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JAMES E. ROBERTSON{}

Summary—This paper describes a class of division methods best
suited for use in digital computers with facilities for floating point
arithmetic. The division methods may be contrasted with conven-
tional division procedures by considering the nature of each quotient
digit as generated during the division process. In restoring division,
each quotient digit has one of the values 0, 1, - - -, r— 1, for an ar-
bitrary integer radix r. In nonrestoring division, each quotient digit
has one of the values —(r—1), .-, =1, +1, - - » +(r—1). For
the division methods described here, each quotient digit has one of
the values —n, —(n—1), -, ~1,0,1, - - - , n—1, n, where nisan
integer such that §(r—1)<n<r-1. A method for serial conversion
of the quotient digits to conventional (restoring) form is given. Exam-
ples of new division procedures for radix 4 and radix 10 are given.

INTRODUCTIQN‘

DIVISION method can be categorized by listing
A the permissible values of each quotient digit as
generated during the division process. For an
arbitrary radix r, each quotient digit generated during a
conventional restoring division has one of the values
0,1, - - - ,r—1. For nonrestoring division each quotient
digit has one of the values —(r—1), —(r—2), - - -, —1,
1,2, ..., r—1, with 0 excluded. The purpose of this
paper is to describe a class of division methods in which
each quotient digit has one of the values —n, —(n
-1),---, =1, 0,1, -+, n, where n is an integer
such that §(r—1) <# <r—1. Conversion of the quotient
to the conventional restoring form is required for the
latter two classes of division methods.

Division, as exccuted in most digital computers now
in use, involves a recursive process which may be pre-
ceded by preliminary operations and followed by termi-
nal operations. Most of the time required for a digital
division is spent in the repeated execution of the recur-
sive process. For nonrestoring division and for the class
of division methods proposed here, the recursive process
can be described by

Xy = 135 — @yad Jj=01.--,m-1

for which the following notation is employed:

x;=partial remainder resulting from the jth execu-
tion of the recursive process -
xo=dividend
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xXa=remainder
g; = (for fractions) the jth digit of the quotient to the
right of the radix point
m =the number of digits, radix r, used to represent
the quotient
d=divisor. '

Each x;(j=0, 1, - - -, m) satisfies ]x,-l Skldl. and
the sign of each g¢;4; is chosen so that | 2541] = | (7] =;
—|gsl|d])|. A straightforward but lengthy analysis
of all cases that may arise reveals another property of
each quotient digit, namely [q;+1l <k(r—1). For non-
restoring division, k=1; it is shown that division meth-
ods exist for certain discrete values of % in the range
1<RL1 ‘

From the equation for the recursive process it can
be shown readily that the division procedure is correct.

For j=0, :

%1 = rx9 — qd.
For j=1,
Z2 = 13y — @od = r’xy — (rqy + ¢a)d.
For j=m—1,
T =0 — (' + ™l - rge o+ ga)d.

The shifted remainder r™x,, is then
-
=z, =zxo—d ) rig
=1
where

L ]

2 i

=1

represents the quotient Q. It follows that Qd+r—=x,,
=xp; .e.,, the sum of the shifted remainder and the
product of the quotient and divisor is the dividend.
The mechanization of the recursive process requires
three distinct steps. i

1) The partial remainder x; is shifted, i.e., multiplied
by the radix r.

2) One of several permissible arithmetic procedures js
sclected, such that the maximum absolute value
of rlx,l, namely krldl , is reduced by the amount
1/r, so that the result x,,; satisfies |x,-+1| 5).»[d| ]
It should be emphasized that the reduction is in
the range over which partial remainders may vary,
and not necessarily in the absolute values of
specific partial remaiuders.

.3) A quotient digit is generated corresponding to the
arithmetic procedure sclected.
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The key to the study of division methods lies in the
analysis of arithmetic procedures which reduce the al-
lowable range of absolute values of the shifted partial
remainder (rx;) by the amount 1/r.

ANALYSIS OF ARITHMETIC PROCEDURES

It is convenient to normalize the partial remainders
with respect to the absolute value of the divisor. If the
substitution z;=x,/|d| is made, the range restrictions
become —k<z;;1 <k and —rk<rz;<rk. Attention then
is focused on arithmetic procedures which transform
r2; into z,41. The easily mechanized procedures involve
addition or subtraction of integral multiples of the
divisor from rx; to yield x;,.; after normalization, the
procedures involve addition or subtraction of integers
from rz; to yield 2;;,. The arithmetic procedures can
be represented as a family of straight lines of the form

$iy1=r8;—1, where t1=—mn, ..., —1,0,1,2,.-., n,
as shown in Fig. 1. «
ot
Ty 2
- """‘ ‘ LT
' Vs “"/-4 / “
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Fig. 1—A normalized graph illustrating arithmetic
procedures during division.

In order for one of the proposed class of division
methods to exist, it must be possible to superimpose a
rectangle on the family of straight lines of Fig. 1 in
such a way that the following occur.

1) The rectangle is centered at the origin, with
vertices at (+rk, +k).

2) The projections on the rz; axis of the line segments
within the rectangle cover that portion of the rz;
axis within the rectangle.

It follows from the first condition that the vertices
of the rectangle lie on the lines through the origin of
slope +1/r, whose cquations are 2;,1 = +2;. The second
condition requires that the rectanglc be sufficiently
large to insure that 2> }. Two additional considerations
govern the choice of size of the rectangle, 1.e., the choice
of k and of n.

3) The number of lines of the form z;,, =rz;—1 neces-
sary to satisfy condition 2) should be minimized.
The number of multiples of the divisor which must
be formed is proportional to the number of lines
cmployed.

4) The overlap of projections of the line segments on
the rz; axis should be maximized. The precision
necessary in the selection process decrcases as the
overlap increases.
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The two considerations are mutually contradictory
since 3) requires that the size of the rectangle should be
decreased and 4) requires that the size be increased.

The considerations govern the choice of % to the
extent that % should take one of a discrete set of values
such that the vertex (rk, &) of the rectangle lies on a line
2;41=rz;—n. Any one division method can then be char-
acterized by the positive integers chosen for r and fcr n.

The value of k as a function of 7 and 7 can be found
by solving for the point of intersection of the lines
2;y1=2; and 2;,1=rz;—n. The value of z,;, at the point
of intersection is k, and is found to be n/(r—1). The
requirement that k>4 becomes n2> (r —1)/2.

The choice of n for some given radix r involves a
balance between time and equipment costs associated
with the selection process, on the one hand, and similar
costs in forming multiples of the divisor, on the other.
Since the balance is so much a function of design details,
the choice of = is discussed further only in connection
with specific examples.

QuoTIENT CONVERSION

The conventional representation of a quotient re-
quires that each digit be one of the positive integers
0, 1,.-., r—1. Since nonrestoring division and the
method described here involve negative digits in the
quotient, some means of conversion is required. The
technique employed in conventional nonrestoring di-
vision, except for the special case of the binary system,
can be described for a radix complement representation
by the following rules.

1) If ¢1<0, replace ¢ by ¢ =r+gq: and set the sign
of the quotnent negative; if >0, ¢/ =qi, and’the
quotient is positive.

2) For j=1, 2,..., m—1, inspect g/ and g4
If ¢;411<0, replace ¢;/ by g¢;’—1 and replace
@1 by gin'=r+g;n. If ¢;11>0, g/’ is left un-
changed, and ¢;;1/' =g

The rules require a serial inspection of the quotient
digits, the most significant digit first. When a negative
digit is encountered, it is added to the radix, and a unit
is borrowed from the next most significant digit.

For the proposed division method, the conversion is
complicated by the fact that 0’s are permissible quotient
digits. The inspection of the sign of g;41 (or ¢ in rule 1)
must be replaced by an inspection of signs of the divisor
d and thc partial remainder x; (xo in rule 1) to determine
the sign of the next nonzero quotient digit. Agrecment of
signs of x; and d corresponds 1o ¢;;1>0 in the above
rules; disagreement corresponds to g;,1<0. Alterna-
tively, signs can be determined in the usual way and
can be associated with those ¢;41 which are zero. These
modifications provide for a borrow propagation through
a scquence of 0's,

Both scts of conversion rules require that no quoticnt
digit ¢; be such that lq,I >r—1. In particular, the
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parameter #n is one value that |g;| can assume, and
therefore n<r—1. Thus, n is restricted to the range
$(r—1)<n<r—1, since it was established previously
that n>4(r—1). ot

PRELIMINARY AND TEKMINAL OPERATIONS

Some of the requirements which necessitate prelimi-
nary or terminal operations for division methods are
listed below.

1) The requirement of standardizing the quotient, in
a floating point division, and the requirement of
overflow detection in a fixed point unit.

2) The requirement for a rounded quotient.’

3) The requirement that a correct remainder be
generated.

»

Procedures vary in computers now in use. For the di-
vision methods described in this paper, the above re-
quirements necessitate comparable preliminary or termi-
nal operations.

An additional requirement imposed by the division
methods discussed is that each partial remainder x;
should satisfy |x;| <k|d| where d is the divisor and
$<k<1. In particular, the restriction applies to the
dividend x,, and may necessitate additional preliminary
operations for division methods for which k<1, in
contrast to conventional procedures for which k=1.

Preliminary standardization of the divisor simplifies
the selection of the correct multiple of the divisor during
the recursive process, since the precision required for
selection increases as the minimum absolute value of the
divisor decreases. The proposed methods, therefore,
are best suited for use in arithmetic units having facili-
ties for floating point operations. The methods can be
used for fixed point division if facilities for simultane-
ously shifting divisor and dividend are available.

Additional problems are posed when a remainder
x. must be generated such that the division algorithm
Qd+r"x.=x, (where Q is the quotient represented
by m digits, radix 7; d is the divisor, and x, the dividend),
is satisfied. If d and x, are initially shifted left p digital
positions so that d’ =rrd and x,’ =rPx,, then the value
of xa’ such that Qd’+r"x.’=x,’ is found to be x,’
=¢?x,. For a fixed point division, it would thus be
necessary to shift the remainder x..’ p digital positions
right to obtain thc correct remainder x..

A sccond difficulty arises when the quotient conver-
sion rulcs require the least significant digit g.’ of the
converted quotient to have the value r. If, as is often
the case, facilities for addition are not available for the
quotient register, g.’ can be sct to the value r—1, and
the remainder x, must then be replaced by x.’ =x.+d.
The division algorithm hecomes

T (@ = r )+ (5w + d) = 1

Similar results are obtained when conventional non-
restoring division methods arc employed.

J
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Example 1—Radix 4 Division

Conventional radix 4 division methods require either
two uses of a binary adder (use of one adder sequentially
or two adders in parallel) or the formation and storage
to full precision of 3d, where d is the divisor. The di-
vision method of the class proposed here with r=4 and
n =2 requires a single binary adder, conditional doubling
and complementing circuits, and a selection circuit to
compare rx; with 0.5d and 1.5d to a precision of 7
binary digits, if $<|[d| <1.

The mechanization of the division scheme is indicated
diagrammatically in Fig. 2. - ’

Xt
)
7
~{37. 37 ~—oomLaG ¢

SELECTION CRCUT
(17 SIGN_ COMPAMSON
721 4%, , (34
(37 4x,”, 094

4
Fig. 2—Radix 4 division.

The selection circuit performs three functions, based
upon the seven most significant binary digits of 4x; (or
x; if desired) and of d.

1) Compares signs of x; and d. If signs agree, the
complementing circuit is set to subtract; if signs
disagree, the complementing circuit is set to add.

2) Compares absolute values of 4x; and 1.5d. If
4|x;| >1%|d|, the conditional doubling circuit
must be set to form 2d. If 4|x;| <1}|d|, the cir-
cuit must be set to form d. If 13| d| <4|x;| <1%]4|,
the conditional doubling circuit can be set either
way, depending upon the design details of the
selection circuit.

3) Makes a similar comparison of absolute values of
4x; and (4 +})d. For the smaller values of 4!::,-[ ,
x;y1=4x;; otherwise x;,1 is transferred from the
binary adder.

After x;41 is formed, 4x;41 is formed by a radix 4 left
shift to replace 4x;. The values selected for the quotient
digit ¢;41 must correspond to.the selections made, as sum-
marized in Table I.

TABLE 1
Selection 1 Selection 2 Selection 3 g
Subtract 2d @i 70 +2
Subtract 1d gin =0 +0
Subtract 1d Qi1 70 +1
Add 24 »0 -2
Add 1d =0 -0
Add 1d »0 -1
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Example 2—Radix 10 Division

From the many possible choices available to the de-
signer, the radix 10 division method of this example is
based upon the following. :

1) The excess three representation of decimal digits
is chosen.

2) A single decimal adder (excess three code) is used
sequentially.

3) Storage is provided for the divisor d, but not for
any of its multiples.

4) A complementing circuit and a conditional dou-
bling and quintupling circuit are employed, with
+d, +2d, and +5d available as inputs to the

adder.
$) The division method is characterized by r=10,
n=17, with
”n 7
k= =—-
r—1 9

Doubling and quintupling circuits can be described
"by the sets of Boolean equations

g=b0eVeVde)\Va(dVe))
r=2¢@ (ade \/ ade)
s=a®dDe
f== @

for doubling

and
P 1
w=g2VbdV )V eV d)
x =0 @ (ecd \V 22d)
y=2@cdd
s=d

where, in excess three notation, @, b, ¢, d; ¢, 1, s, ¢; and
v, w, x, y represent one decimal digit of the divisor,
2x(divisor), and Sx(divisor), respectively.

For doubling, ¢ is the binary carry input and u is the
binary carry output to the next most significant decimal
digit. For quintupling, ¢ and z are most easily described
as incoming and outgoing binary borrow signals in a
halving circuit, with a wired-in decimal shift of v, w, x,
and y converting the halving circuit to a quintupling
circuit.

1f the permutation a’=b, ¥’ =¢, ¢'=d, d'=e¢, ¢'=4
is made in the divisor digits, and the permutation
v=g, w=g, x=r, y=5, 2={, at the output of the circuit,
the doubling circuit is transformed into a quintupling
circuit. Thus the same hardware can be used sequen-
tially for both doubling and quintupling, provided
permutation and complementation of input and output
signals is correctly arranged.

The arrangement of hardware required for the di-
vision scheme is shown in Fig. 3. The two steps required

for quintupling
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for the generation of each decimal quotient digit can be
described as follows.

Each quotient digit ¢;,1 can be decomposed into two
digits g;41’, giw1’’, such that g¢iu1=g¢j41"+¢j1"’, where
gisy'=—5,0,0r 5and ¢;//'=—2, —1, 0, 1, or 2. Step
1 corresponds to the determination of ¢;41” and results
in the formation of a quantity x,;1’ such that

Zjy' = 10x; if ¢j4)' =0
or ‘

| 2’| = | (10] ;] —5]|d]) if g’ = £ 5.

DECWAL
ADOER
q"j | ‘?“s 3
— COMPLEMENTING
-L*_IE] circar
PERMUTATION
""EE._‘cmwrs
(ad
m.tc:m cmeurr EXCESS 3
SN POUBL W
11) COMPARE 10 X;, 2584 — . c(mru:r.m‘;”
B9 COMPMRE Xy, 1.5, L Z‘] cmeuir
(2D COMPARE X;¢ 1, O 54 L—1
fz,53) —
CL]

Fig. 3—A decimal division method.

Step 1 reduces the range 0<10|x;| <7§|2| to
0_<_|x,+1’| <2i|d . The result of step 2 is x;41, whose
range is 0_<_|x,-+1 <$—ldl . Step 1 is not required when-
ever ¢;41’ =0. The details of operations performed for all
ranges of 10x; and x;;,’ are summarized in Table II.
The overlap of §|d| in the ranges is such that three
decimal digits of d and of 10x; or x;41” are required for

TABLE 11
Range of 10x; Step 1 giv’ Range of 25,/
~1§ld| <105;<~23[d| Add 5]d| -5 ,
~2§ld|<10< 2§ld| Notrequired  O0f{—2§d| <sjur'<2§!d]
2}1d1 <10x;<  7}1d]  Subtract S|d| +5)
Range of x4y’ Step 2 giv” Range of x;,.
=2%|d| <z’ <—131d|  Add 2]d| -2
—1%ld] <xjy’ <~ $ld]  Add |d] -1
- Jdl<m< Rl O} —§1di <z <}ld]
3ld] <zi'< 1}ld]  Subtract {4 +1
131d] <x’'< 2}ld]  Subtract 2|d] +2
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comparison, provided d is standardized to the range
1/10<|4d| <1..

The average number of operations neccssary for the
division method, assuming all quotient digits —7, - - .,
+7 are equally likely, is 13 operations per digit of the
quotient. This figure is to be compared with 3.4 opera-
tions per quotient digit for a conventional nonrestoring
. division method employing doubling and quintupling
circuits.?

CoNcCLUSION

The new methods of division described here, when
coupled with two rather obvious comments, show
promise of leading to new developments in digital
arithmetic. These comments are:

1) Multiplication is the inverse of division.
2) The representation of quotient digits is, at least
in the interesting cases, redundant.

This paper is the result of an attempt to find a division
inverse to a multiplication method recently described
by Lehman.? The radix 4 division example is the inverse
of the radix 4 equivalent of the binary multiplication
described by Lehman, except for the manner in which
redundancy is employed in the generation of quoteint
digits in the one case and the recoding of multiplier
digits in the other. The multiplication method which
is the inverse to the radix 10 division is similar to that
used on the IBM 602A computing punch; the fact that
fewer operations are required per quotient digit for the
division method indicates that a better multiplier digit
encoding scheme would reduce the number of opera-
tions required for multiplication. It is clear that multi-
plication methods inverse to other division methods of
the class described here must exist, and it is felt that
further investigation will lead to a broader understand-
ing of digital arithmetic. The interrelationships be-
tween quotient digit redundancy, selection procedures,
and divisor multiple generation should be studicd also,
particularly in those cases for which several steps per
quotient digit are desirable (e.g., the radix 10 example).

? Richards, op. cit., pp. 274-275.

? M. Lehman, “High-specd digital multiplication,” IRE Traxs.
?gs;':LECTRO.\’IC ComputERS, vol. EC-6, pp. 204-205: September,

"Richards, op. cil., pp. 262-263,
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APPENDIX
PRrEcisioN REQUIRED FOr SELECTION

An estimate of the precision required of the divisor d
and the shifted partial remainder rx; for sclection of the
corrcct arithmetic procedure can be gained by estimat -
ing the variation in the ratio rx;/d resulting from trunca-
tion of rx; and of d. This variation must be less than
the overlap of projections on the rz; axis (Fig. 1) of two
successive lines of the form i1 =r2;—1% g/ =rz;— (4
+1).

The overlap is the difference in valucs of rz; for
gin=n/(r—1), and for g;,,'= —n/(r—1), and is 2n/(r
—1) —1. Truncation errors in rx; and d can be expressed
by setting a <|x,| <a+Aa, b<|d| <b-+Ab. The varia-
tion in the estimates of the ratio Irx,-/d[ is then

[a-{-Aa a ]
r - .
b b-l—Ab

It is required therefore that

a4+ Ac a .

b b+ ab
:.V_l-(Aa-{- iAb) < i(

] b r
Assuming Aa =Ab, one obtains

M- -]
(r - Dr(1 + a/b)

The minimum value of b, assuming standardization,
radix 7, is b=1/r; the maximum value of r(a/b) is
$(2n—1). Therefore,

2[2n — (r — 1)]
¢ V(e = 1(2r + 21 — 1) ‘

2n

r—1

- 1),

For the example r=4, n=2: Aa< 1/66, indicating
that seven binary digits are required for the comparison.
For r=10, n=7; Aa <1/297, indicating that three deci-
mal digits are sufficient for the comparison.
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