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An Algorithmic and Novel Design of a Leading Zero
Detector Circuit: Comparison with Logic Synthesis

Vojin G. Oklobdzija

Abstraci— A novel way of implementing the Leading Zero Detector
(LZD) circuit is presented. The implementation is based on an algorithmic
approach resulting in a modular and scalable circuit for any number of
bits. We designed a 32 and 64 bit leading zero detector circuit in CMOS
and ECL technology. The CMOS version was designed using both: logic
synthesis and an algorithmic approach. The algorithmic implementation
is compared with the results obtained using modern logic synthesis tools
in the same 0.6 #m CMOS technology. The impl tion based on
an algorithmic approach showed an advantage compared to the results
produced by the logic synthesis. ECL implementation of the 64 bit LZD
circuit was simulated to perform in under 200 pS for nominal speed.

I. INTRODUCTION

In any floating-point processor normalization is a required opera-
tion. It consists of an appropriate left shift until the first nonzero digit
is in the left-most position. The amount of shift is determined by
counting the number of zero digits from the left-most position until
the first nonzero digit is reached. The exponents are appropriately
decremented for the shift amount. The normalization is usually
performed before storing the numbers in the register file (memory),
commonly referred to as post-normalization, and referred to as pre-
normalization before the operation is performed. In both cases, the
special circuit implemented (in hardware) to detect the number of
leading zeros is referred to as a Leading Zero Detector (LZD).

Applying a straight forward combinatorial approach in designing
the LZD circuit is a rather complicated process because each bit of
the result is dependent on all of the input bits, which in the case
of 64 bit word, consists of 64 inputs. For example a 64 bit LZD
circuit would consist of six outputs, each dependent on 64 inputs. It is
obvious that such large fan-in dependencies are a problem and that the
resulting circuit is likely to be complicated and slow. To design such
a circuit using computer aided Boolean minimization techniques or
the Karnaugh map method is cumbersome and slow and the resulting
design does not exhibit any structure. An immediate solution would
be to resort to the use of the logic synthesis tools and “let the tool
do the job™. This is perhaps the most commonly practiced approach,
for any of the complex and complicated circuit of which LZD is a
very good example.

Characteristic of the LZD circuit s its concise functional descrip-
tion. It is also very easy to describe the circuit using any of the
common hardware description languages. Such a circuit naturally
leads itself to the use of logic synthesis by describing the expected
functionality in VHDL and simply letting the computer to do the rest.

On the other hand, we can use some intelligence in designing the
circuit by attempting first to identify some common modules and
impose hierarchy on the design. The LZD circuit in particular, is
quite suitable for exploring possibilities of hierarchical and structural
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TABLE I
Two Bir TrutH TABLE FOR LZD
Pattern Position Valid
1X 0 yes
01 1 yes
00 X no

design. This yields to substantial improvement of the circuit regularity
and speed, compared to straight-forward minimization. The resulting
circuit performs well with low and regular fan-in and fan-out,
leading to better wireability and better layout. However, LS tools
have not yet reached a level of sophistication which can deal with
hierarchical structures and create or impose hierarchy in the design.
Their approach is to rather expand the logic in one level and optimize
it via elaborate and laborious logic minimization, using hours of CPU
time yet not being able to identify common modules and hidden
structure. Therefore, the design presented in this paper results not
only in an efficient and fast LZD, but also provides an efficiency
measure of the logic synthesis tools and their limitations.

II. DESIGN USING AN ALGORITHMIC APPROACH

In our approach we use the inherent hierarchy associated with the
leading zero detection process and map it into a hierarchical and
modular design. In order to understand this design process, let us
begin by first examining only the two bit case, as shown in the Table
1. The pattern on the left designate the possible two bit combination.
If the left-most bit is “1” we assign “0” to the Position and “1” to the
Valid bit indicating that there is zero distance from the left-most bit
to the first nonzero bit. If both bits are “0”, we would set Valid bit to
0 indicating that this is not a valid position. Not only is this because
we have only one bit to indicate position, but the next two-bit group
might have more zeroes to follow and therefore position information
is not complete. It is straightforward to construct the logic for the
two bits representing the valid bit (V') and the position bit (P) as
shown in Table L

We can easily extend the two bit case to the four bit case. Let us
designate the position bits (4 bits total) as PO for the left-most two
bits and P1 for the right-most two bits as shown in Fig. 1(b). Also, we
will designate V0 and V1 as the valid bits for the first two and second
two bits respectively starting from the left to right. The leading zero
position can be represented as a function of those four bits as shown in
the fifth column of Fig. 1(a) (minus sign represents complementation).
Also, it should be noted that we are using “Big Endian” notation, i.e.,
we start indexing from left to right (this notation is used by IBM).

The 4 bit circuit has a depth of 2 logic levels; in the second level
the valid bit is formed as a logical OR of the valid bits from the
previous level. In other words, if there is a “valid” string of bits
within the group in the previous level, then this group has a valid
position bit. If all of the groups, however, do not show a “valid”
output, this simply means that there are a string of zeros and that the
first nonzero bit can be expected only within one of the groups to
the “right”. The left valid bit V; is inverted and concatenated with
P, if Vo = 1, or with P, if Vo = 0 and V1 = 1. This is achieved
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8-bit LZD
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1011 0 00 yes (-VO)PO O g ] g
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LZD4
v P Vv P
V¥ Vv
(b) (b)
PO P1 VO V1 Fig. 2. Design of an 8 bit LZD. (a) Truth table. (b) Using two 4 bit LZD’s.
1(c). This implementation is particularly fast because the propagation
T—0 delay of the multiplexer is smaller than the propagation delay of a
—Ux gate. This is the case in several CMOS and ASIC libraries such as
the ASIC library from LSI logic corporation [3].
A 4 bit LZD can also be implemented in one level directly from
Fig. 1(a), avoiding the need to go into the above exercise. A one
2 level implementation of a 4 bit LZD is shown in Fig. 1(d). It is not
, P v necessary that we limit our design to 2 bits per level. Naturally, the
© implementation depends on the technology used. The entire concept
5o can be grouped in 4 bit groups. In a technology that tolerates high
Bl B2

Pl PO
(d)
Fig. 1. Design of a 4 bit LZD. (a) Truth table. (b) Using two 2 bit LZD’s.

(¢) The logic sturcture of the 4 bit LZD block. (d) One level implementation
of the 4 bit LZD.

by simply multiplexing PO and P1 to the output of the multiplexer.
The logic structure of the 4 bit LZD group (LZD4) is shown in Fig.

fan-in and fan-out we can compress even more bits into one level or
one logic tree (such as in the case of ECL technology).

Now we can take two groups of 4 bits and form a LZD for an 8
bit word by simply following the same concept that we did in the
example of 4 bits. The truth table is given in Fig. 2(a) and the design
in Fig. 2(b).

From the above discussion we can deduce the hierarchical structure
for the LZD and arrive at the following algorithm for generating the
number of leading zeros:

Algorithm for generating LZ count:
(1) Form the pair of bits B;, Bi11 fori =0 to
N -2 with bit 0 being the leftmost one
(2) Determine P and V' bits for each pair
(3) for the next level determine the Py and
V, bits as function of two pairs of inputs
P and V in this level in the following way:

V, = Vi + V.. where “+” is logical
OR operation of the left and right inputs

if V; = 1 then Py = 0, P, where “,”
designates concatenation
else if V., = 1 then P, =1, P,
othervise V; = 0

Repeat step (3) log(N) — 2 times



126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 1, MARCH 1994

TABLE I
PERFORMANCE OF THE NEwW LZD Circuit
UNDER NOMINAL AND WORSE-CASE CONDITION

Bits WC [nS] NC [nS]
25 7.69 449
1 32 7.7 4.52
(I 53 9.08 535
(I 64 9.09 537
112 10.7 641
Fig. 3. ’3; bit LZD circuit composed of 2 bit groups. 128 10.7 6.43

TABLE II
SMULATION CONDITIONS

Tox=150A, VT=0.6V, Lef=0.6u
Rmetal 1=120 mohm/sq

NC
wC

40V,125C
28V,125C

Nominal

Worse Case

It can easily be concluded that the logical depth of this circuit
is log,(IV) stages where the path through each stage is of the
complexity of the multiplexer or one level of equivalent logic. The
multiplexer is actually implemented using a pass-transistor structure
and therefore is even faster than a regular CMOS gate. This is
the reason for the extraordinary speed of this scheme for the LZD
implemented in CMOS. In addition, we might want to save one
level and implement this scheme in log(N) — 1 levels instead of
log(N) levels. This is achieved by starting with the groups of 4
bits and proceeding in the way described by the algorithm. Using
CMOS technology, this is usually the best that can be achieved in
terms of logic levels, because any further compression of the number
of levels would pass the point of diminishing returns by increasing
the fan-in and fan-out of the circuits, thus negatively affecting the
speed. However, the same concept can be applied to groups of 4 bits
instead of 2 bits, which is more appropriate for ECL and BiCMOS
technologies. In that case there is an additional speed advantage,
because the speed of this LZD implementation is proportional to
log,(N) stages and therefore faster. The structure of the 32 bit LZD
composed of the 2 bit groups is shown in Fig. 3.

11I. IMPLEMENTATION AND LOGIC SYNTHESIS EXPERIMENT

We implemented six LZD prototypes of various sizes. They were
laid out and simulated for worst case conditions. In addition, we
repeated those designs using logic synthesis tools, produced layouts
and simulated the results. Qur second goal was to gain performance
by resizing the transistors as we went down the path. Larger transis-
tors result in better driving capability and their size will be increased
where space is available. Given that our structure is tree like, as the
signal moves from the first stage to the second and third, the available
space increases. By filling this space with transistors of larger size,
the resulting LZD layout takes more of a rectangular shape. Such an
approach is used successfully in an adder based on recurrence solving
[1]. Therefore our objective was to have some performance gain by
applying this findings. This provided enough data for performance
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Fig. 4. Layout of the 32 bit LZD. (a) for the algorithmic design and (b)
LS result.

analysis and evaluation of the LS tool. The technology and simulation
parameters are shown in Table II.

A. The Layout

The regularity of the novel LZD design can also be used to produce
a more efficient layout. By creating each cell as a basic building
block for each stage, the entire circuit can be routed primarily in
metal lines flowing in the direction of the data-path. This results in
better performance and facilitates the inclusion of the LZD in the
regular data-path of the floating-point or any other unit that needs a
LZD circuit.

The layout of the 32 bit LZD is shown in Fig. 4, (a) for the
algorithmic design and, (b) one obtained as a result of LS. Observe
that the algorithmic layout has 4 rows of cells which were placed
using the Timberwolf package resulting in an area of 163 x 340 p.
The results obtained using LS have a 35% larger area resulting in
186 % 403 pm. They are plotted to the same scale and placed next
to each other for easy comparison. In terms of speed, the algorithmic
LZD introduces a delay of T, = 4.5 nS, while the LZD resulting
from LS has a delay of Tt = 5.8 ns (both for the typical case) which
is 29% slower. Therefore we can say that the algorithmically designed
LZD is roughly one—third smaller and faster than the equivalent LZD
resulting from logic synthesis.
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Fig. 5. "Rectangular” layout of the LZD circuit produced using (a) the
algorithmic approach and (b) LS

We have also tried to explore the regular and hierarchical structure
of this design by applying the approach described by Vuillemin and
Guibas [1] to the layout of this circuit. The idea in [1] is to lay the
tree-like structures like this one on a rectangular pattern in such a way
that as the signal progresses down the levels, the size of the cells is
made larger, increasing their driving capability so that the signal can
drive more inputs in a shorter time. We implemented this idea and laid
out the 32 bit LZD circuit such that the width of the circuit was kept
constant. The layout of the “rectangular” LZD structures obtained
using the algorithmic approach and LS are shown in Fig. 5. They are
plotted on the same scale (as in Fig. 4) to point to the difference in
size between the algorithmic LZD (a) and LS (b). The “rectangular”
layout of the algorithmic LZD is 206 x 363 pm [Fig. 5(a)] while the
LS resulted in 181 x 473 pm. The algorithmic approach has resulted
in a 14.5% smaller layout compared to the LS result in this case.

B. Performance

The performance of the novel LZD was simulated under nominal
and worst case conditions, denoted NC and WC, respectively. The
NC and WC conditions are characterized in Table II together with the
parameters typical for this CMOS process. The table shows the speed
of the LZD for different sizes starting from N = 25 to N = 128 bits.
This is also shown in Table I(a) for the unbuffered LZD (without the
output buffers) for nominal and worst case conditions.

In terms of performance, the “rectangular” layout introduced a
delay of 6.9 nS for the algorithmic LZD and 7.7 nS for the
one resulting from LS (for the nominal case). The performance
advantage of the algorithmic LZD was 12% over LS for the NC.
For worst-case conditions, this advantage was 19%. However, when
we compared the “rectangular” layout versus the regular layout in
terms of performance in both cases, the results showed that overall,
the “rectangular” approach did not improve the performance in every
case.

The performance of the “rectangular” layout was better than the
regular layout in case of 1 pF output load. The difference was 15%
for the nominal case and 12% for the worst case which favors the
“rectangular layout. The performance difference is shown in Table
IV(a). In the case of no load (or light load) on the output, the
“rectangular” layout was worse: 10% (nominal case) and 23% (worse
case). This is explained by the fact that this circuit maintains regular
fan-in and fan-out, and neither one of them increases when reaching
the levels closer toward the output. The performance was not affected

TABLE 1V
PERFORMANCE COMPARISON OF REGULAR VERSUS RECTANGULAR 32
BIT LZD LAYOUT WITH (a) 1 pF LoAD. (b) No LoAD CONDITION.

Speed NC (WC) for 1.0pF load
[nS]

Regular Rectangular
Layout Layout
(163X340u) (206X363n)
7.95 6.9
(12.8) (114)

(@)
Speed NC (WC) for OpF load
[nS]

Regular Rectangular
Layout Layout
(163X3401) (206X3631)
4.5 493
a7 9.5)
®)

TABLE V

COMPARISON OF THE ALGORITHMIC LZD AND LOGIC SYNTHESIS RESULTS

Comparison of the Algorithmic LZD circuit with the LI obiained via Logic Synthesis
Algorithmic LZD (regular layout) LZD cbained with Logic Synthesis.
0 lond 109Flosd | regular 0 load rectang. |10 pF load
Arali] | WC | NC | WC | NC | Awald] [ WC | NC | Ama) | WC | NC
05} § [o5] | o] | [os) jos] | [nS] [05). | [n§)
163340 77 [ 4.5 128 | 195 186403 12 | 58 181%473 13.6 1 17
86mils 116mils 133mils

because the input capacitance grew proportionally, as did the driving
capacity of the gate. The increase in delay caused by the capacitance
increase, more than offset the improved driving capability, resulting
in a slight loss. Therefore, the idea [1] which worked well for a
CLA-like adder structure did not work in our case. This is shown in
Table IV(b). We observe that under the no-load conditions, the LZD
circuit obtained via regular layout performs better. However with 1.0
pF load, the rectangular LZD outperforms the regular one in both NC
and WC. This is attributed to the stronger driving capabilities of the
final stages. However, we feel that just adding stronger buffers at the
output nodes would still make the regular case perform better.

In Table V we compare the results for a 32 bit LZD using our
approach with the one obtained using logic synthesis without load
and with 1.0 pF loading capacitance on the outputs. The algorithmic
LZD outperforms the one obtained via LS under all conditions. The
only exception has been the marginal difference of 0.25 nS in favor
of the implementation obtained by synthesis which is attributed to the
rectangular layout rather than the way LZD has been implemented.
With a 1.0 pF load and use of rectangular layout, algorithmic LZD
is 12% faster under nominal conditions (6.9 versus 7.7 nS) and 15%
faster under worst conditions (11.4 versus 13.6 nS). In any one case,
we have demonstrated that our algorithmic LZD circuit outperforms
LS, and that the improvement in performance ranges from 12% (NC
rectangular layout, 1 pF load) to 56% (WC regular layout, no load).
The improvement in the area is from 14.5% (rectangular layout) up
to 35% (regular layout). This clearly demonstrates the superiority of
the algorithmic approach.
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Fig. 6. Structure of 64 bit ECL LZD circuit.
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Fig. 7. ECL structure of the second level LZD circuit.

IV. HIGH-PERFORMANCE ECL IMPLEMENTATION

In a Floating-Point processor a critical path consists of: leading
zero detector, shift and rounding operation, where each of the opera-
tions contributes approximately equally to the delay. The technology
of implementation may generally differ from low power CMOS to
ECL technology which is very relevant even today due to the renewed
attention given to it. Implementation of LZD by the algorithm
described is challenging because the rules that are applied for ECL
technology are very different from those applied to CMOS. Also ECL
has a tendency to combine as much logic as possible into one level
or logic tree, generally allowing for larger fan-in. Finding a suitable
ECL structure for any algorithmic and technology independent design
is not easy. Therefore we had to solve two problems:

1) compress the design in as few levels as possible

2) identify a common and characteristic structure that also imple-

ments itself well in ECL

The first problem has been to define a 4-way LZD structure which
teads to 3 levels (or 3 ECL trees) for a 64 bit LZD circuit. The
first level is trivial to design and it is very much similar to the 4
bit group design shown in Fig. 1(d) except by using wired-OR (in
ECL), we were able to implement everything in on the level of gates.
The structure of 64 LZD implemented in ECL technology is shown
in Fig. 6.

The second level will indicate the LZD position based on the input
from the 4 LZD groups from the previous level. The structure of
this group is not as regular as in the CMOS case. However, it was
possible to identify a common multiplexer based structure that can be
applied in general for any position bit (i = 2,3...k). This structure
is shown in Fig. 7.

Fortunately our algorithmic approach favors multiplexer structure
which suits an ECL circuit very well. The bits Po and P, (as

§ 553323

Fig. 8. ECL circuit implementation of the second fevel (64 bit LZD).

well as V) are implemented separately. The ECL tree used for this
computation is shown in Fig. 8. Itis three transistor levels high, which
is about as much as we can implement in one ECL tree. Therefore
the decision to calculate P and V' based on the input of the previous
four groups, rather than two or eight, seems to be optimal. The depth
of the n-bit LZD circuit implemented in this way is log,(n) levels. In
our case for 64 bit LZD, we have a depth of 3 ECL trees. Using the
advanced Motorola BICMOS process, this circuit produces the result
in T.r = 200 pS (nominal time) for a 64 bit LZD circuit. It should be
noted that the first level, which is one gate deep, could be integrated
into the second level yielding an implementation in only 2 ECL trees.

V. CONCLUSION

In this paper we have described an algorithmic approach to
designing a leading zero detector. This circuit has been implemented
in 0.6 ¢ CMOS technology and is compared to the results obtained
using logic synthesis under various conditions and for different layout
approaches. The algorithmic approach outperformed LS consistently,
with improvements in speed ranging from 12%-56% and improve-
ments in layout area ranging from 14.5%-35%. We have clearly
demonstrated the superiority of the algorithmic approach on this
circuit. The results generally indicate that careful analysis of the
problem and clever management of the hierarchy pays big dividends
in the performance of critical circuits, especially data-paths. Although
very useful, LS tools are still not capable of managing hierarchies and
making intelligent choices when it comes to design, and therefore
they should be treated accordingly. The resulting LZD circuit has
remarkable performance, which is important since it is often a part
of the critical path in the floating-point unit.
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