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ON PARALLEL DIGITAL MULTIPLIERS
L. DADDA (*)

I. - INTRODUCTION.

Parailel multipliers consist of a combinatorial net-
work capable of obtaining the product of two binary
numbers. Parallel multiplier are to be compared with
multipliers used by the well-known process of repea-
ted additions of the multiplicand according to the va-
lue of the multiplier's bits ().

The complexity and the cost of parallel multipliers
is larger than the one of standard multipliers: what
is sought with parallel multipliers is speed. It can be
shown that for several applications the overall in-
crease in computation speed largely compensates the
additional cost of a parallel multiplier., Moreover, a
fast multiplier is essential in some application, such
as real time signal processing.

Several schemes for parallel multipliers have been
proposed [2 + 6]. They can be ranged in two classes:
in the first class [4,5,6] a «cellular » structure (i.e.
a rectangular array of identical cells) is used; in the
second calss [2,3] a «reduction» scheme is used,
where the set of summands (each consisting of the
multiplicand logically multiplied by the multiplier
bits and suitable shifted) are reduced to two num-
bers, whose sum equals the product. A comparison
among some schemes has been given in [7,8].

It appears that, although cellular structured mul-
tipliers are appealing as far as uniformity of compo-
nents is concerned, they are slower than multipliers
based on the reduction schemes, which minimize the
number of logical levels.

The purpose of this paper is to show how the
scheme proposed in [3] (which is of the «reduc-
tion » type) can lead to the implementation of paral-
lel, fast multipliers for numbers of up to several tens
of bits (e.g. 30 + 40) with a total delay of about 100
ns, using today’s components and at a reasonable cost.
Suggestions shall also be given for new components
in order to obtain a cost reduction and higher speed.

I1. - PARALLEL MULTIPLIERS: « REDUCTION » SCHEMES,

In this chapter we summarize the main concepts
presented in [3] with some additional comments.

(*) LuiGt Daooa (Socio AEI) - Politecnico di Milano, Istituto di
Elettrotecnica ed Elettronica, Centro di studio per I'Ingegneria
dei sistemi di elaborazione delle informazioni, del Consiglio Na-
zionale delle Ricerche.

(*) In such multipliers, the effcctive number of additions can be
made a fraction of the number of the multiplier bits, by special
arrangements, such as suitable coding of the multiplier [1].
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The basic scheme is given in fig. 1, where, in the
upper array of dots, each row represents the multi-
plicand, logically multiplied by one of the bit of the
multiplier (the least significant bit of the multipli-
plicand is at the right, the least significant bit of the
multiplier is at the top).
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Fig. 1. - Multiplication (12 x 12 bit) through addition, in a single
stage, using a parallel counter for each column. Carries are propa-
gated through the counters.

The product to be obtained is the binary sum of
all rows (summands set). Such a sum can be obtai-
ned using a « parallel counter » for each column. A
parallel (p, q) counter, see fig. 2, is a combinatorial
network with g outputs and p < 2¢—1 inputs, where
the binary number represented by the g outputs is
the number of « ones » present at the inputs.

Fig. 2 gives also the « shorthand » representation of
parallel counters, as it will be used in all remaining
figures of this paper, and it shows that full adders
and half adder can be considered as (3,2) and (2,2)
counter, respectively.

The input to the ith counter (for the ith column)
is given by the bits in the ith column of the summands
set, and also by the outputs (carries) from the lo-
wer order counters.

Although the scheme in fig. 1 is the simplest from
the conceptual point of view, it has some implemen-
tation drawbacks. First of all, parallel counters for a
larger number of inputs (fig. 1 reguires parallel (15,4)
counters) are difficult to built. Moreover, they have
a large delay, which contributes to the total multipli-
cation time through the carries propagation along
the chain of parallel counters.

In order to minimize the carries propagation delay,
the process can be dividend into two steps. In the
first step, from the original set of summands a set
of two numbers is obtained, whose sum equals the



product. In the second step the product is obtained
by adding this two numbers.

The reason for the two-step process is that the
first step can be accomplished using a network with
a small number of logical levels, and correspondingly
with a small total delay, as no carries propagation is
allowed in it; carries propagation is confined in the
second step, where it can be accomplished in a very
effective manner using fast adder based on look-
ahead arrangements.
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Fig. 2. - « Simple » parallel counters: a) a 7 inputs-3 outputs, or (7,3)

parallel counter and its « shorthand » notation;used in the follo-

wing figures; &) a (3,2) parallel counter, i.e. a full adder; ¢) a (2,2)
paralle! counter, f.e. a half adder. )

A second scheme, based on such principle, and
still using parallel counters (with no limitation on
the number of their inputs) is given in fig. 3. The
number of logical levels (vs. the number of bits
of the multiplier) required for such a multiplier is
given in fig. 4 (2).

Since parallel multipliers with a large inputs num-
ber are difficult to built (and are in general slower
than parallel counters with a limited number of in-
puts), a final step in the development of a feasable
parallel multiplier based on the above concept, is to
prescribe parallel counters with a limited number of
inputs.

It is shown in [3] how parallel multipliers can
be built using (2,2) and (3,2) parallel counter, i.e. half
and full adders.

Fig. 5 gives an example of such a multiplier, and
fig. 4 gives the number of stages required (vs. the
number of bits of the multiplier (3).

It has to be noted that the Wallace scheme [2] for
parallel multipliers belongs to the above category.

In restricting the counter’s inputs number, the to-
tal number of logical levels and the number of coun-
ters, necessary for the implementation of a multi-
plier, increases.

() A question might arise, in connection with the results given
in fig. 4, whether a smaller number of logical level could be obtai-
ned using parallel counters of more complex design. The question
is treated in chapter IV.

(*) A 12 x 12 multiplier of such scheme was built [9] using full
adders based on threshold logic circuits =nd varallel adder with
a fast (1 ns/stage) carry propagati~ tal multiplication
time of 550 ns.
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It is therefore important, both from the point of
view of cost and speed, to look for parallel counters
with a large number of inputs taking care of the
fact that counters with a large number of inputs can
be both too expensive and slow.

We shall not try to give an exact solution to such
an optimization problem: we wish only to suggest
that if in the past the only feasible reduction mul-
tiplier had to be based on a network of full and half
adders (being the only integrated, low cost parallel
counters available) the technological progress offers
nowadays the possibility to use parallel counters with
a larger number of inputs, e.g. 7 inputs, and even
more,

We want therefore to show in the next chapter
how these counters can be built, particularly (7,3)
counter which seems (see next chapter) at the present
state of 1.C. technology a good solution both from
speed and cost view-points.
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Fig. 3. - A multiplier scheme, obtaining two numbers whose sum
equals the product, of 12 x 12 bit, through three stages, using a
paralle! counter for each stage and for each column. Carrics are
propagated only in the addition of the two final numbers.

In chapter IV some special kind of counters, and
their use in parallel multipliers, shall be illustrated.

Fig. 6 shows as an example the scheme of a
(15 x 15) parallel multiplier using (7,3) counters (along
with (3,2), (2,2) counters when necessary).

Fig. 4 gives the numbers of levels (vs. the number
of bits of the multiplier) for multipliers using (7;3)
and (15,4) parallel counters.

The above schemes and fig. 4 are
to procedures illustrated in [3].

drawn according

II1. - THE FEASIBILITY OF PARALLEL COUNTERS FOR A LAR-
GE NUMBER OF INPUTS.

It shall be now shown how parallel counters, can
be conveniently implemented using available LSI
components (4).

Such components are ROM (PROM) memories and/

(*)When this paper was already completed, the reference [8) came
to our attention. This report discusses the design of parallel multi.
pliers based on the reduction scheme and using parallel counters
implemented with ROMs or PLAs, as suggested in this paper. As
the Stenzel's approach stresses the use of non-simple counters
(particularly (5,5; 4) counters) whereas we emphasize the use of
simple counters, the content of the two papers is largely non over-
lapping and complementary.
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Fig. 4. - Number of levels (vs. number of multiplier's bits and parallel counter's type) in the reduction network (e.g. for 10 13
bit multipliers, S levels are required using (3,2) counters; for 8 + 15 bit multipliers, 3 levels are required ‘using (7,3) counters;
for 8 -+ 127 bits multipliers, 3 levels are required using counters with unlimited number of inputs).
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Fig. 5. - The reduction network of a 12 x 12 bit multiplier (i.e. a
network obtaining two numbers whose sum equals the product)
using (3,2) and (2,2) counters.

or PLA (Programmable Logical Arrays). ROM memo-
ries shall be examined in the following with some
detail (5).

It is first to be noted that PROMs of the fusible
link type (i.e. PROMs where the content of each
cell can be « written» by blowing a fuse by means
of current pulses) are commercially available with a
capacity of 256 X 4 and with a typical access time
of 25 ns, using Schottky TTL logic. Faster PROMs

(¥) Though a full investigation has not been made, it appears that
ROMs are preferable to PLAs, duc to the large number of impli-
cants involved in the two-level implementation of the functions de-
scribing a counter.

Available PLAs have in effect a relatively small number of rea-
lizable products, whereas with ROM all minterms are implemented.
plemented.

Morcover, the speed of available PLAs is smaller than the
speed of the ROMs mentioned in the text.

Parallel counters with more than three inputs can also be ob-
tained by composing several full adders, using the same rules il-
lustrated in {3]). In fig. 7a (7.3) counter’s scheme is shown: it
requires four full adders and three reduction levels.

Such a scheme has been implemented in integrated form by Texas
Instr. (SN 54/745275, with a typical delay of 45 ns).

of the same capacity using ECL logic and with smal-
ler access time (15 ns) are also available.

In order to obtain (7,3) counters it is only neces-
sary to « program » the content of such PROMs in
such a way that each of the 27 = 128 words are writ-
ten with the binary number equal to the number of
« ones » in the corresponding 7-bit address. Note that,
in such a way, only 128 X 3 = 384 cells (over 1024),
and correspondingly only 7 address (input) pins (over
8) and 3 output pins (over 4) shall be used.

This suggests that, in order to decrease the com-
ponent count for a given multiplier, special I.C.s,
designed for use in parallel multipliers, could be pro-
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Fig. 6. - The reduction network of a 15 x 15 bit multiplier using
(7,3), (3,2) and (2,2) counters.

duced using the same technologies used in today’s
PROMs and having the same degree of complexity
or chip area.

The first suggestion is to implement two (7,3) coun-
ters on the same chip and using a package having
2 x 7 inputs and 2 X 3 outputs (e.g., a 22 pins standard
dual in line packcge).

The second suggestion deals with the problem of
obtaining the initial summands set. In the preceding
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schemes, this is assumed as obtained through an
AND gates for each element.

Though conceptually simple, this solution requires
a large number of AND gates and a correspondingly
large number of I.C. packages. Although such com-
ponents are of the cheapest type, the cost of obtai-
ning the summands set is a relatively large part of
the total multiplier cost, due to the wiring, and prin-
ted circuit board area.
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Fig. 7. - A (73) parallel counter, assembled from four (3,2)
counters.

Most of the AND gates could conveniently be im-
plemented on the same chips 1mpl&mentmg (7.3) co-
unters, with a small increase in ¢ ;

A single (7,3) counter with: mwwf A%urrespondmg
AND gates could be housed in .a.package with
2x7 = 14 input pins and 3 ountput pins (fig. 8a).

As far as the chip-area is concerned; two{13) coun-
ter could also be accomodated on ‘th& Same’ chip:
a difficulty arises in relation to the numﬁ@i“bf’ﬁhé
if two totally independent counter are considered
(ie., with independent inputs), since a package with
a very large number of pins would be necessary.

In order to avoid this difficulty, we can notice that
many of the (7,3) counters as used in the preceding
schemes can be paired, as shown in fig. 8b and ¢,
in such a way that their inputs can be generated
using 7 multipliers bits and only 8 multiplicand bits.

The fig. 8 b scheme applies well in the left-hand
part of the summands set, whereas in the right-hand
part it is useful to have an input pairing as shown
in fig. 8 c. In order to avoid two distinct chips, a sin-
gle chip could be designed, with 2 x 8 inputs, and
an additional pin permitting to « program » the chip
as in fig. 8 b or in fig. 8 a, according to the need.

The implementation of larger parallel counters
following the above suggestions, doesn’t seem advi-
sable, due to the size of the chip and the delay.
For instance, the (154) parallel counter (which
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Fig. 8. - Schemes of single (a) and paired (b, c) (7,3) counters,
to be used in the first stage of the reduction network, having as
inputs the multiplicand’s bits (represented by the diagonal dotted
lines) and the multiplier’s bits (represented by the horizontal lines).

needs 15 inputs and 4 output pins) could be reali-
zed by means of a ROM, requiring a chip of 25 X 4 =
= 32k X4 = 128 k bits, which is unfeasible with
present technologies.

A scheme for obtaining a (154) counter with an
acceptable chip size could use two (7,3) counters,
whose outputs are added in a parallel 3 bits adder
(with an initial carry to take into account the 15th
bit to be counted.

Although this scheme seems feasible with todays
technologies, it is to be noticed that its delay shall
be somewhat larger than for a (7,3) counter.

Another more effective solution of the problem (of
including the initial summands generation in the first
reduction stage) can be achieved through sub-multi-
pliers for a small number (e.g. 4 x 4) of bits, where
each product’s bit is obtained as a direct function
of the factor’s bits.

The use of sub-multipliers has been thoroughly stu-
died by Ferrari and Stefanelli [11] (see also [8]) ().

Fig. 9 shows the scheme of a 12 x 12 bits multiplier
using (4 x 4) sub-multipliers.

The main advantage in using sub-multipliers in the
first stage is the reduction of the overall number of
pins in the reduction network. Fig. 9 uses a total of
300 pins, whereas the generation of the 12 X 12 =
initial summands’ bits would require 3 x 144 pins if
implemented by means of individual 2 inputs AND
gates.

G

RIS

Fig. 9. - The reduction network of a (12 x 12) bit multipliers using
(4 x 4) sub-multipliers in the first stage.

As already said, to obtain a complete multiplier we
need to sum the two numbers obtained at the out-
puts of the reduction network composed of parallel
counters, To obtain a fast adder we can use I.C. 4
bit adders or ALUs, with carry-look-ahead units in
order to minimize the carry propagation delay. Using
available components we can implement an adder for
32 bits (to be used for a 16 X 16 bits multiplier) with
a total addition of about 40 ns, or an adder for 64
bits (for a 32 x 32 bit multipliers) with a total addi-
tion time of about 50 ns.

Taking into account the number of logical levels
in the reduction networks (fig. 4) and the typical

(6) Such sub-multipliers are offered by some 1.C. manufacturers.
They can also be obtained by mes~ ‘s.
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delay of (7,3) counters as described (15 to 25 ns) we
can state the feasibility of a parallel multiplier with
about 100 ns for numbers lengths of 30 + 40 bits.

It is interesting to note [3] that a more carefull
evaluation of the total multiplication time has to take
into consideration the fact that the effective number
of levels in the reduction network is increasing in
steps from zero to the maximum (given by fig. 4),
proceeding from the least significant bits. This means
that the total multiplication time is certainly smaller
than the sum of the carry propagation time in the
adder and the maximum delay in the reduction net-
work. '

IV. - PARALLEL COUNTERS OF MORE GENERAL TYPE AND
THEIR USE IN THE REDUCTION PROCESS.

Parallel counters as defined in chapter II (fig. 2)
can be considered as a particular case of a more
general class af arithmetic elements defined by Meo
[10].

Whereas parallel counters as in fig. 2 have all
inputs having 29 weight, such elements can have also
inputs having larger weights, ie., 2!, 22, etc., see fig.
10.

Such elements can still be considered as counters:
we shall call them as «non-simple » ith-order paral-
lel counters when 2! is the highest input weight. « Sim-
ple» «Qorder» counters are the one defined in
part II.

A nonsimple counter can be represented by the
notation: (p, p;_y,..., P q) where p; represents the
number of i-th order inputs (whose weight is 2i), and
q is the numer of outputs.

Its « capacity » C is:

i
C=Z2.p
0

In general it will be:
C<2a—1

A counter will be called « saturated » when
C=2—1

and « non saturated » otherwise. In a saturated coun-
ter all output combinations are significant, whereas
in a non-saturated counter some output combinations
shall never occur.

Such counters can be useful in some particular
cases, as shall be shown in the following, for redu-
cing the number of logical level in the summands
set reduction process (fig. 9,10, 11),

P22 'ey
(unsaturated)

i eI el
(saturated)

Fig. 10. - Generalized (« non-simple ») parallel counters: a)a (1,23
unsatured counter; b) a (1,4,3; 4) saturated counter.
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A particular class of such general type counter is
represented by existing 1.C. components performing
m X n parallel multiplication for small m and n values
(ie, m, n = 2 or 4).

In fig. 10a, a (1,2;3) counter is represented. The
number of outputs, 3, must accomodate the maximum
value of the «capacity » (i.e. the sum of weighted in-
puts, all assumed as «12) which, taking into ac-
count the different weights, is

C=1-2142.2 =4

The same figure gives the short-hand notation of
the (1,2; 3) counter as used also in fig. 11; 12; 13,

Fig. 10b represents a (1,43; 4) counter, whose
capacity is ¢ = 1 X4 +4xX2+3x1 =44+8+3 =
= 15.

L - :“" — on:
....... ot e
() (b)

Fig. 11. - a) Reducing 4 rows to 2 rows using (4.4; 4) (unsaturated)
counters; b) reducing 5 rows to 2 rows using ‘5,5; 4) (saturated)
counters.

A first case of use of non-simple parallel counters,
concerning the reduction process of the summands
array, shall now be illustrated.

It happens in some cases that such reduction pro-
cess using parallel counters reduces the original ar-
ray to 4 rows: this requires a further step to obtain
a 3 rows array before reaching the final 2 rows using
a string of full adders (fig. 2, 5, 6).

We can ask whether it is possible to reduce from
4 rows to 2 rows directly, in a single logical level.
This can be done as shown in fig. 11, where columns
are paired and considered as inputs to a non-simple
counter, having 4 outputs: two of these have weights
29, 2! (as the two paired input columns), the rema-
ining outputs having weights 22, 23: they correspond
to the low-weights outputs of the next counter, the-
refore forming a 2 row array.

The (4,4; 4) counter in fig. 11 a is non-saturated. The
one in fig. 11 b is saturated (2 X 5+ 5 = 15) and it al-
lows the direct reduction from 5 rows to 2 rows.

The concept illustrated in the above examples can
be generalized: its practical application finds never-
theless a limit in the size and complexity of the coun-
ters thus necessary.

In the case of fig. 11 a the (4.4; 4) counter can be
implemented with a PROM, which uses a 2 x4 =
= 256 X 4 = 1024 bits ROM.

In the use of the above concept, consideration has
to be given to the speed of the counters thus obtai-
ned, which is in general smaller than the speed of
full adders.

A second case where non-simple counters can be
used to decrease -the number of logical levels in the
reduction process, is illustrated in the fig. 12 exam-
ple of a 16 x 16 multiplier,



In fig. 12a simple (7,3), (3,2), (2,2) counters are
used, and 4 stages appear necessary (see also fig. 4).
Note also that in 15 x 15 case (fig. 6) 3 levels were
necessary.

The fourth stage in the 16 X 16 case is due to the
fact that after the first level a single column has 8
bits, and this requires three more stages.

Consider now fig. 12¢, and let us associate the
two last bits of columns 16 and the last bit of the
columns 15 at its left, and consider these three bits
as inputs to a (1,2; 3) counter.

Using this counter in the first reduction stage, all
the resulting columns have no more than 7 bits (fig.
12b), so that only two more stages are necessary
for the completion of the reduction.

In order to obtain the same result for a 17 x 17
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Fxg 12. - Decreasing the number of levels in the reduction network

using non-simple counters. a) The reduction network for a 16 x 16

bits multiplier using only simple (7,3), (3,2), (2,2) counters; b) the

reduction nétwork using a single (1,2; 3) non-simple counter along

with (7,3), (3.2), (2,2) counters; c) the dotted line shows the three

bits in the summand array used as inputs to the (1,2; 3) non-simple
counter.

{c)

multiplier (for which, see fig. 4, 4 stages are neces-
sary using simple (7,3) counters) a more complex
counter (1,2,3,2; 5) becomes necessary, as shown in
fig. 13. Such a counter can be realized using a ROM
having 7 inputs and 5 outputs, and requiring 27 X § =
640 bits.

Besides the above particular case, the use of non-
simple counters doesn’t seems in general convenient,
for the following reason.

Considering the reduction step in the multiplica-

tion process (i.e. the reduction to two of the initial
set of summands) it can be assumed that, in view
of obtaining the minimum number of logical levels
and of the total number of components (counters),
it will be convenient to use counters whose ratio:

q

p

is as small as possible (p shall be colled « reduction
factor »).

It can easily be shown that for a given ¢ the mi-
nimum reduction factor is afforded by «simple»
saturated counters.

n® of outputs

[
~O of inputs
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Fig. 13. - The reduction network of a 17 X 17 bit multiplier using &
single (1,2,3,2; 5) non-simple counter, along with (7,3), (3.2) (2,2)
counters, in order to decrease the number of levels.

In effect, if a «simple» counter is not saturated
(for ex. a 6,3 counter), as it uses a number of inputs
smaller than the maximum permitted by its outputs,
its reduction factor will be smaller that the one allo-
wed by a saturated counter with the same number
of outputs.

Moreover, if a counter is not-simple, it has at least
one input, with weight 2i greater than one, which will
contribute to the counter capacity with its weight.
In other words it is equivalent to 2! inputs of the
lower order, 2°. The reduction factor shall therefore
be smaller than the reduction factor of a simple<(sa-
turated }-counter.

Note that in fig. 6 (4,3) (5,3) (63) counters are
used together with saturated (7,3) coynters only when
necessary.

The implementation of non-simple counters can be
done, as shown in chapter III, using PROM suitably
programmed.

For example, the (14,3;4) counter of fig. 105 can
be obtained using a 256 x 4 = 28 x 4 = 1024 bits
PROM.

Parallel counters can be linked to form more com-
plex types. Meo [10] has given a general theory of
networks of counters and a synthesis procedure for
minimizing the number of counters in a multiplier.

Its results, applied to (3,2) and (7,3) counters, are
illustrated in fig. 14.

Fig. 14a,b shows how two or more counters can
be connected using Meo's rules: the result thus ob-
tained is to reduce to one the number of output bits
of weight 2° and to produce a set of carries in the
following column of 2! weight.

These carries are then associated to the initial co-
lumns bits, and reduced in the same way, using as
many counters (linked as in fig. 144, b) as neces-

sary.



aim of suggesting an implementation using available
LSI integrated circuits (particularly ROMs with small
access time). It is shown that a simple counter with
7 inputs and three outputs can be implemented with

I rnpuls
°
° (1)

(b}

(c)

_)

Fig. M. - @) A network of (3,2) counters obtaining a single output

bit of weight 2 and a set of carries of 2! weight; b) idem, using

(7.3) counters; ¢) using the above composite counters in a 7x7
bits multiplier (compare to fig. ).

The resulting scheme is a variation of the basic
scheme of fig. 1, and although it offers a minimized
solution, in terms of counter’s number, it affords a
large delay, as carriers are propagated through chains
of linked counters. Moreover, the saving in counters
number appears, over the methods followed in figs.
3, 5, 6, quite modest.

CONCLUSIONS.

Some schemes for obtaining fast digital multipliers,
based on the reduction of the set of summands equi-
valent to the product to two numbers whose sum
equals the product (this being then obtained by
means of a parallel adder), are reviewed with the

132

a ROM, and it is also suggested that two or more
counters could be realized in a single chip in order
to reduce the count of packages.

Special counters are also considered, useful in re-
ducing the complexity of a multipier in some par-
ticular cases.

It can be estimated that, using available compo-
nents, parallel multiplier for words lengths commonly
used (e.g. 16, 32, etc.) can be implemented with a to-
tal delay of about 100 ns. or less.

The paper was received on June 16, 1976.
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