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In this paper we discuss the rules for evaluation of arithmetic algorithms based on
the speed of their VLSI implementations. We present the rules which are simple enough
to be useful for quick estimates, but yet reflect basic dependencies. By applying these
rules we derived a simple scheme for VLSI implementation of addition (ALU), with
a near minimal number of gates and small and regular area. Despite its simplicity, this

" scheme outperforms carry-lookahead and recurrence solver schemes as demonstrated
by simulation of the actual implementation of examples. This is because the properties
of the scheme are based on the dependencies and assumptions reflecting the real con-
ditions existing in VLSI-CMOS technology. We discuss these results and demonstrate
by actual implementation of examples that the measures based on the number of logic
levels are not applicable to the new VLSI technologies. © 1988 Academic Press, Inc.

1. INTRODUCTION

In many implementations of a single-chip VLSI processor, the adder (ALU)
is found to be in the critical path of the machine, therefore determining the
machine cycle. Since the duration of the machine cycle is directly related to
the performance of the machine, the speed of the ALU (adder) is critical in
achieving higher performance.

In the past, much work was done in developing fast schemes for addition,
and many different schemes and their implementations were created [1]. Their
development was guided by the rules of the technology used in those days
(TTL, ECL) and many schemes were developed approaching the limit of the
attainable speed [2].

Several papers were published, describing adders based on a recurrence
solving scheme emphasizing their feasibility for VLSI implementation [11-
16]. Recently a study of VLSI-oriented schemes was undertaken which implied
that CLA is the scheme yielding the fastest implementation. This conclusion
was supported by partially simulated sections in nMOS technology [9]. A
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similar study of “recurrence solvers” [11] was done by Han and Carlson [17,
18]. They developed a scheme which they refer to as “hybrid prefix compu-
tation”” (HPC). They claim this scheme to be faster than all previously reported
“recurrence solvers” [11-16] including CLA and our scheme [5, 6] based on
variable sized blocks, “variable block adder” (VBA), obtained by optimizing
the carry path. Their claim is supported by partial simulation using SPICE
as it was done 1n [9].

During the course of the work reported in this paper a “brute force” ap-
proach was applied—we simply implemented those representative schemes,
for the typical sizes of 16 and 32 bits [1, 5, 17, 18], and compared the speeds
obtained. For implementation we considered 1.5-um CMOS-ASIC technology
coupled to a simulator developed for that purpose [21, 22]. The timing was
obtained through an elaborate simulation of the entire design taking into
account all the loading, including wiring. The results contradicted many of
the previous findings [9, 17, 18]. Even though the recurrence solver schemes
are very elaborate, they show no gain (and even a loss) in performance due
to larger fan-ins (FI) and fan-outs (FO). Our implementation (VBA) turned
out to be faster than “recurrence solvers” and CLA for a 32-bit implementation
and a close second for a 16-bit implementation. Such an outcome was not
unexpected, because we have claimed that the measures traditionally applied
to the technologies, such as TTL, are not adequate for VLSI technologies,
CMOS in particular [5, 6-8]. This claim has been somewhat confirmed by
the practical wisdom of the industry, which does not use any of the more
elaborate schemes in the microprocessors that can be found on the market.
In this paper we attempt to explain the rationale. We discuss the features of
the technology used to implement our scheme, describe it, and compare it
with the results obtained from the actual implementations of other schemes.

2. ESTIMATING DELAY

In this discussion we used CMOS-ASIC vendor technology [21]. Even
though data are derived from an ASIC-CMOS standard cell library [21], it
can be fairly well generalized to the other CMOS technologies. Basic depen-
dencies discussed here are valid even for custom design. The ASIC library
consists of a collection of gates and cells designed for high speed and low gate
count. There are two versions of each cell:

1. a fast version with high gate count using more power (FG)
2. a standard version designed for small gate count (SG).
Their purpose is to use the fast version where it is critical to minimize the

delay. Otherwise the standard version is used to minimize the gate count
and power.
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FIG. 2. Effect of wire load on delay (for 3 X 3-mm area).

is neglected by the delay estimates based on counting levels of logic. One of
the approaches to alleviating the delay caused by nodes with very high fan-
outs is to use gates with higher driving capabilities [10]. This helps to improve
the situation somewhat, although it does increase the loading of the gates in
the preceding level due to the higher loading that the input of a FG represents.

Fan-in. Forcing a reduction in the number of logic levels may also result
in an increase in fan-in. This increase is reflected in the gate delay since fan-
in is directly proportional (equal) to the number of transistors connected in
series in an n-type transistor network (NAND gate) or p-type transistor network
(NOR gate). The gate delay vs fan-in dependency for a NOR gate is shown
in Fig. 3. To set the logic state in CMOS, a node must be connected to one
of the terminal nodes (Gnd, Vdd) by a string of transistors equal in length to
the FI. In case of a NAND gate, these transistors are of n-type (connected to
ground node). In case of a NOR gate, these transistors are of p-type (connected
to Vdd). Given that a p-type transistor (whose major carriers are holes) is
almost twice as slow as an n-type transistor, a NOR gate is slower than an
equivalent NAND gate (taking the worse of the two times, #;, f;, into account).
The opposite is true for bipolar technology where a wired-OR implementation
is used to obtain a major speed advantage factor. Also, it can be observed
that in the case of a NOR gate, the rise time £, is longer than the fall time #,
contrary to the NAND gate where the opposite is the case. This is to be
expected from the previous observation regarding the transistor paths.

Since the time required to change logic states is directly proportional to
the number of transistors in the path between the terminal nodes (worst case),
which is equal to the FI, the larger the fan-in, the slower the gate.



718 OKLOBDZIJA AND BARNES

2.1. Delay Dependency

Commonly used speed estimates take into account the number of logic
levels only [1]. However, the speed of CMOS technology shows a dependency
on fan-out loading and fan-in. Wiring delays are attributed to the loading of
gate outputs and signal propagation delays. The first is expressed in terms of
additional fan-out loads and added to the gate output. The second is added
to the gate delay.

Fan-out. CMOS gates exhibit an almost linear dependency on fan-out load-
ing. Figure 1 shows delay of a NAND gate as a function of fan-out load. For
a NOR gate, we observe a similar increase (increasing the fan-out from 2 to
8 results in approximately tripling the gate delay). An inverter delay resembles
similar dependency on fan-out.

The average delay due to wire capacitance is also linearly dependent on
the fan-out and its effect is in increasing linear dependency of gate delay on
the fan-out. The average amount of wiring is proportional to the fan-out and
it 1s expressed in terms of additional fan-out loading, Fig. 2. The average wire
length (expressed in terms of fan-out) is a function of chip size. Both functions
exhibit a linear relationship (for chips of moderate area) and the wiring is
reflected as additional fan-out in the gate delay calculation.

The relationship between gate delay and fan-out can be approximated fairly
well by a linear function. Increasing the fan-out results in more delay which
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FI1G. 1. NAND gate delay vs fan-out: ND2P is the powered version of a NAND gate. t,, rise
time; t¢, fall time.
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This simple analysis also challenges the validity of just using the number
of logic levels as an adequate estimate of the speed of an implementation as
has been traditionally used in development of fast computer arithmetic. How-
ever, estimates based on logic levels are still adequate for bipolar technology
and other technologies where the driving capabilities of gates are such that
the influence of fan-out and wire loading on speed 1is negligible. With CMOS
becoming the dominant VLSI technology, estimates based solely on the num-
ber of logic levels are no longer valid. In summary, implementing functions
in a minimal number of logic levels does not necessarily yield the fastest
implementation.

2.2. Delay Estimates

Here we propose simple formulas for estimating the speed of a CMOS
implementation. They are derived from the delay tables for the particular
ASIC technology [21] and simplified to make them easier to use. All delays
are normalized to delay unit of 1 (delay of an inverter). The formulas are
simple to use yet they reflect the real parameters affecting the delay of a
CMOS gate. As estimates of the speed, they can be used generally for other
CMOS designs including custom. The parameters used to estimate the delay
6 are Fo, fan-out of a given gate; (F1 — 2), fan-in in excess of 2.

The formulas for calculating estimates for NAND gate, NOR gate, and

inverter are
6NAND =1+ 0.3Fo + OS(FI - 2)

6NOR =1+ 0.5Fo + 05(F1 - 2)
5INV = (0.7 + 0.3Fo.
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We found that these estimates adequately model the main contributions to
the delay. In addition these equations reflect the facts that

« in terms of a delay, NAND gate is slightly less sensitive to fan-out
loading than NOR gate and

« an inverter is faster than NAND and NOR gates.

For the fast version of the gates (FG) which uses a more powerful driver
to drive a large fan-out load, we similarly obtained

5NAND-F =1+0.125Fo + OS(F] - 2)
5NOR-F =1+ 0.25Fo + OS(FI — 2)
6INV-F = (0.3 + 0.125Fo.

We used these equations to obtain some meaningful comparison of the al-
ternative implementations. This resulted in much better estimates than those
obtained using logic levels and the agreement with measured speeds was much
closer (as shown in Fig. 7). These relations are used as a base for derivation
of a new scheme.

In the next section a suggested scheme for ALU implementation is described.
We compare it to the results of actual CMOS implementation of other schemes
and present results supporting our claims about speed.

3. SUGGESTED SCHEME

Our scheme is based on using variable sizes of carry blocks in the carry
chain implemented as carry-skip adder [3, 4]. The sizes we use are chosen to
optimize the speed of the carry path. We refer to our scheme as VBA (variable
block addition) [5, 6-8].

3.1. Derivation of the Scheme

For a 32-bit adder, and the VBA scheme, we divided the carry chain into
blocks of sizes 1, 3, 5, 7,7, 5, 3, 1. We will now explain why this division is
optimal. Let ¢ denote the time required for a carry signal to ripple acrgss a
bit in the carry chain, and let 7 denote the time required for the signal to
skip over a group of bits. By simulation of the blocks, we have found that ¢
= (0.8 nsand 7 = 1.6 ns. To simplify our analysis, we normalize them so that
t = 1 and T = 2. Then we apply the theory developed in [5] for finding the
optimal division of a carry chain.

Let m denote the optimal number of groups for an n—blt carry chain. By
Lemma 1 in [5], m is the smallest positive integer satisfying
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n<m+ 12mT + 1/4m*T + (1 — (—1)")T/8.

Given m, an optimal division of the carry chain into groups can be obtained
as follows. Let

vi=min{l +iT, 1 +(m+ 1 —0)T}, i=1,..., m
Given yy, . .., Vm, solve the minimization problem
min max{Xxi, ..., X,}
X
subject to
0<x;, <y, i1=1,..., m,

and

m

2 X; = n.

i=1
Any solution xi, ..., X, gives optimal group sizes for a division of the
carry chain.

The x’s can be computed iteratively as follows: Initially take x, = - -
= X, = 0. At each iteration, increase as many of the x’s as possible by one
unit, without violating the constraints 0 < x; < y;, i =1, ..., m, 27, x; < n.
An easy calculation shows that

yi=m+12mT + 1/4m*T + (1 — (—=1)Y")T/8 = n.

M 3

—ﬁ.

Thus, at some iteration, we have 272, x; = n and the algorithm terminates.

Forn=32wehavem =7,y =3, =513=7,p4=9,ys =7, ys = 5,
y7 = 3. The above algorithm gives x; = 3, x, = 5, x3 = 5, x4 = 6, x5 = 5,
X6 = 5, X = 3. A carry chain divided in this way has maximum delay
A = mT = 14. Since one unit of delay in our system is 0.8 ns, the maximum
delay for our 32-bit carry chain is A = 14 X 0.8 ns = 11.2 ns. This time
involves only the delay in the carry chain. It is easy to check that this is also
the delay for a chain divided into groups of sizes 1, 3, 5, 7, 7, 5, 3, 1. Thus,
this is also an optimal subdivision.

The worst case delay includes the time needed to generate p; and g; signals,
delay of the carry chain, and the time for producing last sum bit s,,.

3.2. Implementation

The implementation of our scheme will be described for a 32-bit adder
(easily modified to an ALU). The size of the blocks varies with the size of the
adder and is different in the 16-bit case. The critical path is the carry signal
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path. We implemented it with a string of multiplexers, as shown in Fig. 4,
taking advantage of the fact that the multiplexer cell is designed to be very
fast. Another reason for using multiplexers is that they are designed as very
fast structures using buffered pass gates and in this sense are similar to the
“Manchester carry chain” [3], [23] which has been shown to be the most
effective implementation of a carry chain [5, 23].

The implementation of a single carry block is done by mixing a 4 to 1|
multiplexer (actually used as a 3 to 1) in the last stage with a string of 2 to 1
multiplexers. A carry bypass is connected to inputs 3 and 4 of the 4:1 mul-
tiplexer (group carry multiplexer) and the selection of the carry bypass is
activated by the NAND gate signaling when the condition for “group prop-
agate” is reached and activating the group multiplexer in turn. It is shown in
Fig. 4.

The 32-bit implementation of the VBA adder is obtained by connecting
the groups of the sizes calculated in Section 3.1 for the full length of n = 32
bits. To increase the speed further, we used a faster inverting version of the
multiplexer, alternating between C; and C; signals. _

Design was simulated for a number of input combinations (test cases), each
involving a potentially critical path. The simulator used was LDS-III [22],
which takes into account the average wire length, loading imposed by input
transistors, intrinsic gate delay, and rise/fall time. Experience with a very large
number of cases has confirmed the accuracy of the simulator.

For our 32-bit implementation the worst case obtained had a delay of 7,
= 14.2 ns.

4. COMPARISON WITH IMPLEMENTATIONS OF REPRESENTATIVE SCHEMES

Given that the speed of a particular scheme can be judged only by its
implementation, we decided to measure the speed of the best possible imple-
mentations of their representatives. In the course of designing them, we took
great care that the implementations are truly the best possible for a given
technology and cell library.

A preliminary pass through all the blocks was applied to identify heavily
loaded nodes (larger fan-outs or driving longer wires). At these nodes, gates
with stronger driving capabilities were used. Also, in every block a combination
of gates (NAND-NAND, NAND-NOR, etc.) yielding the fastest implemen-
tation of a given function was applied. This was estimated from the gate delay
vs fan-out load tables [21] for each gate. After the network compilation and
first simulation pass, all the rise/fall times on all the nodes were checked, and
those with rise/fall times longer than 3.0 ns were flagged [22]. At this point,
the design was sped-up by introducing the fast version gates and splitting the
fan-outs into separately driven logic.
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In the final pass, the critical path was examined, replacing gates with their
faster version, FG, where applicable, and reducing the loading. After several
iterations through the design and simulator this process converged. The results
reported were obtained by running the entire designs through a very accurate
stmulator [22].

We decided on implementing the following schemes:

1. nipple carry (RCA)

2. carry look-ahead (CLA)

3. recurrence solver (HPA)

4. variable block carry (VPA).

All of the examples were implemented for two sizes, 16 and 32 bits, taking
care that each implementation was optimized for speed. In the case of the
HPA we implemented the 16-bit scheme reported in [17] (claimed to be the
fastest compared to other 16-bit implementations), while for 32 bits we used
the 32-bit implementation reported in [ 18], by the same authors. It is different
than their 16-bit scheme. Their 16-bit scheme has fan-out restriction to FO
= 2. while the 32-bit scheme has no fan-out restriction.

In order to ensure that a given scheme was implemented in the best possible
way, we made several iterations through simulation and back through design.
The fast version FG (power gate) was applied at any node where the substi-
tution yielded a performance improvement over the use of a normal version
SG. This substitution procedure eliminated the possibility of overloading the
design by using too many of the FGs. In addition, we used the combination
of gates (NAND-NOR) which resulted in the fastest implementation. This
was done in accordance with the measures described in Section 2 of
this paper.

4.1. Results

The respective speed comparison obtained for the selected schemes is shown
in Fig. 5.

The complexity of each design is measured as a ““gate count,” which is a
number of equivalent two-input gates (one gate consists of four transistors).
The gate count for the implementation of each representative scheme is shown
in Fig. 6.

From Figs. 5 and 6 we can observe that the implementation of the VBA
scheme yields the fastest adder for the size of 32 bits and it is second best in
terms of complexity measured in the number of gates used. In terms of com-
plexity, measured by the equivalent two-input gates used, HPC uses 458
equivalent gates versus 348 used by VGA. That means that 31% more gates
are used to achieve no advantage at all. It would be reasonable to expect that
if wiring complexity is added to this complexity measure, the VBA imple-
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mentation would gain even more of an advantage given its regular structure
and relatively low fan-outs.

4.2. Comparing Estimates

We estimated the speed of each scheme by using the “number of logic
levels” estimate (columns 1, 2 in Fig. 7). Based on this estimate for the size
of 32 bits, the HPC scheme seems to be the fastest as concluded in [18], while
1n practice it was a close second to VBA. It should be noted that the 32-bit
HPC scheme has no fan-out restriction and therefore has fewer levels of logic
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FIG. 6. Complexity of the implementation (various adders vs size).
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Estimated by the Estimated using Simuiated
Delay # of Logic Levels| the new meassures
e ize| 16 32 16 32 16 32
RPL 16 32 20 .. 40 |15.7 | 29.3
CLA 8 11 10.9 16.9 | 12.3 15.0
HPC 13 10 10.2 15.5 g.7 14.4
VBA 10 14 9.7 | 12.2 | 10.8 | 14.2

FIG. 7. Estimated and simulated delay of various adder implementations.

than its 16-bit version. Therefore this estimate also shows 32-bit HPC to be
even faster than the 16-bit one. .

Finally, we applied the formulas developed in Section 2 to compare the
speeds of the test schemes. The results obtained are presented in columns 3
and 4 of Fig. 7. The delay estimates, obtained by applying estimates proposed
in Section 2.2 (rather than “levels of logic”), are showing much closer resem-
blance to the delays actually obtained. This is true in terms of both relative
speed and ranking.

5. CONCLUSION

In this paper we argue that fundamental measures (e.g., number “levels of
logic’) used in the course of much of the development of computer arithmetic
schemes and their hardware implementations are not valid when applied to
new VLSI technologies (such as CMOS). Therefore it would be a mistake to
simply map the designs of these earlier schemes directly into their VL3I-chip
implementations.

The measures of speed need reevaluation and new measures are proposed
in this paper. Our measures reflect basic speed dependencies and therefore
represent more realistic measures for estimating the speed and efficiency of a
particular algorithm in terms of its VLSI implementation. We feel that the
arithmetic algorithms, developed historically, should be used judiciously and
reevaluated prior to their implementation rather than being mapped directly
into VLSI hardware. The way in which they were evaluated and ranked in
the past may no longer be valid and other algorithms, sometimes overlooked
and neglected, might yield an implementation with superior performance.

By examples, we have shown that some schemes, thought and claimed to
be superior, actually fall short. Based on theoretical estimates, we claimed in
[5] that VBA would be slightly slower than CLA. The examples showed VBA
implementation to be actually faster which confirms the validity of our ar-
guments.
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Finally, the practical wisdom of this analysis would be to recommend sim-

plicity and regularity in the course of VLSI design.
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