Optimization and Speed Improvement Analysis of
Carry-Lookahead Adder Structure

Brian D. Lee

Vojin G. Oklobdzija*

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Abstract

The delay characteristics of carry-lookahead (CLA) adders are exam-
ined with respect to a delay model that accounts for fan-in and fan-
out dependencies. Though CLA structures are considered among the
fastest topologies for performing addition, they have also been char-
acterized as providing marginal speed improvement for the amount of
hardware invested. This analysis shows that this inefficiency can be
explained by the suboptimal nature of common CLA implementations.
Simulation results show that the CLA structures in wide use can be im-
proved by varying the block sizes and the number of levels within each
adder, Examples of optimal CLA structures are given and heuristic
methods for finding these structures are presented.

Introduction

Analysis of carry-lookahead adders is important in the design of high
performance machines. In these designs, processor speed is a pri-
mary concern and carry-lookahead structures are often used because
their delay times exhibit log dependence on the size of the adder and
they are considered among the fastest circuit topologies for perform-
ing addition. However, adder comparisons {5, 4] have ranked CLA
structures low on effective hardware utilization and this apparent inef-
ficiency raises concerns over the optimality of current CLA implemen-
tations. Simulation results from this research show that the commonly
used CLA structures can be improved by varying block sizes and levels
within the adder.

Typical CLA implementations are made of lookahead units of rela-
tively fixed sizes. This artificial constraint produces slack in the circuit
and results in poor hardware utilization. The strategy of varying group
sizes to reduce slack and improve performance is a promising idea and
has been used successfully on carry-skip adders {3, 6]. A natural ex-
tension of this strategy is to also vary the number of lookahead levels.
Since an accurate measure of the available slack is required to effec-
tively implement these methods, this work uses a delay model that ac-
counts for fan-in and fan-out dependencies. The parameter values used
in the model are based on industrial data.

A simulation program has been written to compare different CLA
structures. Preliminary data on varying block sizes was obtained
through exhaustive search. Based on this data and an analysis of delay
and slack in the CLA scheme, heuristics were chosen to find structures
with completely variable block sizes and levels. The structures found
by these heuristics are faster than more constrained topologies.

*Currently with IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598

24ACSSC-12/90/0918 $1.00 © 1990 MAPLE PRESS

o

& % o %

Figure 1: A 4-bit carry-lookahead unit with 2-level C; logic

Carry Lookahead Structure

The simulation results in this paper are based on carry-lookahead
adders that implement full lookahead. A description of the basic or-
ganization of carry-lookahead adders can be found in references such
as [1]. Each adder consists of three main components — the propagate
and generate generation circuitry, the carry-lookahead network, and the
sum generation circuitry. This work concerns varying the sizes of cir-
cuit blocks and the number of levels in the carry-lookahead network to
optimize adder delay.

Given a n-bit adder with inputs, A and B, the logic equations for
producing the initial propagate and generate signals and the final sum
signals are

P = A®B

G, = AB;
and

Si=F 60

for 0 < 2 < n— 1. The simulations assume that F; and S; are produced
by monolithic XOR gates instead of two levels of NAND gates and the
sum XOR gate is assumed to have a fan-out of one.

The carry-lookahead network in a full carry-lookahead adder con-
sists of a tree of block carry-lookahead (BCLA) units rooted at a sin-
gle carry-lookahead (CLA) unit. Two different implementations of
BCLA/CLA units are analyzed. Their performance differences are dis-
cussed later.

The first implementation generates carry signals in two levels of
logic. Four-bit versions of these circuits are shown in Figures 1 and 2.

A k-bit carry-lookahead unit of this type generates

Cj = G]‘ +G];|P]' +Gj‘2Pj71Pj
+<~-+G()Pl---Pj-!-C_lPo-upj

—arg)

G < %
Figure 2: A 4-bit block carry-lookahead with 2-level C; logic

LR P2 G Py G Fo G

G % €

Figure 3: A 4-bit carry-lookahead unit with 3-level C; logic

where 0 < 7 < k — 1 and a k-bit block carry-lookahead unit of this
type generates

P* = PP Py
G = Gro1+Gr2Peo1+ -+ GoPr-- Py
C]' = Gj + G]'_]P]' + Gj,,sz,]Pj

+- -+ GoPy P+ C_ Py P

where 0 < 57 < k— 2.

The second implementation generates carry signals in three levels of
logic. Four-bit versions of these circuits are shown in Figures 3 and 4.
A k-bit carry-lookahead unit of this type generates

C; = GitC.P;

_,__~
o

% ©

Figure 4: A 4-bit block carry-lookahead unit with 3-level C; logic

where 0 < 7 < k& — 1 and a k-bit block carry-lookahead unit of this
type generates

P
Gt = G},
C; = G;+C‘1P]~*

where 0 < 5 < k — 2. For both circuit blocks,
G; = Gj+G]‘,1P]'+G];2Pj_lpj+"'+G0P1"'Pj
and

pr o=

¢ PoPy--- P

The simulations also assume that C'_; and all 4;, B; are latched and
available at time ¢ = 0. Fan-out loading of A;, B; and C_, is ignored
and the adder delay is calculated as the time required to generate the

slowest signal from among S; and C,,_;.

Carry Lookahead Optimization

The basic goal of this research is to show how to optimize CLA struc-
tures by varying group sizes and lookahead levels. The purpose of
these operations is to exploit the delay differences that represent under-
utilized time. Early signals can be delayed by modifying the network to
make the signals the result of more lookahead computation. Since this
allows the addition of larger operands in the same amount of time, slack
reduction corresponds to adder structure optimization. The optimiza-
tion requires a delay model that accurately measures slack in the circuit,
an examination of the delay characteristics of the circuit blocks, and an
analysis of critical delay paths to identify slack in the circuit. These
requirements lead to a heuristic method for determining optimal CLA
structures.

Delay Model
Logic gate delays are modeled as
delay = f(fi,fo)
= A+B-fi+(D+E-fi)-fo.
Simpler delay models that use unit gate delays are inadequate because
they do not reveal all the slack in the circuit.
The simulations use the following delay functions:
tvanp = 0.1058 + 0.11756 + (0.0825 + 0.0148fi)fo
tanp = 0.2825 + 0.1675f + (0.0911 + 0.0037fi)fo
tiny = 0.265+ 0.1016fo

The constants in these functions are based on LSI Logic Corporation’s
1.5 Micron Compacted Array ™ Technology [2]. To limit complexity,
the models assume that all logic gates are single, possibly large, gate
structures rather than multiple levels of smaller gates.

BCLA/CLA Delay Characteristics

An understanding of BCLA/CLA delay characteristics is important for
finding opportunities to reduce slack in CLA structures In particular,
the fan-in and fan-out properties of the circuits must be analyzed.

The input and output loading on the propagate and generate signals
of a BCLA can be derived by induction on the circuits of Figures 1, 2,
3, and 4. By inspection, the following results are obtained. Given a
k-bit BCLA unit connected to the j¢h input of a m-bit BCLA unit

o G* of ihe k-bit BCLA unit has fan-out (m — j)

e G* of the k-bit BCLA unit has worst case fan-in k
Specifically, in the two-level implementation of G*, the first level
NAND gate i associated with input G; has fan-in k — <.

s P* of the k-bit BCLA unit has fan-in &
e P* of the k-bit BCLA unit has fan-out (m — j)(5 + 1)

Examples of these relationships are shown graphically in Figures 5 and
6. The analysis for a BCLA unit feeding into a CLA unit is similar

Fan—out

Fan-out Loading On Each Input Signal (m = 8)

2000~ PROPAGATR

Position

Position

Figure 6: Worst case fan-in gates for the inputs of an 8-bit BCLA unit

and gives the same results.

The loading on carry signals may be derived by a similar analysis of
the circuit diagrams. Each carry signal, C;, of a BCLA/CLA unit is the
C_y of BCLA units on previous levels. An example of this is shown
in Figure 7. In particular, it connects to its (¢ + 1)th fan-in unit, the

920

LSB

Figure 7: Fan-out path within the CLA network of (o of the final looka-
head unit

zeroth fan-in unit of its {7 4+ 1)tk fan-in unit, the zeroth fan-in unit of
the the zeroth fan-in unit of its (¢ + 1)th fan-in unit, etc. Each carry
signal also connects to an XOR gate in the sum generation circuitry. A
BCLA unit of size k contributes & — 1 to the fan-out loading of its input
C_| signal. In the two-level implementation of C;, the worst case first-
level NAND gate has fan-in + 2. In the three-level implementation of
C;, C_y always connects to an input NAND gate with a fan-in of 2.

These fan-in and fan-out properties have an important effect on the
critical delay analysis in BCLA/CLA units. Unlike typical analyses,
the P* delay can not be neglected with respect to the G* delay. Even
though computing P* requires one less level of logic than calculating
G*, the potentially high group propagate fan-out loading may place
generation of P* on the critical path. The P* delay path should be
compared to the Go-to-G* delay path which contains the worst case
fan-in gate.

Another important delay path is the carry propagation (assimilation)
path. This is the path from C_; to some C; and is critical when C_,
arrives much later than all P, and G;. Assuming a k-bit BCLA unit,
the worst case path for the two-level implementation of C; is from C_;
to Ci_». For the corresponding three-level implementation of C;, the
paths are equal for all ¢ because C_; feeds gates of constant fan-in.
When C_;-to-C; delays are a significant fraction of the total adder de-
lay, the three-level implementation should produce faster adders than
the two-level implementation because of its superior fan-in properties.
This condition should hold for larger adders.

An issue related to BCLA delay is the relationship between group
size and number of lookahead levels. Clearly, larger BCLA units have
longer delays than smaller units. Also, adding more levels of BCLA
units tends to increase delay because of the extra logic levels. How-
ever, at some Size, implementing a single large BCLA unit as multiple
levels of BCLA units is advantageous. Unfortunately, determining this
breakpoint is difficult because the delay of a BCLA unit depends on the
block sizes on the next level of lookahead and typically, those sizes are
determined by the number and sizes of blocks on all previous levels.

Critical Path Analysis

Identifying critical paths in CLA structures is important because the
remaining non-critical delay paths represent opportunities for slack re-
duction. Standard CLA analyses assume that the critical path in the
adder is always as shown in Figure 8. Unfortunately, the validity of
this assumption is not guaranteed when variable group sizes and looka-
head levels are allowed. However, the actual critical path will have an
analogous form. The first part of the critical path is the delay to the gen-
eration of a carry signal in the CLA unit and the last part of the critical
path is the propagation of this carry signal back through some subtree
of the BCLA network. Furthermore, each subtree of the network has
an analogous critical path. Opportunities to reduce slack can be found
in each portion.

The delay to the CLA unit depends only on G* and P* delays. Most

LSB

Figure 8: Critical path assumed by typical analyses

if this delay is expected to be from Go-to-G* delays because this path
has both high fan-out loading and worst case fan-in gates. On a given
level, the critical path might depend on the generation of />*, but on
the next level, the critical path will most likely be the group generate
computation because (i* is a function of all the input propagate signals
except /5. The adder delay alter the CLA unit depends only on carry
propagation defays. All [; and G'; signals have already settled and the
critical path follows the worst C'__j-to-C; path in a BCLA unit on cach
Ievel.

Assuming that the generation of G is the critical path through a
BCLA unit, then the group feeding (G; can be larger than the group
feeding (; for i > j, since G; feeds a higher fan-in gate. This will
reduce the slack between the different G;-to-G* delays. This argues
for fewer levels of smaller lookahead units in the least significant bits
than in the most significant bits of every subtree of lookahead units.

The slack in the second portion of a critical path arises from different
C; delay times in a lookahead unit. The subtrees fed by C; should be
faster than those fed by C; for j > 1. This indicates that fewer levels of
smaller lookahead units should handle the most significant bits of each
subtree than should handle the least significant bits.

The criteria for each portion of the critical path contradict each other,
This indicates that the best opportunities to increase group sizes or add
levels of lookahead may occur in the middle bits of each subtree rather
than at the ends. Unfortunately, this criteria can not be used to make
specific decisions except for trivial cases. The problem is that the fan-
in and fan-out dependencies of the delay model interfere with local
optimizations. The whole adder must be analyzed because decisions
on cach level depend on the sizes of the next level which depend on
the structure of (he previous levels. Heuristic methods which guess a
size for the CLA unit and then work backwards o create a network of
BCLA units of the desired size are used to deal with this problem.

Heuristics

The basic algorithm for finding an optimal CLA structure is a greedy
method. The starting point is a single CLA unit. At each step, adder
size is increased by adding levels or increasing group sizes. The lo-
cation and amount of size increase is determined heuristically. The
process stops when the adder reaches the desired size. The decision (o
increase the number of lookahead levels is reduced (0 the decision to
increase group sizes by viewing all the inputs into the carry-lookahead
network as groups of size one. When a group is made larger, the extra
bits are added to the most significant end of the group and the inputs to
these new positions are connected directly to the initial propagate and
generate generation circuitry.

The first heuristic increases adder size by one bit in each step. The
block that receives this extra bit is chosen 50 that the new structure
has the smallest possible increase in delay. Increasing the size of the
CLA unitis not allowed and the whole process is repeated for different

921

starting CLA unit sizes. The current range of starting sizes is from 2 to
16.

The second heuristic uses a more complex metric. The starting point
is a 2-bit CLA unit and at each step, bits are added to achieve the max-
imum increase in adder size per unit delay increase. This metric is
determined for each group (including the CLA unit) as follows. Com-
pute a new adder delay based on increasing the size of the group under
consideration by one. Determine the (otal number of bits that could
be added to the network without exceeding the new delay value. This
number includes the bit that would be added to the current group and
assumes the process of adding the other bits starts at the CLA unit and
works back by levels to the initial propagate and gencraic circuitry. The
metric is calculated as the total number of bits that could be added di-
vided by the increase in delay. Note that the number of bits that can be
added is the minimum of the number allowed by the delay limitand the
number required to reach the desired adder size.

Results
Figures 9 and .10 show results for the two different implementations

Delay, ns 2 Level BCLA/CLA: Delay vs. Size

Fixed

1600 | | |
| - : arabie
14.00

12,00 |

10.00 |

800 | /e

6.00

Size, hits

0.00 50.00 100.00 150.00 200.00 25000

Figure 9: Delay versus adder size in adders using a 2-fevel BULA/CLA
carry implementation

of BCLA/CLA units. Each graph has three curves corresponding to al-
lowing only fixed-sized groups (Fixed), allowing different sized groups
only on different levels (Inter-level), and allowing variable sizes and
levels anywhere (Variable). The delay values are for the best structures
of each category. The Fixed and Inter-level curves were obtained by
simulation of all possible combinations. If an integral number of groups
of the chosen size for a level handled more signals on that level than
was necessary, then the size of the group corresponding to the most sig-
nificant bits of the adder was decreased 1o eliminate the excess. capa-
bility. The Variable curve for the two-level BCLA/CLA carry imple-
mentation (Figure 9) was obtained using the first heuristic. This heuris-
tic worked well for this lookahead implementation but not as well for
the three-level implementation, The Variable curve for the three-level
BCLA/CLA carry implementation (Figure 10) was obtained using the
second heuristic since it produced better results than the first heuristic.

Delay, ns
15.00

3 Level BCLA/CLA: Delay vs. Size
i 1 Fixed

14.00

13.00--

12.00

11.00

10.00

9.00

8.00

7.00

6.00

Size, bits
0.00 50.00 100.00 150.00 200.00 250.00

Figure 10: Delay versus adder size in adders using a 3-level
BCLA/CLA carry implementation

Figure 11 gives the optimal 32-bit adder structure found by each
heuristic. The 1’s represent input from the initial bit positions.

\/
1 2 14
N/ \/
AN NPEEERARYS NG RS
EIVZEERAN SR N N
\SX\Z///S/A
8
(@)
1] 11 LVARYERVIRY:
2 2 2 2 14
UOuLE e i A& AR gy
——
6
(®)

Figure 11: 32-bit adders found by (a) the first heuristic using 2-level
BCLA/CLA units (delay = 8.5249 ns) and (b) the second heuristic using
3-level BCLA/CLA units (delay = 8.9188 ns)

The results correspond well to theory. Adders of fixed-size groups
are slower than adders allowing variable inter-level groups. Adders
with variable groups and levels are faster than both other types. The
optimal Variable structures tend to-have more levels and larger group
sizes in the middle of the adder than on the ends. Results of compar-
ing the different lookahead implementations are mixed. The Fixed
and Inter-level three-level implementations performed much better
than the two-level implementations. However, the heuristics improved
the performance of the two-level implementations more than they im-
proved the three-level implementations. The delay differences between
the Variable adders of the two implementations is smaller, though the
three-level implementation is still faster for larger adders.

922

Conclusion and Future Work

Varying group sizes and lookahead levels improves the performance of
commonly used CLA implementations. Unfortunately, finding these
improved structures is difficult because of delay fan-in and fan-out de-
pendencies. In general, the whole adder structure must be known be-
fore a decision to increase group sizes or the number of lookahead lev-
els can be made. Fortunately, simple heuristics can deal effectively
with this problem. Simulation results show that heuristic methods can
find CLA adder structures with variable group sizes and levels that are
faster than more constrained carry-lookahead adders.

Work is in progress to re-run the simulations in this paper for ECL
delay data. This is particularly important in the domain of high per-
formance machines where bipolar is the dominant technology. Also,
more heuristics and implementations will be examined. For example,
a hybrid of the two heuristics presented here will be tried and an adder
structure that uses the three-level BCLA carry implementation with the
two-level CLA carry implementation will be tested.

Acknowledgements

The authors would like to thank Professor Pak Chan for sharing his
ideas and insight on carry-lookahead adders. His many helpful discus-
sions and suggestions are greatly appreciated.

References
[1] Kai Hwang. Computer Arithmetic: Principles, Architecture, and Design.
John Wiley & Sons, Inc., 1979.

[2] LSI Logic Corporation. Databook: 1.5 Micron Compacted Array ™
Technology, July 1987.

3

=

Vojin G. Oklobdzija and Earl R. Barnes. On implementing addition in
VLSI technology. Journal of Parallel and Distributed Computing, 5:716—
728, 1988.

Robert Sherbume, Jr. Processor design tradeoffs in VLSI. Technical Re-
port UCB/CSD 84/173, University of California, Berkeley, 1984.

[4

=

[5] J. Sklansky. An evaluation of several two-summand binary adders. IRE
Trans., EC-9(2):213-226, June 1960.

{6] Silvio Turmrini. Optimal group distzribution in carry-skip adders. In Pro-

ceedings of the 9th Symposium on Computer Arithmetic, pages 1-18,
September 1989.

