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This implies that one has to examine all ¥V modules of the machine to
locate the faulty module.
The resolution R is maximum when every failure can be traced

The Self-Diagnosability of a Computer

NARSINGH DEO
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‘ . e . L. . down exactly to one module, i.e. ki=1, for 1 <i<n. Then from (3),
4 Abstract—Maximum capability for self-diagnosis with minimum 1 +ion becomes
{ additional hardware is the goal of every designer of a general purpose
ﬁ computer today. A yardstick with which the self-diagnosability of a Roun = _‘1_” -1 ©)
* gystem can be measured is proposed. i N
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A self-diagnosable computer can be described as a system con-
sisting of two interconnected but independent machines: the main
"~ processor My and a much smaller machine M1 (about 5 to 10 perceat
of the size of M,), which is capable of (programmatically detecting
7 and locating a fault in M. This fault location should be pinpcinted
* within a small number of replaceable modules (integrated circuit
* chips, parallel-plate packages, or printed circuit cards) 1}, [2 I

The mest commonly employed technique for diagnosis is to pre-
pare a list of a complete set of tests T={T1, T2 """, T.} such that
" every failure in the system will cause one or more of these tests to
fail {2]-[4]. Let the set F= {Fi, Fz2, - -+, Fn} representall possible
single failure cases in the system. By taking the intersection of the
sets of suspects for the failing test cases Ty Tiey - - - » Tir one ar-
rives at a fault Fi. Let ky, Bz, =+ * 4 Em be the number of suspected
modules under the faults Fy, F» - - -, F,,, respectively. In other
words, during the Maintenance Routine [3] run, if tests Ty,
T, - - -, Ti, fail, and the rest of the tests pass, then from a look-up
table we arrive at the conclusion that fault F; has occurred, and in
. order to correct this fault F. we have to either replace k; number of
modules or examine each of these k; modules by some other means
and replace the bad one.
Clearly then, if N= total number of modules used in the machine,

i
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Let p; be the probability of occurrence of failure F;, for 1=1,2,-°7,
m. Then assuming that at a given instance exactly one fault has oc-
curred,

Z pi =1L (2)
il
Number R;=1/k; is an indicator of the efficiency with which
fault F; can be repaired. The diagnostic efficiency of the entire system
can be represented by

1

Z kipi
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R 3

This number R can be called the “resolution” of the entire system.
The comparative figure of merit of a diagnostic subsystem is then

R )
cost
where the cost includes the cost of hardware in Mz of software, of
d"-“’elopment, and of running time of the maintenance routine.
If the maintenance routine only detects, and does not locate a
fault, then R assumes its minimum possible value
t

Rain = N (5
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If all modules are assumed to have equal probability of failure,
then the probability of occurrence of failure F; is given by

ki
o= )]

m

2k

1=l

and the resolution of the machine by substituting (7) in (3; turns
out to be

R, =— * (8)

[n absence of any statistical data available on the probability of
various failures, (8) would be a good index of the diagnosability of a
system.

In the author's opinion the resolution in (8) is a very important
figure in the specification of any machine with diagnostic capability.
The manufacturer should specify it, and the customer should ask for
it. As discussed above, in general, R, will have a value between 1
and 1/N.
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High Speed Binary Parallel Adder
HUE!I LING
INTRODUCTION

The propagation of the carry is always a dominant problem in
modern computers. Recently, Salter {1}, Admodei [2], and Edwards
[3], [4] increased the speed of the carry propagation by the use of
tunnel diodes, or so-called “carry selecting switches.” [nstead of
transmitting the carry signal as shown by Edwards and Salter, this
short note presents a method of high speed addition by the use of a
complementing signal.

Manuscript received September 24, 1965; revised December 10, 1965, and
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Fig. 1. The block diagram of Step IV. High speed binary parallel adder. 1) L, and T, both are zero, the inhibit circuit is on to

prevent the complementing pulse from

propagating down the line. 2) In and T, both are 1, turn on the complementing pulse toinvert the 0 to 1, and 1 to be 0. 3) Not in operation in this example. The diodes

are used to prevent the complementing pulse from transmitting backward.

Basic THEORrY

Let A and B be the two numbers which are to be added together,
where 4 and B can be represented as
A=a2"+ ap 2+ -0 +a204 -0 4 ap2°
B =b2" + bpi20 s 02T e 4 520
where a;'s and b,'s are in binary and can be either 1 or 0. Its sum can
be written as

S =2"an + ba) + 27 Han1 F ba-1) + - -0+ 2%a0 + b} (1)

or simply

S=3 2(an + b
0

S =2 [27Ma5bs + 2°(aba’ + a4'b)] 2
1]

where @., bn, a.’ and b,’ are in binary and ¢,’ is the negation of aa
similarly for the b,’s.

If modulo 2 addition [5] is used, then the sum can be written as
S = 5 2V edn+ X 2000, © b, ®
Letting
T, = é 27Hg,b,, P, = é 2*(a, & b,)

(3) can be rewritten as
S =T+ P,. C)]

Equation (4) indicates that the sum can be represented by the addi-
tion of (7.4 P,) or, more simply, that the sum iz performed by ex-
traction of a, and b, with 1 bit left shifted, and adding the differences
between a, and b.. This is another form of binary addition. The in-
herent property of (4) is that the addition of T, and P, will not con-
tain the following cases:

--111---101-.-1111---11T,
+«101---111---1111---11P,

When a 1 occurs in P, there will not be 1'sinboth T, yand T, (the
diagonal direction of P,). It may possessa 1in T,y or Tay but not
in both, cince the corresponding 1's have extracted each other fol-
lowed with 1 bit left shifted, and have already been included in T..

In general, T, and P, will contain the following type of additions:

---11111---01---001---10110T,
---00001---01---001---10010P,.
This tvpe of uddition can be tiken care of simply by putting all 1's
of P, into T, and by then initiating the complementing pulwe to in-
vert the 1's or 0's in T, which are needed to be inverted. The carry
propagation in Tn and P, addition has been realized by the simple

GENERAL PrROCEDURE oOF CIRcUIT DESIGN

Given
a,'s
and
b,'s
I
a. Db, anba
|

Extract T, and P, to generate
the logic functions, the usage
1s explained in STEP IV

i
Put all 1's of P, into T,
I

Turn on inhibit Circuit if L,
and T, both are 0.

Step 1

Step 11

Step 111

Step IV
Turn on the complement cir-
cuit if L, and T, both are 1

Fig. 2. Block diagrar: of circuit design.

inversion. The detailed explanation is shown in Fig. 1 and described
below. The general circuit block diagram is shown in Fig. 2.
DEescripTION

In order to explain the operating procedure step by step, an ex-
ample is given. Let 4 =64281, B=34615; in binary, these numbers
show as

A
B

1111101100011001
1101010101010111.

I

Step T

In order to generate 3 27*lg,b, A and B are extracted and fol-
Towed by 1 bit left shifted.

7.=11010001000100010.
P, is generated by finding the difference between 4 and B

Po,=0010111001001110
Step 11

Generate the logic function L., the extraction between T, and
P.. In thizexample, L. is shown as

L.=0010001000000010

The uszge of this function is explained in Step 1V
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Fig. 3. Edwards’ adder (logic design) (see (3], p. 465).
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Fig. 4. Edwards’ adder (carry control circuit) (see (3], p. 166).

S.le !

Carry Cut

Step IIT

Put all 1's of P, into T, in the corresponding location. Th and
L, then read

T,=11010111001101110
L,= 0010001000000010.

]

Step IV

Turn the inhibit circuits on if L. and T, equal 0. (After Step III,
T, contains original Th and all U's of Pa.) Turn the complementing
pulse on if L, and T» both are 1. The former will hold the stages with
no need to invert; the later will invert the stages which need to be
inverted.
After completing Step [V, the sum shows

$=111010000011100060

i which is 118896 in decimal.

These four steps actually are formed simultaneously as soon as

' the g's and the b’s are available. Equation (3) gives

S =3 27 (anba) + 2 2%(an D ba).
0 []

If we write the sum S itself into the binary form, then
S=2n+|s”l+2nsn+...+2k3+...+2050.... (5)

By comparing (4) aund (§), the value of the kth digit of the sum S
can be expressed as

S = (41k b)) + (e ® be)

Fig. 5. Salter’s adder (see [1], p. 462).

since we do not perform the actual addition here. We just put all 1's
of P, into T,, therefore, s can be read as

sk = (@k-1 bie) or (ax © bi). (6)

By doing so, the complementing logic control circuit Ci and the in-
hibiting logic control circuit Ii should be added and are shown in

(7) and (8).
Ci = (@1 bi-1)-(ax @ bi) @)
It = (ae-1 bi-t) - (2 D be). (8)

Equations (6)—(8) show that s, is formed simultaneously as soon
as the a's and the b's are available; when the add instruction is
executed, the logic control circuit Cy or Ii (not both) will be activated,
and the sum is formed as shown in Fig. 1.

COMPARISON

In Edwards’ adder the logical diagram of two adder stages is
shown in Figs. 3 and 4. When X\ and Y, both are 1, the switch T is
closed and a carry is generated. When X, and Y, both are 0, the
switch Ty is closed and the carry signal is inhibited. When Xy and V-
are different, the switch 7 is closed to admit the carry to propagate.

In Salter's adder as shown in Fig. §, the carry signal is generated
by the section “P” when Ag and By both are 1. The carry signal is
inhibited by the section “N” when Ay and By both are 0. The carry
selecting switch S14 is closed when Ay and By are different. Busically
speaking these two adders are similar. The adder proposed here dif-
fers from these two as follows.
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1) There is no carry selecting switch, Therefore, instead of trans-
mitting the carry signal, the complementing signal is propagated.

2) In Salter’s adder the vidue of the kth digit of the sum S is
generated as si=ai @bk @cy oy, which is controlled by transistors 1, 2,
3,4, 5 and 6, as shown in Fig. 5. The se of the proposed adder is de-
pendent upon ae—y, bit, @k and by as expressed in (65 and controlled
by the logic circuit as shown in (7) and (8).
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The Conjectured Highest Scoring Machines
for Rado’s Z(k) for the Value k=4

ALLEN H. BRADY

Abstract—A study of the output of a heuristic computer program
reveals two four-state binary Turing machines which yield the highest
known score for four states in Rado’s co-called “Busy Beaver” logical
game. There is evidence which supports the conjecture that this
score of 13 is the particular value of £(4), where Z is a noncomputable
integer function associated with this game. It is also conjectured that
S(4) =106, where S is ancother noncomputable function, the maxi-
mum shift number, of interest in Rado’s study. Complete solution of
the problem for four states has been reduced to a relatively small set
of machines.

In a 1962 paper, Rado [1] defines a certain noncomputable in-
teger function Z(k), where k is the number of states of a binary Turing
machine and =(k) is the least upper bound of the number of marks
left on a blank input tape by any member of the (finite) class of such
k-state machines which stop. Rado proposed a logical game (the
“Busy Beaver Game”) to find, for a given integer k, a k-state machine
which will write a large number of marks on an (initially) all blank
tape and then stop. The best obtained values for 2=2 and 3, for
instance, are 4 and 6, respectively, For these cases, however, it is
known [2] that 2(2)=4 and Z(3) =0.

The determination of the value of (k) for a particular value of k
essentially reduces to the solution of the halting problem for k-state
machines with a blank input tape. An algorithm for making this de-
cision does not, of course, exist for arbitrary k, since it is evidently
equivalent to solving the halting problem for a universal Turing
machine. In addition to the difficulty in determining whether or not
a particular k-state machine will halt, there iz also a hurdle pused by
the sheer magnitude of the number of binary machines with & states.
This number is of the order of (6k)* and while not too large for k=3
is approximately 10" for k=4. One can gain some feeling for the
magnitude of this number by thinking of it in terms of cycles for a
synchronous digital computer with, say, an eight microsecond cycle
time: it represents eight continuous days of operation!

There are, of course, several immediate and obvious reductions

Manusecript received July 6, 1965 revimed November 1, 1065 This wark was
supported in (zrt by the Graduate Rewarch Council of Oregon Stats Universty,
Corvallis, Ore.. and by the National Institute of Health under Grant GM 11178,
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which one can make in the size of the sct of k-state machines to be
considered, such as elimination of right-left symmetry and requir;

the presence of at least one “halt” command. The primary €conomy,
however, is effected in a tree generation “algorithm™ which Elim',:
nates the need to consider machines which are identical except for
redundant commands or isomorphisms arising from permutations gy
the states. The tree generation process consists of starting in state {
with a seed machine consisting of only the triple I R 2 (print a mark,

move right, go into state 2) in the [1, S] (state one, scanning a blang

space) entry of the description table.? The described machine is
operated until either 1) it requires a new entry to be defined jp the
table or 2) it is determined that no undefined entry can be reached,
i.e., the machine will never stop. Obviously, the seed machine wili
immediately require a table entry under {2, S] and we begin by in.
serting the triple S L1. The machine is operated as before. Ip the
event it is determined that the machine will never stop, the triple
in the most recently used entry is changed (increased) in a simple
counting sequence. The maximum state to be used in the newly
inserted triple cannot exceed by more than one the maximum Stat;
appearing in any previously entered triple. If by this rule alteratiop
is not possible, then a retrace is made to the previous entry, We
shall refer to any machine generated by this process as being in
tree-normal form.

Strictly speaking, it is not required by the rules of the game that 4
machine start in state one, but it is obvious that any machine starting
in a state m is isomorphic to some machine starting in state one,
namely, the machine obtained by exchanging 1 for m throughout
the machine description. Further, it is apparent that with a blank
nput tape any machine, except for redundant entries, is isomorphic
to a machine in tree-normal form.

The tree generation process was included in a digital computer
program which encompassed a heuristic solution to the halting prob-
lem [3] and all necessary bookkeeping connected with the game. The
output of the program consisted of the highest scoring entries found
for Rado's game and, in addition, a list of machines generated for
which the halting problem was not solved. Nearly 550 000 machines
were generated by the computer to exhaust the four-state case, with
about 6000 machines remaining for which the halting problem was
left undecided. (It was assumed by the program that they would
never halt.) The remaining machines were each run on a 100 square
blank tape for not more than 500 moves. Only two of these machines
stopped. Their descriptions are given in Fig. 1.3 Machine A stopped
after 95 moves and machine B after 106 moves. Both machines leave
12 marks (I's) on their output tape. Using Rado’s convention of a
halt state, which is not counted as one of the  states, one can insert a
command to print an additional mark and then stop. The final tape
configurations are shown in Fig. 2. The result obtained is a “score”
of 13 giving the relation £(4)>13. We have further the relation
S5(4)>106, where S is the noncomputable functon determined by
the maximum number of moves or shift number [1].

These machines yield tht highest scores which are known to date
for k=4 insofar as the author has been able to determine. All four-
state machines known to have stopped do so within a tape region of
22 squares and in 106 or fewer moves. In addition, examination of
samples of the remaining 6000 machines has revealed quite complex,
but nevertheless not unfamiliar, patterns of degenerate behavior
paralleling that seen in other machines known not to hait. From this
evidence, it is conjectured that $74)=13 and S{4)=106.

1 The process to be described is not an «lgorithm in the strict sense becaust of
the dependency upon a2 sulution to the halting preblem: bence the quotes.

2 One can show by meane of a simiple argument that no other entry in [1, S] n~<
be cong’dered. $~¢ Lin and Kado [2].

3 The author is indebied to the referee for pointing out a most astounding cowa-
cidence: while the two machines of Fig. 1 are distinct in the tree-normal serse
machine B is isomorphic to machine A if machine A is allowed to start in state 2.
This fart is readily apparent from inspection of the szie diagrams of the two
machines. The referes further notes that. under this isomorphisn, identical coo-
figuratione are reacted by the machines after 14 and 25 @ s res;ectively.

¢To get the scotes of 13 replace each “HALT® in Fig. 1 by the triple 1RC
(print *1,” r.ove right, go into etate “07, where state 0 icthe 23462 hall stale.

A WA 1

4 g

e

1!”:
i
&
:

ok w ST g

|



