine transform and quantized by

a default luminance quantization table. The data then pass through the Huffman coding process, where

the error is randomly injected into the quantization table. In the first process, the table is checked, but not

corrected. If an error occurs when coding a certain block symbol,the block is forced to terminate there, and

the process continues to code the next block. In the second process, single error correction (SEC) function

is deployed to correct the single bit errors occurred to a codeword before that codeword is inserted into the

codestream. The decoder is performed in reverse order to reconstructed the input image. The mean square

error for the reconstructed images is computed and the images are displayed for observation.

7

Table 2: Comparison of Mean Square Errors when (SEC) inactivate and activated
image without SEC with SEC
egret 50 37
man 229 180

flamingo 160 143
hawk 386 324
heron 285 233
winter 25 21

3.4 Conclusions

In this report, the JPEG Huffman entropy coding has been analyzed, implemented and tested successfully.

The redundancy single error correction/double error detection codes are also implemented. The computer

simulation takes the color input images, performs discrete cosine transform and scalar quantization steps

before enters to the Huffman coding. The single and double-bit errors are randomly occurred inside the

Symbol-1 Huffman code table. Symbol-2 Figure 4 can be computed directly without using the table. During

the coding process, all the single-bit errors are removed by using the biresidue codes. In most cases, double-

bit errors in the table are detected. For the double-bit errors, the rest coefficients in the current block are

skipped over and replaced by an end-of block code. The reconstructed image for the cases of single and

double-bit errors are showed in the Figures 6. The performance is improved in terms of both mean square

error and image perception.

8

References

[1] Rao T.R.N; E. Fujiwara.Error control coding for computer systems. Prentice Hall, Englewood Cliffs,

NJ, 1989.

[2] W.B. Pennebaker and J.L. Mitchell.JPEG Still Image Data Compression Standard. International

Thomson Publishing, New York, NY, 1993.

9

original image Reconstructed image without error correction Reconstructed image with SEC/DED

Figure 6: (left): original image;(middle): the reconstructed image without SEC for the code table; (right):
reconstructed image with SEC/DED for the code table

Table 3: Baseline Huffman Coding Symbol-2 Structure.
Size Amplitude DCCodeWord

0 0 0
1 -1 1 10
2 -3 -2 2 3 110
3 -7 -6 -5 -4 4 5 6 7 1110
4 -15 -14 -13 -12 . . . 12 13 14 15 11110
5 -31 -30 -29 -28 . . . 28 29 30 31 111110
6 -63 -62 -61 -60 . . . 60 61 62 63 1111110
7 -127 -126 -125 -124 . . . 124 125 126 127 11111110
8 -255 -254 -253 -252 . . . 252 253 254 255 111111110
9 -511 -510 -509 -508 . . . 508 509 510 511 1111111110

10 -1023 -1022 -1021 -1020 . . . 1020 1021 1022 1023 11111111110
11 -2047 -2046 -2045 -2044 . . . 2044 2045 2046 2047 111111111110

10

Table 4: Baseline Huffman Coding Symbol-1 Structure.
Runlength

Size Z0 Z1 Z2 Z3
C1 00 1100 11100 111010
C2 01 11011 11111001 111110111
C3 100 1111001 1111110111 111111110101
C4 1011 111110110 111111110100 1111111110001111
C5 11010 11111110110 1111111110001001 1111111110010000
C6 1111000 1111111110000100 1111111110001010 1111111110010001
C7 11111000 1111111110000101 1111111110001011 1111111110010010
C8 1111110110 1111111110000110 1111111110001100 1111111110010011
C9 1111111110000010 1111111110000111 1111111110001101 1111111110010100
C9 1111111110000010 1111111110000111 1111111110001101 1111111110010100

Size Z4 Z5 Z6 Z7
C1 111011 1111010 1111011 11111010
C2 1111111000 11111110111 111111110110 111111110111
C3 1111111110010110 1111111110011110 1111111110100110 1111111110101110
C4 1111111110010111 1111111110011111 1111111110100111 1111111110101111
C5 1111111110011000 1111111110100000 1111111110101000 1111111110110000
C6 1111111110011001 1111111110100001 1111111110101001 1111111110110001
C7 1111111110011010 1111111110100010 1111111110101010 1111111110110010
C8 1111111110011011 1111111110100011 1111111110101011 1111111110110011
C9 1111111110011100 1111111110100100 1111111110101100 1111111110110100

C10 1111111110011101 1111111110100101 1111111110101101 1111111110110101
Size Z8 Z9 Z10 Z11
C1 111111000 111111001 111111010 1111111001
C2 111111111000000 1111111110111110 1111111111000111 1111111111010000
C3 1111111110110110 1111111110111111 1111111111001000 1111111111010001
C4 1111111110110111 1111111111000000 1111111111001001 1111111111010010
C5 1111111110111000 1111111111000001 1111111111001010 1111111111010011
C6 1111111110111001 1111111111000010 1111111111001011 1111111111010100
C7 1111111110111010 1111111111000011 1111111111001100 1111111111010101
C8 1111111110111011 1111111111000100 1111111111001101 1111111111010110
C9 1111111110111100 1111111111000101 1111111111001110 1111111111010111

C10 1111111110111101 1111111111000110 1111111111001111 1111111110111101
Size Z12 Z13 Z14 Z15
C1 1111111010 11111111000 1111111111101011 1111111111110101
C2 1111111111011001 1111111111100010 1111111111101100 1111111111110110
C3 1111111111011010 1111111111100011 1111111111101101 1111111111110111
C4 1111111111011011 1111111111100100 1111111111101110 1111111111111000
C5 1111111111011100 1111111111100101 1111111111101111 1111111111111001
C6 1111111111011101 1111111111100110 1111111111110000 1111111111111010
C7 1111111111011110 1111111111100111 1111111111110001 1111111111111011
C8 1111111111011111 1111111111101000 1111111111110010 1111111111111100
C9 1111111111100000 1111111111101001 1111111111110011 1111111111111101

C10 1111111111100001 1111111111101010 1111111111110100 1111111111111110

11

