Logical Effort: Designing for Speed
on the Back of an Envelope

Ivan E. Sutherland
Robert F. Sproull

Sun Microsystems, Inc.
Mountain View, CA 94043

Designers know to use strings of inverters with geometrically increasing sizes
to drive large capacitive loads. But they are unsure how to optimize arbitrary
logic networks so as to achieve least delay without resorting to trial-and-error
circuit simulations. The method of logical effort, introduced in this paper,
is a simple method that optimizes networks for speed.

The method of logical effort shows how many stages of logic are required
for the fastest implementation of any given logic function. The effort of
computing a logic function requires amplification stages just the same as
the effort of driving large capacitive loads. The method reveals the proper
transistor sizes in each stage to realize the fastest overall operation. It also
provides a guide that can be applied in the early “back of the envelope” stages
of design to choose among major alternative structures without extensive
simulation work.

The method assigns a logical effort to each logic function. The logical
effort of an inverter is taken to be one. The logical effort for any other logic
function describes how much worse it is than an inverter at producing output
current, given an equivalent amount of input capacitance. The logical effort
of a logic function depends mainly on its circuit topology and slightly on the
electrical properties of the fabrication process used to build it. In cMOs the
logical effort of each input of common two-input logic functions ranges from
about 4/3 for NAND to 4 for XOR. The logical effort of functions with more
than two inputs is generally higher.

Logical efforts for individual stages of logic can be combined to find the
logical effort of networks. Where several stages of logic drive each other in
a string, the overall effort involves the product of their individual efforts.
Where several logic devices are driven from a common source, the overall
effort involves the sum of the efforts of the driven devices. Compound circuits
with smaller overall logical effort can be made to run faster than logically
equivalent circuits with larger logical effort.

1 Delay in a single logic gate

The method of logical effort reformulates a simple conventional RC model
of delay in a cMos logic gate and introduces some new terminology. The
delay in a logic gate can be expressed as the sum of two components, a fixed
part called the parasitic delay, p, and a part proportional to the load on the

gate’s output, called the effort delay, f:

d=f+p (1)

Delay expressions such as this one express delay in units of 7, a time unit
that characterizes the actual semiconductor process being used.

The effort delay depends in part on the load and in part on properties
of the logic gate driving the load. We introduce two related terms for these
effects: the logical effort, g, and the electrical effort, h. The effort delay of
the logic gate is the product of these two quantities:

f=gh (2)

The logical effort captures the effect of the logic gate’s topology on its ability
to produce output current. It is independent of the size of the transistors in
the circuit. The electrical effort describes how the electrical environment of
the logic gate affects performance and how the size of the transistors in the
gate determines its load-driving capability. The electrical effort is defined
by:

h = Cout/cin (3)

where C,,; is the capacitance that loads the logic gate and C}, is the capac-
itance presented by the logic gate at one of its input terminals.

Combining Equations 1 and 2, we obtain the basic equation that models
the delay through a single logic gate, in units of 7:

d=gh+p (4)

This equation shows clearly that logical effort and electrical effort both con-
tribute to delay in the same way. This formulation separates 7, g, h, and p,
the four contributions to delay. Note that p and g are independent of the
size of the transistors in the logic gate, while h relates directly to transistor
sizes.

The logical effort, g, expresses the effects of circuit topology on the delay
free of considerations of loading or transistor size. Logical effort is useful
because it depends only on circuit topology. Logical effort values for a few
cMos logic gates are shown in Table 1. Logical effort is defined so that an
inverter has a logical effort of one. Thus 7 is the delay of an ideal inverter
with no parasitic delay that drives another identical inverter.

It is interesting but not surprising to note from Table 1 that more com-
plex logic functions have larger logical effort. Moreover, the logical effort of
most logic gates grows with the number of inputs to the gate. Larger or more
complex logic gates will thus exhibit greater delay. These properties make
it worthwhile to contrast different choices of logical structure. Designs that
minimize the number of stages of logic will require more inputs for each logic
gate and thus have larger logical effort. Designs with fewer inputs and thus
less logical effort per stage may require more stages of logic. The method of
logical effort allows you to choose among such alternatives.

Gate type Number of inputs

1| 2 3 4 5 n
inverter 1
NAND 4/3 1 5/3 | 6/3 | 7/3 | (n+2)/3
NOR 5/3 | 7/3 9/3 | 11/3 | (2n+1)/3
multiplexer 2 2 2 2 2
Muller C 2 3 4 5 n
XOR (parity) 4 | 6-12 | 16-32
majority 4

Table 1: Logical effort for inputs of static cM0s gates. These figures assume
that p-type transistors have half the conductance of n-type transistors of
identical geometry.

Gate type Parasitic delay
inverter Dinw
n-input NAND NPinw
n-input NOR NPinv
n-way multiplexer 2NPiny
n-input Muller C 2NPiny
XOR, XNOR 4Diny
3-input majority 6Pinv

Table 2: Estimates of parasitic delay of various logic gate types. A typical
value of p;,., the parasitic delay of an inverter, is 0.6.

Electrical effort is usually expressed as a ratio of transistor widths rather
than actual capacitances. If we assume that all transistors have the same
minimum length, then the capacitance of a transistor gate is proportional
to its width. Because most logic gates drive other logic gates, both C;, and
Cout can be expressed in terms of transistor widths. If the load capacitance
includes stray capacitance due to wiring or external loads, we shall convert
this capacitance into an equivalent transistor width.

The parasitic delay of a logic gate is fixed, independent of the size of
the logic gate and of the load capacitance it drives. This delay is a form of
overhead that accompanies any gate. The principal contribution to parasitic
delay is the capacitance of the source/drain regions of the transistors that
drive the gate’s output. Table 2 presents estimates of parasitic delay for a
few logic gate types; note that parasitic delays are given as multiples of the
parasitic delay of an inverter, denoted as p;,,. A typical value for p;,, is 0.6
delay units, which is used in the examples in this paper.

1.1 Deriving the delay model

The delay model in Equation 4 is derived from a simple RC model of a logic
gate, shown schematically in Figure 1. The delay d is proportional to the

Cout =

—
|

Figure 1: Equivalent circuit of a logic gate with scale s.

21, % 21
) b wi] b-
21
> 4/1
| <
1/1 2/1 —

AV

:L 111 11

Figure 2: Designs for an inverter, a NAND gate, and a NOR gate that have
approximately the same drive characteristics. Transistor size ratios, given
as W/ L, can be scaled uniformly to obtain larger or smaller gates.

RC delay of the pullup or pulldown resistance charging the load capacitance
Cout and stray capacitance Cp:

R
d x ;(st + Cout) (5)

Transistors in the circuit are assumed to have minimum length and a width
proportional to the overall scale, s, of the logic gate. Input and stray capac-
itances thus scale up with s, while resistances scale down. By normalizing
Equation 5 by R;,, and Cjy,, the parameters of a reference inverter, Equa-
tion 4 emerges:

RC Cout RCp _

1.2 Determining the logical effort of a logic gate

Equation 6 offers a definition of logical effort: The logical effort of an in-
put of a logic gate is the ratio of the gate’s input capacitance to that of an
inverter that delivers equal output current. To compute the logical effort

of an arbitrary logic gate, design a circuit that performs the intended logic
function with the same drive characteristics as an inverter. Then the logical
effort is the ratio of the input capacitance of one of the logic gate’s inputs
to the input capacitance of the inverter.

Figure 2 shows designs for an inverter, a NAND gate, and a NOR gate.
In order to achieve equal rising and falling delays in the cMOS process used
to fabricate these circuits, the effective width of pullup transistors is twice
that of pulldowns. Using the sum of transistor gate areas as a measure of
capacitance, we find that the input capacitance is 3 units for the inverter,
4 units for the NAND gate, and 5 units for the NOR gate. Thus the logical
effort of an input of the NAND gate is 4/3 and that of the NOR gate is
5/3; these are the numbers recorded in Table 1. In these circuits, it is the
series-connected transistors, which must be wider than those of an inverter
to achieve comparable drive, that increase the logical effort.

2 Multi-stage logic networks

The method of logical effort is applied in two ways to design fast multi-stage
logic networks. It reveals the best number of stages to use in the network
and it shows how to get least overall delay by equalizing the effort delay in
each stage of the path.

The notions of logical and electrical effort generalize easily to multi-stage
networks. The logical effort along a path compounds by multiplying the
logical efforts of all the logic gates along the path. We use the upper-case
symbol G to denote the path logical effort. The electrical effort along a path
through a network is simply the ratio of the capacitance that loads the last
logic gate in the path to the input capacitance of the first gate in the path.
We use an upper-case symbol, H, to indicate the path electrical effort.

We need to introduce a new kind of effort, named branching effort, to
account for fanout within a network. So far we have treated fanout as a
form of electrical effort: when a logic gate drives several loads, we sum their
capacitances to obtain an electrical effort. When fanout occurs within a logic
network, some of the available drive current is directed along the path we
are analyzing, and some is directed off the path. We define the branching
effort b at the output of a logic gate to be:

Con a Co a
Conpath

where Cypnpain is the load capacitance of the next logic gate along the path
we are analyzing and C,fspathn is the capacitance of fanout connections that
lead off the path. Note that if the fanout is one, the branching effort is one.
The branching effort along an entire path, B, is the product of the branching
effort at each of the stages along the path.

Armed with definitions of logical, electrical, and branching effort along a
path, we can define the path effort, I'. The equation that defines path effort

is reminiscent of Equation 2, which defines the effort for a single logic gate:
F=GBH (8)

Although it is not a direct measure of delay along the path, the path
effort holds the key to minimizing the delay. Observe that the path effort
depends only on the circuit topology and loading and not upon the sizes of
the transistors used in logic gates embedded within the network. Moreover,
the effort is unchanged if inverters are added to or removed from the path,
because the logical effort of an inverter is one.

The path delay, D, is the sum of the delays of each of the N stages of logic
in the path. As in the expression for delay in a single stage (Equation 4), we
shall distinguish the path effort delay, Dr, and the path parasitic delay, P:

D=)di=Dr+P (9)

where the subscripts index the logic stages along the path. The path effort
delay is simply Dr = Y g;h; and the path parasitic delay is P = 3 p;.

Optimizing the design of a logic network proceeds from a very simple
result: The path delay is minimized when each stage in the path bears the
same stage effort, f. This result is obtained by minimizing D in Equation 9
by varying the h; subject to the constraint that the path electrical effort, H,
is fixed. This minimum delay is achieved when the stage effort is

f = gihi = F*N (10)

A hat over a symbol indicates an expression that achieves minimum delay.
Combining these equations, we obtain the principal result of the method
of logical effort, which is an expression for the minimum delay achievable
along a path:
D=NFYN4P=NGBHN +P (11)

From a simple computation of logical, branching, and electrical efforts we
obtain an estimate of the minimum delay achievable for a logic network.

To equalize the effort borne by each stage on a path, and therefore achieve
the minimum delay along the path, we must choose appropriate transistor
sizes for each stage of logic along the path. Equations 10 and 2 combine to
require that each logic stage be designed so that

hi = F'IV [g; (12)

This relationship is used to compute transistor sizes, starting at the begin-
ning of the path and applying this equation at each logic gate along the
path.

Pinv | P Inp |d=p+pin
0 2.718 = ¢ | 1.000 | 2.718

0.2 | 2.91 1.069 | 3.11

0.4 |3.09 1.129 | 3.49

0.6 | 3.27 1.184 | 3.87

0.8 | 3.43 1.233 | 4.23

1.0 | 3.59 1.278 | 4.59

2.0 |4.32 1.463 | 6.32

3.0 | 4.97 1.604 | 7.97

4.0 | 5.57 1.718 | 9.57

Table 3: Optimum effort per stage, p, as a function of p;,,. The last col-
umn gives the stage delay obtained when the number of stages in a path is
optimum. Calculated from Equation 15.

3 Choosing the length of a path

Although equalizing the effort borne by each stage in a path minimizes delay
for a given path, the delay can sometimes be reduced further by adjusting
the number of stages in the path. This optimization is also a straightforward
result of our delay model.

Consider a path of logic gates containing n, stages, to which we append
n, additional inverters to obtain a path with a total of N = ny + n, stages.
We will assume that the original n; stages cannot be altered except by
scaling because they perform necessary logic functions, while the number of
inverters can be altered if necessary to reduce delay. Although preserving
the correct logic function requires that an even number of inverters be used,
we will assume that an odd number of inverters can be accommodated by
changing the logic function as necessary. We will assume that the path effort
F = GBH is known: the logical and branching efforts are properties of the
n1 logic stages that will not be altered by adding inverters, and the electrical
effort is determined by the input and load capacitances required.

The minimum delay of the N stages is the sum of the delay in the logic
stages and in the inverter stages:

ni
D= NFI/N + (sz) + (N - nl)pinv (13)

i=1

The first term is the delay obtained by distributing effort equally among
all N stages, as shown in the preceding section. The second term is the
parasitic delay of the logic stages, and the third term is the parasitic delay
of the inverters. Differentiating this expression with respect to N and setting
the result equal to zero, we obtain:

ab _Fl/N—l
oy =~z T EN AP =0 (14)

Now define the solution to this equation to be N, the number of stages to use
to obtain least delay. If we define p = F 1/N 16 be the effort borne by each
stage when the number of stages is chosen to minimize delay, the solution of
the equation can be expressed as:

Pinu+P(1_lnP):0 (15)

In other words, the fastest design is one in which each stage along a path
bears an effort equal to p, where p is a solution of Equation 15. Thus we
call p the optimum stage effort.

It is important to understand the relationship between p and f , both of
which appear to specify the stage effort required to achieve least delay. The
expressions for f , such as Equation 10, determine the best stage effort when
the number of stages, N, is known. By contrast, the value p, which is a
constant independent of the properties of a path, represents an ideal stage
delay, which may not be achievable in an actual path.

Equation 15 shows that the optimum effort, p, is a function of the para-
sitic delay of an inverter. This result has an intuitive explanation. The stray
capacitance of the logic gates in the network is fixed—you can’t do much
about it, and it simply adds a fixed delay to the path. Adjusting the sizes
of the logic gates will change their effort delay, but not the delay contribu-
tion due to their parasitic delay. But when you add an inverter as a “gain”
element in the hope of speeding up the circuit, you need to compare the
improvement offered by its gain to the delay added by its parasitic capaci-
tance. As pin, grows, it becomes less advantageous to add inverters because
the stray load is excessive, and the optimum number of stages diminishes.

It is not hard to solve Equation 15 for values of p given values of p;n,.
Table 3 shows the solution for several values of the inverter’s parasitic delay.
Note that if we assume that the parasitic delay of an inverter is zero, then
p = e = 2.718; this is the familiar result when parasitic delay is ignored [5].
In our examples, we shall assume that p;,, = 0.6 and thus that p = 3.27.
The quantity p is sometimes called the optimum step-up ratio, because it is
the ratio of the sizes of successive inverters in a string of inverters designed
to drive a large capacitive load.

Actual designs will require us to choose a step-up ratio that differs some-
what from p because the design must use an integral number of stages. Given
the path effort F, we must find the number of stages N that gives the least
delay; this result will have a stage effort delay close to p. Table 4 shows
how to select N, given the effort F' and the value of the parasitic delay of an
inverter. Values in the table are calculated by finding those values of F for
which N(FYN 4 piny) = (N + 1)(FYWV+) 4 p.). These are the values of
path effort for which the best N-stage design provides just as much delay as
the best (N + 1)-stage design. As F gets large, N =~ In F/In p, so the stage
delay approaches p + p.

It is interesting to ask how much the delay for a properly optimized
circuit is changed by using the wrong number of stages. The answer, as

—

N | pino = 0.0 | Piny = 0.6 | Piny = 0.8 | piny = 1.0
) 0 0 0 0
0 4.0 5.13 5.48 5.83
3 11.4 17.7 20.0 22.3
" 31.6 59.4 70.4 82.2
s 86.7 196 245 300
6 237 647 848 1090
; 648 2130 2930 3920
8 1770 6980 10100 14200
0 4820 22900 34700 51000

10 13100 74900 120000 184000

" 35700 245000 411000 661000

1o 97300 802000 | 1410000 | 2380000

13 265000 | 2620000 | 4860000 | 8560000

" 720000 | 8580000 | 16700000 | 30800000

15 | 1960000 | 28000000 | 57400000 | 111000000

5330000 | 91700000 | 197600000 | 398000000

Table 4: Table of ranges of path effort, F, and the optimum number of
stages, N. For example, when p;,, = 0.6 and F = 205, N = 5 because 205
lies between 196 and 647.

N/N [D/D N/N | D/D
0.25 | 7.42 14 | 1.06
0.5 | 1.46 2.0 | 1.24
0.7 | 1.09 3.0 | 1.62
1.0 | 1.00 40 | 2.01

Table 5: The relative delay of a network, D / D, as a function of the relative
error in the number of stages used, N/N. Assumes p;n, = 0.6.

g=10/3 g=1 g=2 g=5/3 g=4/3 g=5/3 g=4/3 g=1
(a) (b) (©)

Figure 3: Three circuits that compute the AND function of eight inputs.

shown in Table 5, is that delay is quite insensitive to the number of stages,
provided the deviation from optimum is not too large. As the table shows,
doubling the number of stages from optimum increases the delay only 24%.
Using half as many stages as the optimum increases the delay 46%. Thus one
need not slavishly stick to exactly the correct number of stages. It is slightly
better to err in the direction of using too many stages than too few. A stage
or two more or less in a design with many stages will make little difference,
provided proper transistor sizes are used. Only when very few stages are
required does a change of one or two stages make a large difference.

4 Examples

4.1 An 8-input AND network

When a large number of inputs must be combined, there are several op-
tions for the structure of the circuit. Figure 3 shows three possibilities for
computing the AND function of eight inputs. Which one is best?

Recalling that the path logical effort, G, is the product of the logical
efforts of the logic gates along the path, we find that G = 10/3 x 1 = 3.33
for case a, 6/3 x 5/3 = 3.33 for case b, and 4/3 X 5/3 x 4/3 x 1 = 2.96
for case c¢. These figures can be used in the delay equation, Equation 11,
to find the minimum delay that can be obtained from each circuit. These
equations also include an estimate of parasitic delays, obtained by summing
the parasitic delays of each of the logic gates along the path:

Case a D= 2(3.33H)/% 454 (16)
Case b D= 2(3.33H)/% 436 (17)
Case c D= 4(2.96H)* 442 (18)

It is clear from these equations that case b will always be better than a.

address from CPU | Jaddress tag from cache memory
16\ R 16
p data from cache memory
DD T >
j C§4 C=2
. *
J
D- .
data output bus to CPU

Figure 4: Block diagram of a cache comparator.

Choosing between cases b and ¢ depends on the electrical effort, H, that
must be borne by the network. When H = 1, case b will be best, but for
H = 12, case c will be best. The equations show that for high electrical
effort, case ¢ yields least delay because the H'/4 factor dominates.

To illustrate the computation of transistor sizes to achieve least delay,
consider a case where C;, = 4 units and C,,; = 48. The preceding equations
show that case ¢ should be selected, and Equation 10 gives the stage effort
f=FYN = (2.96 x (48/4))1/4 = 2.44. Let us work forward along the path,
starting with the 2-input NAND gate at the left. We know that C;, = 4,
f= goho = 2.44, and that the logical effort of the NAND is go = 4/3. We
solve for hy = 1.83 and then because h = C,yu:/Cin, we solve to obtain
Cout = 7.33. This, then, is the input capacitance of the NOR gate in the
second stage. Proceeding analogously for the other stages, we find that the
input capacitance of the third stage is 10.73 and of the fourth stage is 19.66.

4.2 A cache comparator

As a second example let us consider the key circuit of a cache memory
controller, namely its address comparator. This circuit compares two 16 bit
addresses, and if they match delivers 32 bits of data to an output bus. Such
a circuit is difficult to design because it presents not only the large logical
efforts of the bit-by-bit XOR function and the 16-input AND that together
detect the match, but also the large electrical effort imposed by the control
lines for the 32 bus switches.

An outline of the circuit is shown in Figure 4. This figure is somewhat
schematic; it shows only a few of the 16 XNOR gates that do the bit-by-bit
comparison; it uses a single 16 input AND gate symbol to represent what will
ultimately be a tree of simpler NAND and NOR gates; and it uses inverting
and non-inverting amplifier symbols as drivers for the 32 bus selection gates
at the output. The star notation in the amplifier symbols indicates that
they may contain more than one inverter stage; of course the non-inverting

amplifier will contain an even number of stages and the inverting amplifier
an odd number. We call such a structure of inverting and non-inverting
amplifiers a fork.

The main task in designing this circuit is to choose a topology for the
AND gate. Each candidate topology has an easily calculated logical effort.
For example if we use a tree of two-input NAND and NOR gates four stages
deep to implement the 16 input AND, its logical effort will be 4/3 x 5/3 X
4/3 x 5/3 = 4.94; note that this is lower than g = 6 for a single 16-input
NAND gate. The logical effort of an XNOR gate implemented by three NAND
gates (a ® b = nand(nand(a,b),nand(g,b))) is 4/3 x 4/3 = 16/9. Thus the
path logical effort of the entire comparator is 16/9 x 4.94 = 8.78. If we
assume that the true and complement inputs to the XNOR gates may be
loaded with 8 units of capacitance, and the total output load as shown in
the figure is 2 X 32 + 4 x 32 = 192 units, then H = 24. Thus the path effort
is F = GBH = 210.7. Table 4 shows that for p;,, = 0.6, we should use a
five-stage design. Unfortunately, the design we have chosen uses a minimum
of six stages on one leg of the fork and seven on the other. A bushier and less
deep tree will be better, e.g., a two-level tree with a 4-input NAND followed
by a 4-input NOR. Because the AND gate is followed by a fork, the tree may
implement either an AND or NAND function with possible interchange of the
fork outputs. Because both branches of the fork have logical effort of one,
such an interchange has no effect on the path logical effort.

Because both true and complement outputs are required to control the
bus switches, there must somewhere be a branch point in the path between
the circuit inputs and the outputs. The method of logical effort shows that
this branch point may be placed anywhere without hurting circuit perfor-
mance. If we put the branch point near the input, we will make two dupli-
cate AND trees, one to drive the true signal and one to drive its complement.
These two trees will each, of course, use smaller transistors than the single
tree illustrated in the figure, since each drives a lesser load. Together they
will impose as much load on the inputs as the single tree. If we choose to
use a single tree, it is because we believe that it will reduce the circuit area,
not because it is faster.

4.3 An array multiplier

A full adder has three inputs of equal arithmetic value and two outputs
called sum and carry. One way to implement such a circuit uses a three-
input parity gate to generate the sum and a three-input majority gate to
generate the carry. Such a circuit is suggested in Figure 5.

One implementation of such an adder circuit uses single-stage parity and
majority circuits, each consisting of transistors in series-parallel connections.
The single-stage implementations of these circuits require both true and
complement inputs. Because the logical effort of the fork of amplifiers that
will precede the parity or majority gates is one, we can consider the true

n-types 2/1

majority

Figure 5: Parity and majority circuits for building an array multiplier.

and complement inputs as a bundle and assign a logical effort to the entire
bundle. The logical effort of parity and majority circuits is not the same on
each input bundle. Some inputs are easier to drive than others because they
are connected to fewer transistors. The logical efforts of the inputs of the
majority gate are 2, 4, and 4, and the logical efforts of the bundled inputs
of the parity gate are 6, 12, and 6.

A group of such full adders can be combined into an array multiplier.
One input of each adder comes from an AND gate that combines multiplier
and multiplicand bits. The other two inputs of each adder come from the
sum and carry outputs of two previous adders. The design of such an array
adder poses two topological questions: First, how should the three inputs of
the two gates be connected? Should the easiest-to-drive input of the majority
gate (g = 2) be connected to one of the easy-to-drive inputs of the parity
gate (g = 6), producing inputs with relative drive requirements of (8, 10, 16),
or should the easiest-to-drive input of the majority gate be connected to the
hard-to-drive input of the parity gate, producing inputs with relative drive
requirements of (10, 10, 14)? Second, which of the resulting three inputs
should be driven by a sum output, which by a carry output, and which by
the AND gate that combines multiplier and multiplicand bits?

There are six possible topologies. The best one makes one of the inputs
as easy to drive as possible; it is the 8, 10, 16 connection. The sum output
of a previous stage should drive this easy-to-drive input. The carry output
of a previous stage should drive the intermediate input, and the AND gate
combining multiplier and multiplicand values should drive the hardest-to-
drive input. The sum should be assigned the easiest drive task because the
logic gate that produces the sum has the highest logical effort.

Within the optimum topology the best design balances the relative sizes

of the transistors in the parity and the majority gates. The delay in the
two gates should match, because if either output is produced prematurely
because its gate has transistors that are too big, it will take more current
from its inputs than necessary. Balancing the speed of the two gates produces
the least delay in the slowest of them. The method of logical effort reduces
this design problem to a few expressions that can be minimized by taking
partial derivatives.

5 Refinements

The method of logical effort leads to a number of related results that are
covered in a more complete treatment [9], including:

Aggregating logical effort into bundles provides an easy way to reason
about complex circuits with wide or double-rail datapaths.

Logical effort shows that forks always have designs in which the two
paths differ in length by one inverter. Moreover, the number of invert-
ers to use in a fork can be obtained from a table similar to Table 4.

Logic gates can be deliberately designed to reduce the logical effort of
certain inputs at the expense of others, e.g., to favor a carry path in
a sum circuit. Any attempt to favor an input results in raising the
combined logical effort of all inputs, however.

The method of logical effort can also be used to determine path length
and transistor sizes that minimize area subject to a delay constraint.

Test chips can be designed to measure directly values for 7 and the
logical effort and parasitic delay of different logic gates. Alternatively,
a circuit simulator can be used to find these values.

While the logical effort of an n-way multiplexer is independent of n
(see Table 1), it is not wise to make multiplexers arbitrarily big. The
parasitic delay of common designs turns out to predict that 4-way
multiplexers are the best size to use. This result applies to buses as
well.

Although the examples in this paper show gates designed to produce
roughly the same delays on rising and falling transitions, the method
of logical effort can be applied when these delays differ.

The method of logical effort works for logic families other than fully
static gates as in Figure 2, including precharged and domino logic.

Although the method of logical effort does not handle pass gates di-
rectly, pass gates can often be melded with a surrounding logic gate
for analysis.

6 Related work and challenges

The method of logical effort arises not from a new delay model, but rather
from factoring and normalizing a simple model that is used frequently [2].
Our model is less accurate than those that include terms to account for
differences in rise times of input signals [1]. This omission is perhaps not
serious in applications of logical effort, however, because equalizing effort
delay usually results in roughly equalizing rise times.

Nemes modeled a stray capacitance that scales with the size of a logic
gate and showed the implications for optimum step-up ratio [6).

Many works treat transistor sizing as a numerical optimization prob-
lem [3, 4, 7], but these techniques are hard to apply by hand. Also, most
fail to determine whether the right number of stages is used in a network.
The method of logical effort can be used to obtain good starting designs for
these optimization programs.

Logical effort holds promise as a measure of computational complexity
that accounts for the switching required to implement a required logic func-
tion. Can we find bounds on the logical effort of certain logic functions or
subsystems such as adders and multipliers? Can we use logical effort to
evaluate different design features such as asynchronous handshakes or testa-
bility? Logical effort may be able to express the “cost” of testability or of
adding a new instruction to a decoder in a RISC machine.

7 Conclusions

The method of logical effort developed as we attempted to design asyn-
chronous circuits for maximum speed. The circuits were sufficiently large
and complex that the conventional RC' model and our intuition did not lead
to the best designs. However, the symmetry of CMOS circuits, and especially
the forms that occur in asynchronous designs, led us to compare them to
simple inverters, which are also symmetric: the equations of logical effort
followed naturally.

The method of logical effort finds the circuit with the least delay, without
regard to area, power, or other limitations that may be as important as delay.
In some cases, compromises will be necessary to obtain practical designs. For
example, if this procedure is used to design drivers for a high-capacitance
bus, the drivers may be too big to be practical. You may compromise by
using a larger stage delay than the design procedure calls for, or even by
making the delay in the last stage much greater than in the other stages;
both of these approaches reduce the size of the final driver and increase delay.

The method of logical effort achieves an approzimate optimum. Because
it ignores a number of second-order effects, such as stray capacitances be-
tween series transistors within logic gates, a circuit designed with the method
can sometimes be improved by careful simulation with a circuit simulator
and subsequent adjustment of transistor sizes. However, we have evidence

that the method of logical effort alone obtains designs that are within 10%
of the optimum.

One of the strengths of the method of logical effort is that it combines
into one framework the effects on performance of capacitive load, of the
complexity of the logic function being computed, and of the number of stages
in the network. For example, if you redesign a logic network to use high fanin
logic gates in order to reduce the number of stages, the logical effort increases,
thus blunting the improvement. Although many designers recognize that
large capacitive loads must be driven with strings of drivers that increase in
size geometrically, they are not sure what happens when logic is mixed in,
as occurs often in tri-state drivers. Logical effort unifies all of these design
problems.

8 Acknowledgements

We wish to thank six companies that sponsored the Asynchronous Systems
project at Sutherland, Sproull, and Associates, which led to the method of
logical effort: Apple Computer, Austek Microsystems, Digital Equipment
Corporation, Evans and Sutherland Computer Corporation, Floating Point
Systems, and Schlumberger. Our colleagues Charles E. Molnar, Jan W.
Jones, Erik L. Brunvand, and Peter Single [8] contributed in several ways to
the work.

References

[1] M. Horowitz. Timing Models for Mmos Circuits. PhD thesis, Stanford
University, December 1983. TR SEL83-003.

[2] A. Kanuma. cMos Circuit Optimization. Solid-State Electronics,
26(1):47-58, 1983.

[3] C. M. Lee and H. Soukup. An algorithm for cMOs timing and area
optimization. IEEFE J. Solid-State Circuits, 19(5):781-787, 1984.

[4] D. P. Marple and A. El Gamal. Optimal Selection of Transistor Sizes
in Digital VLSI Circuits. Proc. Stanford Conf. on Advanced Research
in VLSI, March 1987.

[5] C. A. Mead and L. Conway. Introduction to VLSI Systems. Addison-
Wesley, 1980, p. 12.

[6] M. Nemes. Driving Large Capacitances in MOs LsI Systems. IEEFE J.
Solid-State Circuits, SC-19:159-161, 1984.

[7] J. Shyu, J. P. Fishburn, A. E. Dunlop, and A. L. Sangiovanni-
Vincentelli. Optimization-Based Transistor Sizing. IEEFE 1987 Custom
Integrated Circuits Conf., 417-420, 1987.

[8] P. Single. The Theory of Logical Effort and Overhead. Proc. 7th Aus-
tralian Microelectronics Conf., May 1988.

[9] I. E. Sutherland and R. F. Sproull. Logical Effort: Designing Fast MOs
Circuits. Monograph in preparation.

