SIMPLE AND EFFICIENT CMOS CIRCUIT FOR FAST VLSI
ADDER REALIZATION

Vojin G. Oklobdzija

IBM T.J.Watson Research Center
P.O.Box 218
Yorktown Heights, NY 10598
(914) 945-2607

ABSTRACT

In this paper a simple, yet efficient, scheme for a VLSI implementation
of addition (ALU) in CMOS is pr d. The imp} ion of this
scheme yields an adder (ALU) with near minimal number of gates, small
and regular area, yet outperforming carry-lookahead and recurrence
solver schemes. This claim was d ated by simulation of the actual

pl ion of e pl Develop of this sch is based on a
more realistic estimate of delay in VLSI-CMOS technology and careful
selection of circuits [10]. These estimates are different than the ones
traditionaly used. Using the scheme developed 32-bit addition in 14.2 nS
was realized and based on it a 64-bit adder performing addition in 16.0
nS made possible.

1. INTRODUCTION

In many VLSI processors the addet (ALU) is in the critical path of the
machine - therefore determining the machine cycle. Given that the du-
ration of the machine cycle is directly related to the performance of the
machine, the speed of the ALU (adder) is critical in achieving higher
performance.

The past research effort had the objective of developing the fastest
scheme for addition, and as a result many different schemes and their
implementations were created [1]. This development was based on the
dominant technologies of that period (TTL, ECL).

A study of VLSI oriented schemes was undertaken by Atkins and Ong
implying that CLA scheme (Carry Look Ahead) is yielding the fastest
implementation. Their conclusion was supported by partially simulated
sections in nMOS technology [9].

A similar study of "recurrence solvers" [11],[13,14,15] was done by
Han and Carlson [17,18]. They developed a scheme which they refer
to as ""Hybrid Prefix Computation” (HPC) claiming it to be faster than
all previously reported "recurrence-solvers" [11-16] including CLA and
the scheme based on variable sized blocks (VBA), "Variable Block
Adder" [5,6]. Their claim was also supported by partial simulation us-
ing SPICE as it was done in [9].

In the previous work [10] those representative schemes were imple-
mented for the typical sizes of 16 and 32 bits [1][17][18][5], and the
speeds obtained were compared. The results did not confirm the con-
clusions in [9],[17][18]. More elaborate schemes (CLA, HPC) did not
show gain in performance due to larger fan-ins and fan-outs. The im-
plementation of VBA scheme was faster than "recurrence solvers' and
CLA for a 32-bit implementation and a close second for a 16-bit im-
plementation.

In this paper we describe implementation features of the VBA adder for
sizes of 32 and 64 bits. The technology chosen was 1.5 micron CMOS
ASIC. The ASIC cell library is coupled to a simulator developed for
that purpose [21,22].

ISCAS’88

2. PERFORMANCE MODEL

For this model, data was derived from a vendor ASIC-CMOS standard
cell library [21]. However, the results can be fairly well generalized to
the other CMOS technologies. Dependencies discussed here are valid
even for custom design. The ASIC library consists of a collection of
gates and cells designed for high speed and low gate count. This par-
ticular vendor supplies two versions of each cell:

1. afast version with high gate count using more power (FG)

2. astandard version designed for small gate count (SG)

2.1. Delay Dependency

Commonly used speed estimates take into account the number of logic
levels only [1]. However, the speed of CMOS technology shows a de-
pendency on fan-out loading and fan-in. Wiring delays are attributed
to the loading of gate outputs and signal propagation delays. The first
is expressed in terms of additional fan-out loads and added to the gate
output. The second is added to the gate delay.

Fan-Out

CMOS gates exhibit an almost linear dependency on fan-out loading.
Fig.1. shows delay of a NAND gate as a function of fan-out load. For
a NOR gate, we observe similar increase (increasing the fan-out from
2 to 8 results in approximately tripling the gate delay). An inverter de-

30

25

20

DELAY fnS]
o

0.5

LI S A0 B 10 S B A B B B e

0.0 VOO SN U S T T T T S N SO0 SO O O W W
5 10 15 20

Fan—0ut

NAND gate delay vs Fan-Out: ND?2P is the powered
version of a NAND gate: ¢r - rise time tf - fall time

o

Figure 1.

lay resembles similar dependency on fan-out.

The average delay due to wire capacitance is also linearly dependent on
the fan-out and its effect is in increasing linear dependency of gate-
delay on the fan-out. The average amount of wiring is proportional to
the fan-out and it is expressed in terms of additional fan-out loading,
Fig.2. The average wire length (expressed in terms of fan-out) is a
function of chip size. Both functions exhibit a linear relationship (for

CH2458-8/88/0000-0235$1.00 © 1988 IEEE

chips of moderate area) and the wiring is reflected as additional fan-out
in the gate delay calculation.

The relationship between gate-delay and fan-out can be approximated
fairly well by a linear function. Increasing the fan-out results in more
delay which is neglected by the delay estimates based on counting levels
of logic.

Effect of Wiring on Delay (for 3X3mm area)

14
L
E
n2f
élof
é o
&£ -
P
£ °f
I F
b
2F
I
P SRR OV SN SV S S S BRI
0 5 10 15 20
Fan—0ut
Figure 2. Effect of wire load on delay

Fan-In

Forcing a reduction in the number of logic levels may also result in an
increase in fan-in. This increase is reflected in the gate delay since
fan-in (FI) is directly proportional (equal) to the number of transistors
connected in series in an n-type transistor network (NAND gate) or
p-type transistor network (NOR gate). The gate-delay vs fan-in de-
pendency for a NOR gate is shown in Fig.3.

To set the logic state in CMOS, a node must be connected to one of the
terminal nodes (Gnd, Vdd) by a string of transistors equal in length to
the FI. In case of a NAND gate, these transistors are of n-type (con-
nected to ground node). In case of a NOR gate, these transistors are of
p-type (connected to Vdd). Given that a p-type transistor (whose ma-
jor carriers are holes) is almost twice as slow as an n-type transistor, a
NOR gate is slower than an equivalent NAND gate (taking the worse
of the two times: ¢, ¢, into account) The opposite is true for bipolar
technology where a wired-OR implementation is used to obtain a major
speed advantage factor. Also, it can be observed that in the case of a
NOR gate, the rise time #, is longer than the fall-time {;, contrary to the

35
o .4
3o ,/’
C b
o e
25f- -
g 20F
L
3 ¥
a 1sr

Fo=4 4

Fo=2 t

't

L 4

35

(U T SR N TR TN N S A T S G |

.0 25 30

4.0

Fan=In

Figure 3. Gate delay as a function of Fan-In: tr - rise time, tf - fall time

236

NAND gate where the opposite is the case. This is to be expected from
the previous observation regarding the transistor paths. Because the
time required to change logic states is directly proportional to the num-
ber of transistors in the path between the terminal nodes (worst case),
which is equal to the FI, the larger the fan-in, the slower the gate.

This simple analysis also challenges the validity of just using the number
of logic levels as an adequate estimate of the speed of an implementa-
tion as has been traditionally used in development of fast computer
arithmetic. However, estimates based on logic levels are still adequate
for bipolar technology and other technologies where the driving capa-
bilities of gates are such that the influence of fan-out and wire loading
on speed is negligible. With CMOS becoming the dominant VLSI
technology, estimates based solely on the number of logic levels are no
longer valid. In summary, implementing functions in a minimal number
of logic levels does not necessarily yield the fastest implementation.

2.2. Delay Estimates

Simple formulas for estimating speed of a CMOS implementation were
derived from the delay tables for the patticular ASIC technology [21]
and simplified to make them easier to use. All delays are normalized to
delay unit of 1 (delay of an inverter) since their purpose has been to
provide the relative relationship between the cells. This gives them
generality and simplicity for use. The parameters used to estimate the

delay & are: Fo - fan-out of a given gate, (Fi—2) : fan-in in excess of
2.

The formulas for calculating estimates for NAND gate, NOR gate and
inverter are:

Sywp = 1 +0.3F0 + 0.5(Fi — 2)
Syon = 1 +0.5F0 + 0.5(Fi — 2)
8wy = 0.7 +0.3F0

These estimates have been found adequate for modeling the main con-
tributions to the delay {10]. A NAND gate is slightly less sensitive to
fan-out loading than a NOR gate.

For the fast version of the gates (FG) which uses more powerful driver
to drive large fan-out load, we similarly obtained:

Swavpr = 1 +0.125F0 + 0.5(Fi — 2)
Syonr = 1 +0.25F0 + 0.5(Fi — 2)
Siwyr =03 +0.125F0

These relations are used as a base for detivation of a new scheme.

3. IMPLEMENTATION OF THE SCHEME IN CMOS

For implementation CMOS ASIC technology with 1.5 micron line fea-
tures was selected. Standard cells from the ASIC library [21] are used
for design. ASIC library consists of a collection of gates and cells de-
signed for the maximal speed and small gate count.

Fast version FG of the gates was used wherever it was critical to mini-
mize the delay. Otherwise standard version was used for the purpose
of minimizing the gate count and power requirements.

Preliminary pass through all the blocks was applied to identify any
nodes which are more heavily loaded (larger fan-outs or driving longer
wires). At this nodes gates with stronger driving capabilities are used.
Also in every block the combination of gates (NAND-NAND,
NAND-NOR, etc.) which yields the fastest implementation of a given
function was applied. This was estimated from the gate-delay vs fan-
out load tables [21] for each gate. After the network compilation and
first simulation the nodes with the rise/fall times longer than 3.0 nS
were flagged [22]. At this point the fast version gates (FG) were in-
troduced at the flagged nodes or the nodes were divided into separately
driven logic.

In the final pass, the critical path was reexamined replacing the gates
with their faster version, FG, where applicable and reducing the load-
ing. Several iterations through the design and simulator brought this

process to the point where no further improvements were possible.

The experience gained from nMOS technology showed that the pass-
transistor circuit can be used to gain advantages in density, speed or
both. Several new circuits were invented that take advantage of pass-
transistor in nMOS technology [2]. As far as adder circuits are con-
cerned, Manchester Carry Chain [2,3,5] built from pass-transistors
yield an implementation faster than its gate oriented counterparts [11].

To take advantage of this design style in CMOS we identified the com-
ponent containing pass-transistor structure from the cell library [21].
Incidentally, this component, a two-to one multiplexer, is the fastest
component in the library.

To be able to use multiplexer in the carry chain the "carry propagate"
term p, must be implemented as an XOR function, p, = @ XOR b, , so
that the table in Fig.4. is obtained:

P,
& 1 [select |cout
b, 8 XOR by
0 0 g | o
0 1 Cin Cin
1 [} 91 1

Figure 4. Truth table for p and g terms

Figure 6. Carry-block of the VBA implementation

The fourth term of the table p,=1,g =1 can never occur. Such
choice of p, function allows for the multiplexer to be used in the carry
path as shown in Figure 4. The multiplexer MUX21 incorporates an
inverter which serves the amplification function of the carry signal. The
carry signal is therefore inverted in the alternative stages of each "bit-
slice” of the adder. For consistency the "carry generate” function,
& = a;b; , as well as the resulting sum s, has to be inverted.

Next we applied our scheme, based on the variable sizes of the carry
blocks, which are obtained by the process of optimization of the speed
of the carry path. We refer to it as VBA (Variable Block Addition)
[5-8},[10]. By simulation we obtained that the time required to skip
over a block is twice as long as the time required for a carry signal to
ripple across a bit in the carry chain. These times are T=1.6nS and
t=0.8nS respectively. The division of the 32-bit carry chain into groups
of bits of sizes 1,3,5,7,7,5,3,1, respectively is optimal [10].

The implementation of our scheme is shown on the example of an 32-bit
adder (easily modified to an ALU). The size of the blocks vary with the
size of the adder [5-8],[10]. The critical path is the carry signal path and
it is implemented as a string of multiplexers, Fig.5.

Single carry block is implemented using 4 to 1 multiplexer (actually used
as 3 to 1) as the last of the string of 2 to 1 multiplexers. Carry by-pass
is connected to the inputs 3,4 of the 4:1 multiplexer (group carry

Atz 132} May Bray A]

g 5T

R Siagl Pray O
=<]H
HC b
e s e e e
LT LY LT

wxat] wat L wxal]
S142 $141 £

Figure S.

Carry-path implementation with the multiplexer

multiplexer) and the selection of carry by-pass is activated by the
NAND gate signaling the condition for "group propagate" and activat-
ing the group multiplexer in turn. This is shown in Fig.6.

This design was simulated for a number of input combinations (test
cases) each involving a potential critical path. The simulator used
LDS-1I1 {22] takes into the calculation loading caused by the wire of the
average length, input transistors, intrinsic gate delay and rise/fall time.
The results are very accurate which has been confirmed by experience
in a very large number of cases.

The worst case for 32-bit VBA implementation found is £, = 14.2 nS.

X <0:63> Yeo:63>

64 64

32 32,
&:31> %32:63>
<0:31>

2
32]‘u
Y X +vdd 3322 .
NCo ADD32 1 Q7 NCo ADD32 Ci)
s s

3y

— r——
WUx32 Neo A0p32 €1 —< C1
S

<0:31> <32:63>

Co S<0:63>

Figure 7. 64-bit Adder Combining CSA and VBA

In our 64-bit implementation we combined VBA and Conditional-Sum
Addition scheme (CSA) [12]. The feature of this scheme is the use of
duplication in the most significant portion of the adder. Therefore it is
very important that the basic block, which is to be replicated, is made
simple and yet very fast. The VBA scheme offers this feature. The
64-bit adder is divided in two 32-bit portions, Fig.7. The carry out of
the least significant 32-bit portion controls selection of the proper
32-bit sum of the most-significant 32-bits of the adder (bits 32-63).
Again, the advantage of having a fast multiplexer as a building block
was used in the selection process.

With this implementation 16.0nS 64-bit addition was achieved which is
only a small increase compared to the speed of 32-bit scheme. The
complexity of the 64-bit adder was only about 60% higher than dou-
bling the 32-bit adder which would result in an adder about twice as
slow as 32-bit adder. This 64-bit adder is designed to be used in a

multiplier and its addition time is sufficiently fast to allow its operation
in 20nS cycle time.

4. COMPARISON WITH OTHER SCHEMES

In [10] we measure the speed of four representative adder implementa-
tions. The results reported were obtained by running the entire designs
through a very accurate simulator [22].

The schemes implemented were the following: Ripple Carry (RCA),
Carry Lookahead (CLA), Recurrence Solver (HPA) and Variable
Block Carry (VBA).

All of the examples were implemented for two sizes, 16 and 32 bits.

The respective speed comparison obtained for the selected schemes is
shown in Fig.8.

The complexity of each design is measured as a "gate-count", which is
a number of equivalent two-input gates (one gate consists of 4 transis-
tors). From Fig.8. we can observe that the implementation of the VBA
scheme yields the fastest adder for the size of 32-bits and it is second
best in terms of complexity measured in the number of gates used.

This result guided the choice of 32-bit VBA to be implemented in a
"Conditional Sum Addition" - CSA, scheme, which takes advantage of
being sufficiently fast and yet not very complex in order to justify du-
plication of the most-significant portion of the 64-bit adder as required
by the CSA scheme [12]. This implementation of 64-bit adder uses
1205 equivalent gates and performs addition in 16.0 nS nominal time.

petay Stmulated Complextty

P eizel 16 32 16 32
RPL [15.7 | 29.3 | 160 | 320
CLA 12.3 15.0 199 443
HPC 9.7 14.4 184 458
VBA | 1g.8 | 14.2 | 174 | 348

Figure 8. Speed and Complexity of Selected Adders

5. CONCLUSION

In order to achieve a sufficiently fast adder we used the rules modified
to reflect the realities of the CMOS technology. The rules (e.g. number
of "logic levels') used for the development of various computer arith-
metic schemes and their hardware implementations are not very ade-
quate when applied to the new VLSI technologies (such as CMOS).

Therefore it would be a mistake to simply map the designs of these
schemes directly into their VLSI-chip implementations.

In this paper it has been demonstrated that by a careful selection of fast
cell libraries and adherence to the a more adequate model a simple yet
sufficiently fast adder can be designed. The examples given are 32-bit
adder with the complexity of 348 equivalent gates performing addition
in 14.2 nS nominal time and a 64-bit adder combining VBA and CSA
schemes implemented with 1205 equivalent gates and adding in 16.0
nS nominal time.

REFERENCES

[1] Kai Hwang , Computer Arithmetic: Principles Architecture and
Design, John Wiley and Sons, 1979.

[2] C.Mead, L.Conway, Introduction to VLSI Systems, Addison Wesley,
1980.

238

[3] T.XKilburn, D.B.G.Edwards and D.Aspinall, Parallel Addition in
Digital Computers: A New Fast "Carry" Circuit, Proc. IEE, Vol.106,
Pt.B. P.464, September 1959.

[4] M.Lehman and N.Burla, Skip Techniques for High-Speed Carry-
Propagation in Binary Arithmetic Units, IRE Transactions on Electronic
Computers, December 1961, p.691.

[5] V.G.Oklobdzija, E.R.Barnes, Some Optimal Schemes for ALU Im-
plementation in VLSI Technology , Proceedings of 7th Symposium on
Computer Arithmetic, June 4-6, 1985, University of Illinois, Urbana,
Illinois.

[6] E.R. Barnes, V.G. Oklobdzija, Method for Fast Carry-Propagation
for VLSI Adders , submitted: March 22, 1983, IBM Technical Disclo-
sure Bulletin, Vol. 28, No. 4, September 1985.

[7] E.R. Barnes, V.G. Oklobdzija, New Scheme for VLSI Implementa-
tion of Fast ALU , submitted: January 24, 1984 , IBM Technical Dis-
closure Bulletin, Vol. 28, No. 3, August 1985.

[8] E.R. Barnes, V.G. Oklobdzija, New Multilevel Scheme for Fast
Carry-Skip Addition , submitted: March 22, 1984, IBM Technical Dis-
closure Bulletin, Vol. 27, No.11, April 1985.

19] S.Ong and D.E.Atkins, A Comparison of ALU Structures for VLSI
Technology, Proc. of the 6th Symposium on Computer Arithmetic, June
20-22, 1983, Aarhus University, Aarhus, Denmark.

[10] V.G.Oklobdzija, E.R.Barnes, On Implementing Addition in VLSI
Technology, IEEE Jo. of Distributed and Parallel Computing, to be
published in the Special Issue on Computer Arithmetic, 1988.

[11" M.Pomper et al, A 32-Bit Execution Unit in an Advanced NMOS
Technology, 1EEE Journal of Solid State Circuits, Vol. SC-17, No.3,
June 1982.

[12] A.Bilgory and D.D.Gaijski, Automatic Generation of Cells for Re-
currence Structures, Proc. of 18th Design Automation Conference,
Nashville, Tennessee 1981.

[13)] A.Bilgory and D.D.Gajski, A Heuristic for Suffix Solutions , IEEE
Transactions on Computers, Vol. C-35, No.1, January 1986.

[14] R.P.Brent, H.T.Kung, A Regular Layout for Parallel Adders , IEEE
Transactions on Computers, Vol. C-31, No.3, March 1982.

[15] P.M.Kogge, H.S.Stone, 4 Parallel Algorithm for the Efficient Sol-
ution of a General Class of Recurrence Equations , IEEE Transactions
on Computers, Vol. C-22, No.8, August 1973.

[16) T.F.Ngai, M.J.Irwin, Regular, Area-Time Efficient Carry-
Lookahead Adders , Proceedings of 7th Symposium on Computer
Arithmetic, June 4-6, 1985, University of Illinois, Urbana, Illinois.

[17] T.Han, D.A.Carlson, Fast Area-Efficient VLSI Adders , Pro-
ceedings of 8th Symposium on Computer Arithmetic, May 19-21, 1987,
Como, Italy.

[18] T.Han, D.A.Carlson, S.P.Levitan, VLSI Design of High-Speed
Low-Area Addition Circuitry , submitted to ICCD’87, October 5-8,
1987, Rye, New York.

[19] T.Han, Theory of Hybrid Prefix Algorithm , PhD proposal, Febru-
ary, 1987.

{20] T.Han, Private Communications , February, 1987.

[21] Compacted Array Product Databook, LSI Logic Corp., February,
1987.

[22] LDS Software Guidelines, LSI Logic Corp., 1985, 1986.

