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Abstract

Binary carry-propagating addition can be efficiently
expressed as a prefix computation. Several examples of
adders based on such a formulation have been published,
and efficient implementations are numerous.  Chief
among the known constructions are those of Kogge &
Stone and Ladner & Fischer. In this work we show that
these are end cases of a large family of addition
structures, all of which share the attractive property of
minimum logical depth. The intermediate structures
allow trade-offs between the amount of internal wiring
and the fanout of intermediate nodes, and can thus
usually achieve a more attractive combination of speed
and area/power cost than either of the known end-cases.
Rules for the construction of such adders are given, as
are examples of realistic 32b designs implemented in an
industrial Ou25 CMOS process.

1. Introduction

There are many ways of formulating the process of
binary addition. Each different way provides different
insight and thus suggests different implementations.
Examples are Weinberger & Smith’s carry-lookahead
adder [Wein58], Nadler’s pyramid adder [Nadl56],
Sklansky’s conditional sum adder [Skla60], Bedrij’s
carry-select adder [Bedr62], and Ladner & Fischer’s
prefix adder [Ladn80]. For a general introduction see
[Omon94]. The prefix formulation is particularly
attractive because it is easily expressed and suggests very
efficient implementations, ie. adders based on this
formulation can be attractively fast and compact when
implemented in VLSI.

This paper is organised as follows. The next section
reprises the prefix formulation of addition, and introduces
the key properties of associativity and idempotency which
make this formulation so flexible. Section 3 covers
existing variants of the prefix addition algorithm and their
corresponding implementations. Then in Section 4 we
introduce a new family of addition structures, all of which
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have minimum logical depth like Ladner & Fischer’s
adder, but which express different trade-offs between area
and speed. The Kogge-Stone [Kogg73] and Ladner-
Fischer [Ladn80] adders are the end-cases of this family.
Section 5 tabulates experimental data showing the range
of performances available from the new family of adders
when implemented in a modern CMOS technology.
Finally Section 6 introduces some less-regular structures
which might be advantageous in specific circumstances.

2. Addition as a Prefix Problem

We wish to compute a sum S=A+B. We will use
capital letters to represent binary words, small letters to
represent bits, and subscripts to indicate - arithmetic
weight, increasing from O at the Isb. Thus ¢; signifies a
carry into bit i, and a, o signifies the 5 Isb’s of A.
Operands A and B have n bits, so sum S has n+1 bits. For
simplicity we assume there is no input carry co; this can
be easily accommodated and does not affect the thesis of
the paper.

For n-bit addition, n a power of 2, a minimum-depth
prefix adder comprises 1+log,n unate logical stages, plus
1 non-unate logical stage. In CMOS technology this
maps to 3+log,n inverting gate stages, plus whatever
buffering stages are warranted by the design criteria. The
first and last logical stages are basically the same for all
types; prefix adders are distinguished by the structure of
their intermediate stages. We will describe the Ladner-
Fischer structure initially, which is in some sense a basis
for the others.

The first stage of the adder computes carry generate
(g), propagate (p), and kill (k) terms for each bit
according to the relations:

8i=a;-b
ki=a;+b
pi=0a;®b;



The g and k terms are then combined in logn logical
stages (to be described shortly) to produce carries (c;) into
each bit position using the iterative relation:

Cip1 = 8i Tkic;
The final stage computes sum bits (s;) as:
5i=pi @

The first and last stages are intrinsically fast because
they involve only simple operations on signals local to
each bit position. The intermediate stages embody the
long-distance propagation of carries, so the performance
of the adder hinges on this part. In a prefix adder this part
is constructed of nodes which perform the prefix

operation ‘e’:

efe)

In logical terms, the prefix operator consists of an
AND gate and an AND-OR gate.

The carry into any bit position can be computed as a

Chain Of preﬁx OpcrationS:
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Naively this can be implemented as a ripple-carry
process, but the prefix operator ‘®’ has two essential
properties which allow greater parallelism, and hence
faster circuits. Firstly it is associative:

fL GGG

where h>i2j>k. Secondly it is idempotent, so:

LG L

Associativity allows the precomputation of sub-terms
of the prefix equations, which means the serial iteration
implied by the prefix equation above can be parallelized.
Idempotency allows these sub-terms to overlap, which
provides some useful flexibility in the parallelization.

- The Ladner-Fischer scheme exploits the associativity
property (but not the idempotency property) by
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constructing a binary tree of prefix operators. The
structure is succinctly represented by the prefix graph of
Figure 1, which shows the lateral connectivity required
between nodes at each stage of a 32b adder. The inputs
are at the top, outputs at the bottom, Isb at the right hand
side. The graph only shows the lateral connections; there
are also implicit vertical connections between nodes in the
same column, The first row of nodes computes the g, p, k
terms. In subsequent rows, the nodes having lateral
connections implement the prefix operator, while those
with no lateral connections are just place-holders. The
final row of nodes also computes the sum bits. The final
carry-out (the msb of the sum) emerges from the most
significant node at the last level but is not represented
explicitly in the graph. This is clearer in Figure 2, which
shows a detailed gate circuit for a 32b adder
corresponding to the graph of Figure 1. Note that each
lateral connection in the graph corresponds to 2 wires (g,
k) in the circuit, except at the last level where the final k
term is not required.

Adders in which the computation of carries is based on
the prefix equations above are naturally called ‘prefix
adders’. Those which compute multiple sub-terms in
parallel by exploiting the associativity property are called
‘parallel prefix adders’. Many of these also exploit the
idempotency property, the most obvious example being
the Kogge-Stone adder introduced in the next Section.

3. The Evolution of Parallel Prefix Adders

Ladner and Fischer [Ladn80] introduced the minimum-
depth prefix graph described in the previous Section,
based on earlier theoretical work by Ofman [Ofma63].
The longest lateral fanning wires go from a node to n/2
other nodes. Capacitive fanout loads become particularly
large for later levels in the graph as increasing logical
fanout combines with increasing span of the wires. In
CMOS implementations such as Figure 2 buffering
inverters are added appropriately to support these large
loads. There is a corresponding cost in delay.

Kogge and Stone [Kogg73] addressed this fanout issue
by introducing the ‘recursive doubling’ algorithm, which
leads, for example, to the 32b prefix graph of figure 3.
The Kogge-Stone scheme uses the idempotency property
to limit the lateral logical fanout at each node to unity, but
at the cost of a dramatic increase in the number of lateral
wires at each level. This is because there is massive
overlap between the prefix sub-terms being pre-
computed. The span of the lateral wires remains the same
as for the Ladner-Fischer structure, so some buffering is
still usually required to accommodate the wiring
capacitance, even though the logical fanout has been
minimized.



Other researchers have sought to address the problem
of high fanout nodes in the Ladner-Fischer structure by
allowing the logical depth of the structure to increase.
Brent & Kung [Bren82] proposed the explicit provision of
a set of binary fanout trees such that the lateral fanout of
each node is restricted to unity, as for the Kogge-Stone
graph, but without the explosion of wires. Although
attractive at an abstract level this approach makes little
sense in a practical CMOS context. Firstly the unit
logical fanout limitation is arbitrary and somewhat
extreme. Secondly, and of course inseparably, the
construction makes no allowance for the fact that much of
the capacitive load is due to the span of the wires rather
than the number of driven nodes. Practically, it is more
efficient to insert buffers as required into the Ladner-
Fischer adder, in the manner of Figure 2, than to usc the
Brent-Kung scheme.

Han and Carlson [Han87] give a good overview of
prefix addition formulations, and present their own hybrid
synthesis of the Ladner-Fischer and Kogge-Stone graphs.
Again this trades an increase in logical depth for a
reduction in fanout. It is effectively a higher-radix variant
of the Kogge-Stone scheme. Kowalczuk, Tudor &
Mlynek [Kowa91] achieve a similar compromise by
serializing the prefix computation occurring at the higher
fanout nodes, and Beaumont-Smith & Burgess [Beau97]
combine this idea with the Han-Carlson scheme.

All these latter papers allow the logical depth, and
hence the delay, of the adder to increase in exchange for
reductions in fanout or wire flux. This paper illustrates
that these gains are available without increasing logical
depth from the minimum used in the Ladner-Fischer and
Kogge-Stone structures. Lynch and Swartzlander
[Lync91] present a minimum-depth prefix addition
algorithm which exploits the idempotency of the prefix
operation to achieve efficient variants of the Ladner-
Fisher formulation for non-power-of-2 operand width.
The adders presented in this paper all have power-of-2
operand width, and could likewise be extended to non-
power-of-2 widths by the Lynch-Swartzlander scheme.

4, A New Family of Adders

The main purpose of this paper is to introduce Figure
4, which shows a number of new minimum-depth prefix
graphs for addition. Graphs are shown for 4b, 8b, and
16b adders. The sets are bounded at either end by the
Ladner-Fischer and Kogge-Stone graphs. The graphs are
uniquely labelled by listing the lateral fanouts at each
level, from the stage nearest the output, back towards the
input. Thus the Ladner-Fischer graphs are labelled [2,1],
[4,2,1], and [8,4,2,1] for 4b, 8b, and 16b adders
respectively, and the corresponding Kogge-Stone graphs
are labelled [1,1], [1,1,1], and [1,1,1,1}.
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The construction of other members of the family is
fairly intuitive, with smaller graphs being combined to
form progressively larger ones, and the idempotency
property being used to fill any gaps in the prefix
computation. The following rules govern the construction
of these graphs: let the wiring levels between rows of
graph nodes be numbered from j=0 at input to j=log,(n)-1
at output, then:

e Lateral wires at the j" level span 2 bits.

The lateral fanout at the j* level is a power of 2
between 1 and 2’ inclusive.

The lateral fanout at the j" level cannot exceed that at
the (j+1)™ level.

These rules are sufficient to determine the number of
possible minimum-depth graphs of this type (see the next
section for further possibilities which are not strictly ‘of

this type’). For power-of-2 operand widths the number
of graphs is as follows:
operand width number of basic
(bits) minimum-depth graphs
4 2
8 5
16 14
32 42
64 132
128 429
256 1430

At 4b width, the Ladner-Fischer and Kogge-Stone
graphs are the only ones having minimum depth. Beyond
4b several new possibilities emerge which offer trade-offs
between fanout and number of wires at each level. Figure
4 shows all such graphs for 4, 8, and 16 bit operands.
Figure 5 shows an example graph for a new 32b adder
having structure [4,4,2,2,1], and Figure 6 shows a gate
circuit implementing such an adder.

5. Practical Results

Several of these 32b adder designs have been taken
through an industrial structured-custom design flow to
layout in a Ou25 6-metal CMOS process with 1pm
contacted wire pitch. The selection includes the Ladner-
Fischer [16,8,4,2,1] and Kogge-Stone [1,1,1,1,1] extrema,
and four intermediate forms. Speed and area results are
tabulated below.

The number of buffering inverters added at each level
to optimize speed is given in a way which corresponds to
the labelling of the graphs. These inverters can be seen
clearly in Figures 2 and 6. For the Kogge-Stone
[1,1,1,1,1] and Figure 6 [4,4,2,2,1] examples, two
different buffering schemes are examined.



Structure Buffering Delay Length Transverse wire flux

(ref invs) (um) By level Total
Ladner-Fischer (fig 2) [16,8,4,2,1] [2,1,1,0,0] 13.7 38 [1,2,2,2,2] 9
- [16,4,2,2,1] [2,1,1,0,0] 13.2 38 [1,4,4,2,2] 13
- [16,2,2,2,1] [2,1,1,0,0] 13.0 41 [1,8,4,2,2] 17
{fig 6) [4,4,2,2,1] [1,1,0,0,0] 13.2 35 [4,4,4,2,2] 16
- [4,4,2,2,1] (1,1,1,0,0] 12.7 39 (4,4,4,2,2] 16
- [2,2,2,1,1] [1,1,1,0,0] 12.1 46 [8,8,4,4,2] 26
Kogge-Stone [1,1,1,1,1] [1,1,0,0,0] 12.1 63 [16,16,8,4,2] 42
f1,1,1,111 | [1,1,1,0,0] 11.8 63 [16,16,8,4,2] 42

To remove process and environmental dependencies,
critical path delays are normalized to the average of the
rise and fall delays of a reference inverter under the same
conditions. The reference inverter delay is measured in a
tree of identical inverters such that each inverter drives 4
others with zero wiring load. For a contemporary 0u25
CMOS process at worst-case design conditions (worst-
case process params, 125C, 2V0) this reference inverter
delay will typically be in the range 120-150ps; in
favourable conditions (typical process params, 25C, 2V5)
it will be 40-50% lower. As expected, the Kogge-Stone
adder is the fastest and the Ladner-Fischer the slowest,
although the difference between them is less than 15%.

The adders are laid out as datapath slices using 10um
high cells at 2 cell rows per bit. All examples are
therefore 640um high. Those nearer the Kogge-Stone
extreme are wire-limited, with both Kogge-Stone
examples requiring 80% more area than the smallest here
([4,4,2,2,1] buffered [1,1,0,0,0D. Because of the
differences in buffering requirements, the Ladner-Fischer
adder turns out not to be the smallest, by a small margin.

6. Hybrid Schemes

The adders shown in Figure 4 are somewhat
homogeneous in construction, in that the fanout is the
same for all fanning nodes within a particular level. This
is not absolutely necessary, provided the construction
rules set out in the Section 4 are respected. Other, less
regular, structures exist - for example the 16b graph of
Figure 7. Here the critical path of an adder close to the
Kogge-Stone extreme (in fact [2,1,1,1]) has been
preserved, while paths which are intrinsically shorter and
therefore less critical have been pared back towards the
Ladner-Fischer extreme.

In a structured layout environment the maximum
(rather than average) wiring flux at each level will tend to
determine the layout density. Therefore it is unlikely that
irregular hybrids such as Figure 7 would offer an area
advantage in comparison to the regular version having the
same structure on its critical path (in this case structure
[2,1,1,1] from Figure 4). The total amount of wiring has
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nevertheless been reduced so a power advantage might
accrue. In the random placement and routing
environment typical of contemporary ASIC design flows
there might be some arca advantage, but in that context
the robustness of the other comparisons made in this
paper is reduced.

7. Conclusions

The trade-off between circuit speed and area in CMOS
is frequently somewhat sharp, and designers of high
performance chips often pay a high price in area to close
the last few percent on their speed targets. Given an
efficient baseline implementation of any logic circuit, this
final speed-up is usually achieved by the pervasive
introduction of parallel, logically-redundant paths. This is
what we are doing in moving from a Ladner-Fischer to a
Kogge-Stone formulation for prefix addition; the .
introduction of redundancy is reflected in the reliance on
the idempotency of the prefix operation. The results
presented here indicate that prefix adders implemented in
contemporary CMOS processes from static gates can
achieve a real speed-up of about 15% by this means, from
the Ladner-Fischer baseline. But the cost of achieving
this full potential by adopting the Kogge-Stone structure
is quite large in terms of wiring, and hence area and
power. This paper has introduced a family of adders
which span a range of speed vs area/power trade-offs
between these two extremes. All these adders have
minimum logical depth. Circuits quite close in speed to
the Kogge-Stone adder are available at significantly lower
wiring cost.
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Figure 6:
Adder [ 44,2211



