DIGITAL COMPUTER ARITHMETIC,
A UNIFIED ALGORITHMIC SPECIFICATION

Algirdas Avizienis
UCLA Computer Science Department, University of California, Los Angeles, CA

The paper presents a method for the description of digital-computer arithmetic in terms
of a set of primitive digit algorithms. Digit algorithms are specified as arithmetic opera-
tions on the values of individual digits of digit vecfors which represent numerical values
in the computer. Complete arithmetic operations in digital processors are described as
vector algorithms which are composed from digit algorithms.

I. INTRODUCTION

A. Objectives of the Specification

The field of digital-computer arithmetic has evolved as an aspect of the logic
design and system architecture of digital computers., This heuristic development
has been of practical rather than theoretical nature. Consequently, digital arith-
metic has not been recognized as a separate aspect of the theory of computing,
The principal difficulty in the presentation of digital arithmetic and in its evalua-
tion has been the lack of a clear distinction between the arithmetic algorithm and
its logic implementation. The numerous details of logic design which are in-
cluded in the description of a given algorithm severely obscure its arithmetical
properties. (For an illustration, see [1].) The assessment of the originality of
an algorithm and the measurement of its relative efficiency (in terms of speed and
cost) with respect to other algorithms for the same arithmetical operation become
difficult tasks. The comparison is usually limited to only one class of logic
elements.

More recently, initial steps have been taken in the theoretical evaluation of
arithmetic algorithms [2, 3,4]. The general properties of arithmetic algorithms
are being identified, and there is a need to formulate digital-computer arithmetic
in terms which will provide a unified viewpoint for both the theoretician and the
system designer. The benefits of such an algorithmic formulation are expected
to be:

(1) A simplification of the description of arithmetic processors

(2) A foundation for the comparison and evaluation of arithmetical
algorithms '

(3) The separation of a discipline of ‘‘arithmetic design’’ from logic
design.

Presented at the Symposium on Computers and Automata
Polytechnic Institute of Brooklyn, April 13-15, 1971.

509




510 COMPUTERS AND AUTOMATA

The objective of this paper is to formulate a methodology for the description
of algorithms for digital arithmetic [5]. The goals listed above have been consid-
ered as objectives of the formulation. The contributions of Markov [6], Iverson
[7], Patterson [8], Robertson [9], and Garner [10] have been important stimuli in
this effort. Many aspects of Iverson’s notation [7] are used in the subsequent
sections.

B. The User's View of Arithmetic Processors

A digital arithmetic processor can be described from two different viewpoints:
the viewpoint of the user, and the viewpoint of the designer. The user sees the
arithmetic processor as a ‘‘black box’’ shown in Figure 1. It is described in
terms of its inputs, outputs, and operation times.

OPERANDS: XY —— ARITHMETIC — Z  RESULT
PROCESSOR

OPERATION: % ———» TIME: T(%,¢) — > C; CONDITION

FORMAT: P —> — " S; SINGULARITY

Fig. 1. User’'s specification of an arithmetic processor.

(1) The inputs to the processor are:
(a) One or more numerical values X, v,z ...
(b) An operation symbol x
(c) A format symbol b
The input numeric values (operands) are characterized by three properties:
(a.1) They are members of a finite set )1 of numerical values with a speci-
fied range
NoinSXSN,,, ,

max

(a.2) They are known within a specified precision
X...AXLSXSX-{—AXH ’

(a.3) They are stated by means of a defined number representation, con-
sisting of an n-tuple of symbols

xn—l:"':xi:"';xo s

and a set of rules for the interpretation of this n-tuple as the numeri-
cal value X.
The operation symbols represent a set of defined arithmetic operations.
The set {+, -, x, +} is commonly available; however, both more extensive
and more limited sets may be encountered. When more than one formar
(type of representation) is allowable for the input operands, the operation
symbol is supplemented by a format symbol b.




DIGITAL ARITHMETIC 511

(2) The outputs of the processor are:
(a) One or more numerical results Z,Y, X, - -
(b) One or more condition symbols Cy,C,,C,, -
(c) One or more singularity symbols S;,S,,S,, - --
The numerical output results possess similar properties as the operands
(range, precision, and representation); however, they may differ from those
of the operands in details.

The condition symbols identify specific conditions associated with the
value of the result, such as whether the result is negative, positive, zero,
etc.

The singularity symbols are issued when the input operands and opera-
tion symbol do not yield a ‘‘legal’’ result. The singularity symbols may
include:

(c.1) ‘““Overflow,’’ i.e., the result value is not representable in the range
allowed for output values

(c.2) Excessive loss of precision (significant digits) in floating-point
operations

(c.3) Error caused by a logic fault in the hardware of the processor.

A pseudo-result Z (S;) instead of the expected result Z appears at the

output together with the singularity symbol S;.

(3) An operation time T (*) is specified for every allowable operation symbol
of the processor. When more than one format is allowed, separate opera-
tion times T (*, ¢») are specified for every format ¢. Operation times may
be either fixed, or variable over a specified range T (¥)qin S T() =

T (F)max-
Here we note two key aspects of the user’s viewpoint:

(1) The definition of an ‘‘arithmetic processor’’ includes a broad spectrum
of ‘‘black boxes,’’ from a simple counter with ‘‘add one’’ as the only
operation, to a processor which computes trigonometric functions or
the fast Fourier transform

(2) The internal structure of the arithmetic processor is specified only in
terms of the execution time associated with the operation symbol % and
the format of the operands. It must be emphasized that while Fig. 1 is
given in terms of two operands and one result, the variations of single-
operand, multiple-operand, and multiple-result arithmetic operations
are also possible and fit equally well within the given specification.

C. The Designer’s View of Arithmetic Processors

The detailed specification of the internal structure of the processor is the re-
sponsibility of the designer. The designet’s viewpoint must consider both the
detailed arithmetic algorithms and the logic structure of the processor. At this
point we establish a distinction between arithmetic design and logic design.

Arithmetic design begins with the overall system specifications of the pro-
cessor (as given in the ‘‘user’s viewpoint’’) and translates them into detailed
specification of arithmetic operations at the level of individual digits of the num-
ber representation. These digit-level algorithms serve as a complete truth-table



512 COMPUTERS AND AUTOMATA

specification for the logic design. The logic designer specifies the logic nets
using the currently preferred logic elements and design techniques, for example,
medium-scale or large-scale integrated circuits,

The principal advantage of separating arithmetic design is that it makes the
description of algorithms separate and independent of any given set of logic
building blocks.

The designer’s ‘“black-box’’ specification of an arithmetic processor is ob-
tained by making the following changes in the user’s specification of Figure 1:

(1) The inputs are operand-digit vectors

X=Xg_ 3,00, X, =00, X (representing X) ,
Y= Ym—1, " y Yi, t 0, Yo (representing Y) H]
and an (operation-and-format) code, abbreviated as ‘‘o&f code,’’ vector

QEQ!:"' JQJ':"' :QO

representing the operation and format symbols * and b.
(2) The outputs are the result-digit vector

2

2= Zp_ g, v, Zy e, 2 (tepresenting Z) ,

a condition-code vector
E=E€q, v, &4 -+, g (representing C;) ,
and a singularity-code vector
B Op, e, 04, 0p (representing S;) .

(3) The objective of arithmetic design is to develop for every o&f-code vector
} a vector algorithm A (Q) which specifies the value of every result digit
Z; by one of two methods:

(1) Directly
(2) As an arithmetic function of operand digits (x;, y;) from one or more
positions j of the operand digit vectors x and Y.
The values of digits z; must be such that the result numerical value Z =
X * Y is represented by the digit vector z in the specified number repre-
sentation system. If the representation is not possible due to range lim-
its or other constraints, the corresponding singularity-code vector o is to
be generated, and the vector z must represent the corresponding pseudo-
result Z(S;). Finally, the condition code vector € must be specified in
terms of the result digits Z; to represent the required condition symbol C;
of the result value Z.

Il. DIGITAL REPRESENTATION OF NUMERICAL VALUES

A. Digit Vectors

Numerical values in a digital arithmetic processor are represented by an
n-tuple x of symbols x;, called digits

XExa,--.’xi,... ’xb



DIGITAL ARITHMETIC 513

The n-tuple x will be called a digit vector (abbreviated ‘‘d vector’’) in the subse-
quent discussion. The length n of the d vector is the count of its components,
designated by p x

px=|la-b|+1

In addition to its length, a d vector has two other explicit properties: the index-
ing system and the range of values for each digit.

The first explicit property of a d vectior is the indexing employed to identify
its component digits

X = Xg, xa:tly by Xy 0, XpTF1r Xp
The index set of x consists of consecutive integers
{a,ail,---,i,-n,b?l,b}

The index set is described by its origin, defined as the lesser of the two end
values

origin = min (a, b) ,

and by the direction (with respect to the origin) in which the indices increase:
leftward or rightward., For example, {3, 2, 1, 0} is zero-origin leftward indexing,
while {1, 2, 3, 4} is one-origin rightward, and {2, 1,0,~1,-2,~3{ is minus-three-
origin leftward indexing. Several index origins and both directions have been
used in the practice of computer design and description, following the author’s
preference. The main need in indexing is consistency in adhering to one index-
ing system. Inconsistency in indexing still occurs in practice and leads to se-
vere difficulties in understanding an algorithm or a design. Zero-origin leftward
indexingtn -1, ..., i, -+ ., 0} will be used throughout this discussion unless
explicitly otherwise specified.

The second explicit property of a d vector is the range of values of its digits.
The digit x; is a variable ranging over a set of allowed values %, = {a, b,c, -+ -,
k}. In cases of practical interest this set consists of two or more consecutive
integers, for example

fo,1}; {1,0,1}; fo0,1,2,.-.,9} , etc.

The overbar (e.g., I, 9, 14) will be used to designate negative-digit values.
Digit values greater than 9 will always be given in the conventional decimal
(radix-10) notation, The distinction between canonical, noncanonical, and re-
dundant sets of digit values is discussed in the next section.

B. Number-Representation Systems

A number-representation system is specified by a rule which associates one
numerical value X with every ‘‘legal’’ d vector x. (All digits of a “‘legal’’ d vec-
tor assume only allowed values.) When the value X is different for every allowed
d vector x, the number system is nonredundant. When two or more distinct d vec-
tors represent the same value X, the number system is redundant. For example,
the d vectors

x=0,1,1,1 and y= 1,0,0,1



514 COMPUTERS AND AUTOMATA

both represent the value ‘‘seven’’ in the radix-2 system with allowed digit values
{1,0, 1}, Redundancy of representation has not been useful in manual arithmetic;
however, redundant number systems have been found to possess desirable attri-
butes in automatic digital-computer arithmetic.

First, we assume a zero-origin leftward indexing of the d vector x and con-
sider the explicit representation of numerical values by digit vectors.

The most commonly-used number representation systems are weighted number
systems in which an explicit value x is associated with the d vector x according
to the rule

-1
X = E X;XW; , Of X=+/Xxw ,
i=0

where w is the weight-vector associated with the d vector x. The weight vector
is obtained from the radix vector r, which specifies a radix r; for every component
X; of the d vector x. The components of the weight vector are defined as follows

Woﬁl 3
WiE Wf_]_ Xri__l (for 1Si£n'— l) .

The magnitude |r, | of the i*" radix in a nonredundant number system is an inte-
ger equal to the number of allowed values of the digit x,. '

In a fixed-radix number system all components of the radix vector r have the
same value, such as 10, 2, or 2. In a mixed-radix number system more than one
radix value occurs in r. Representation of elapsed-time values in terms of
weeks, days, hours, minutes, and seconds is a system which employs the mixed-
radix vector

r= 10, 10, 7, 24, 60, 60 ,

when the range of 100 weeks is chosen for the system.

Conventional number systems are fixed-radix systems with the same positive
integer radix r; 2 2 for all digits (0 < i< n - 1), and with the canonical set of
digit values

Ei {0:112.!"';['1“1} (forOSzﬁn—l),

it

In design practice attention has been focused on conventional systems with radi-
ces 10, 2, 4, 8, and 16. Practical applications have been found for noncanonical
digit sets such as the nonredundant radix-10 set

4,3,2,1,0,1,2,3,4,5} ,

in decimal multiplier recoding, as well as the several redundant sets, such as the
radix-2 sets

| {1,0,1} and {0,1,2 ,
in fast binary arithmetic [10] and the radix-10 and radix-16 sets, respectively
i6,.-.,0, ... , 6} and {0, ... ,0,-..,0}

in signed-digit arithmetic [11].




DIGITAL ARITHMETIC 515

Nonconventional weighted number systems with negative radices [12], and
complex radices [13], have been postulated and investigated, but thus far they
have not found wider acceptance by practicing designers.

Nonweighted number systems are those in which the relative position 7 of the
digit x, does not convey ‘‘weighting’’ information (other than the value of the
radix r;) in the expression for the explicit value x being represented. The inter-
change of any two digits (together with their associated radices and sets of
allowed values) will not change the value x. The best known example is the
residue number systems (RNS) [14], in which the radices r; are mutually
pairwise-prime positive integers (7,9,11) and the digit values which represent
the explicit value x are

X;=r;]x ,

where r;| x means ‘‘the modulo r; residue of x.”* The “most-significant digit”’
and ‘‘the least-significant digit’’ do not exist in a nonweighted representation.
The rule for the explicit value x of a RNS d vector can be considered to be
that of a weighted number representation under a generalization defined by
Garner [10].

C. Implicit Values of Singled Vectors

The preceding discussion dealt exclusively with the explicit value x of the
d vector x. The explicit value x is a function of the digit values x;, radices r,,
and indices i of the d vector under the assumption of normal (zero-origin left-
ward) indexing. The explicit values are either integers (assuming that fractional
radices and digit values are excluded), or natural numbers when negative radices
and digit values are not allowed (e.g., in conventional number systems). The ex-
plicit values cover a finite explicit range of the number system represented by
the vectors x, r, and 2.

Explicit values x provide the most direct interpretation of the d vector x with
the associated vectors r and 3. However, a further interpretation of x is fre-
quently specified to describe the numerical value X (called the ‘‘implicit value’’
of x) which the user wishes to represent by means of the d vector x. _

The implicit value X of the d vector x is an arithmetic function of the explicit
value x which is defined by further interpretations attached to the d vector x.
The major implied attributes of x which are used to define the implicit value X
are:

(a) The location of the radix point

(b) The representation of negative values

(c) The presence of nonsignificant digits in x [15]

(d) Encoding in an error-detecting or error-correcting code [16].

The variety of possible implicit values of a radix-2 d vector is shown by exam-

ples in Table I.
Two key points are to be noted in the discussion of explicit and implicit

values:

(1) The implicit value is the only value of interest to the user of the
computer - '



516 COMPUTERS AND AUTOMATA

(2) The arithmetic designer must devise algorithms which operate on oper-
and digits representing the explicit values. These algorithms gener-
ate digits of the result such that the correct implicit value of the re-
sult is represented.

For an illustration of (2), consider a left shift (multiplication by two) of the
operand x = 11011 (x = 27) used in Table I, line 6 (fraction, ‘‘one’s complement,’’
with X = ~ 9 ). The shift will yield y = 10111 as a result, since an ‘‘end-around’’
shift is the specified algorithm. The new explicit value is y = 23, and the im-
plicit value is ¥ = 27*% x (=25 + 1 + y) = —%,, which is the correct implicit value.
The operation

y=(x-16)%x2+1 ,
on the explicit value x caused the operation
Y=2xX,

on the implicit value X.

TABLE I. Some implicit values of radix-2 d-vector x=110 1 1.

IMPLIED ATTRIBUTES: EXPRESSION FOR IMPLICIT N?M“’;iligf‘
RADIX POINT, NEGATIVE NUMBER VALUE X AS A FUNCTION VALUE X
REPRESENTATION, OTHERS OF EXPLICIT VALUE x (IN DECIMAL)

Integer, Magnitude X = x 27
Integer, ‘‘Two’s Complement’? X=~2%+x -5
Integer, ““One’s Complement?®’ X = —-(25 -1+ =x ~4
Fraction, Magnitude X=2"9xx 27/32
Fraction, ‘‘Two’s Complement’’ X =02"%x (=25 + %) —~5/16
Fraction, ‘“One’s Complement’? X=2"x(=25+1+ x) —4/16
Integer, Magnitude, ‘*AN’? Error X=x+3 a

Detection Encoding with

A =3 [16]
Fraction, ‘‘Two’s Complement,’’ X= (2 X (2"4><(—~25+ x))) x 27t (—5/8) x 2~!

Floating-Point Coefficient in
|‘:Sig‘glﬁ.ficant-—Digi’c Arithmetic
15

D. Variable-Length and Multiple d Vectors

The most common format of d vectors in computers is the fixed-length, single
d vector format which has been used in the discussion of implicit values of the
preceding section. Variable-length d vectors are allowed in a number of com-
puters as well, in which the number of digits may range from one to some maxi-
mum length n,,,. The additional cost of such representation is the length indi-
cator which must be provided for each d vector. The methods of length indication
of d vectors are:

(1) Special symbols (flag bits, etc.) are used to identify the ends of the
d vector

(2) A separate fixed-length d vector A representing the length of the
variable-length d vector is attached at one end (the reference end, usu-
ally the least significant end) of the d vector.




DIGITAL ARITHMETIC 517

The method (2) above makes use of two separate d vectors (x, A) to represent a
numerical value X for the purposes of arithmetical processing. Other forms of
multiple d vectors (double, triple, etc.) also have been used for the representa-
tion of numbers. The most common forms are:

(1) The use of a sign tag ox (values 0, 1) with a d vector x reptesenting a
magnitude X to form a sign-and-magnitude d vector

y = (ox,x) represents Y =(-1)7"x X
(2) The use of an exponent e to form a floating-point d vector
“y=(e,x) represents Y =X X RE

where R = r¥, given a fixed radix r; of x and an integer k 21
(3) The use of a significance tag vector s with a floating-point d vector to
give a significant-digit d vector

y= (e,x,s) represents Y =X x RF

where X is known to S significant digits (the length of x usually ex-
ceeds S)

(4) The use of two or more d vectors to give multiple-precision forms,
which represent the implicit value to a higher precision than provided
by a single d vector |

y=(x,x") represents ¥ =Xxr"+ X’
where n is the length of x” and r is the radix (fixed) of x and x".
(5) The use of two d vectors to represent an interval number for interval
arithmetic ‘
z = (x,y) represents XS ZSY
(6) Error-detection encoding by a separate code using a check vector ¢ to
form the residue-encoded d vector

y = (x,¢) represents X iffc=A | x

where: A4 is the check modulus, and 4 | x means ““modulo-A residue
Of X. ”?

In the use of multiple d vectors to represent one implicit value the expression
for this implicit value involves the implicit values of all the component d vec-
tors, which are processed separately when an arithmetical algorithm is carried
out. It should be noted that these component d vectors themselves can be multi-
ple; for example, sign-and-magnitude format may be used for floating-point d vec-
tors e and x in (2) above, and floating-point d vectors may be used as the two
interval-number representation d vectors in (5).

[1l. SPECIFICATION OF DIGITAL ARITHMETIC

A. The Digit-Algorithm Approach

The types of d vectors which are employed in digital computers and their in-
terpretations in terms of implicit values have been presented in the preceding




518 COMPUTERS AND AUTOMATA

part of this paper. At this point we set out to provide a basis for arithmetic de-
sign by describing a set of primitive operations, called digit algorithms, which
are carried out on the individual digits of one or more d vector operands and yield
values for individual digits of intermediate or final result d vectors.

One digit is the least indivisible component of a d vector in the arithmetic
processing of numerical information. Each digit x; of the d vector x is identified
by its index i, its associated radix r,, and its set of allowed values X;. Algo-
rithms for arithmetical processing of d vectors consist of rules for transforming
the digits of the operands into the digits of the result. These rules for the han-
dling of individual digits of the operands and for the generation of the digits of a
result are called digit algorithms. The rules for the handling of entire-digit vec-
tors are called vector algorithms; they are composed of combinations or se-
quences of digit algorithms.

Digit algorithms for various number systems and arithmetical operations differ
in their complexity. Whenever the set 2, contains more than two allowed digit
values, a single binary storage element is not sufficient to store the digit x;. In
this case the digit values are specified in terms of an encoding which establishes
the equivalences between the allowed values of x; and combinations of the logic
values 1 and 0. Each element of the d vector is represented by a logic vector.
Examples are the various encodings which have been devised for digit values in
radix-10 arithmetic processors (8-4-2-1, excess-three, etc.).

A digit algorithm may be implemented either as a table-lookup operation (im-
plemented by a combinational-logic network) or as a sequence of subalgorithms.
When a radix-r digit value is specified by a logic vector (the states of several
Boolean variables), it may be convenient to consider the radix-r digit to be com-
posed of radix-2 subdigits. At this microscopic-level of processing each radix-r
digit is one d vector in a radix-2 number system, and the radix-r digit algorithm
can be further specified as a combination ot sequence of radix-2 subalgorithms.
Finally, at the level of logic design, every digit algorithm or subalgorithm is ex-
pressed in terms of combinational or sequential Boolean functions. The specific
form of these Boolean functions reflects the constraints imposed by the charac-
teristics of cutrently available building blocks (fan-out, fan-in, cascading, de-
lays, etc.). An example of a digit algorithm implemented in terms of subalgo-
rithms is the one-decimal-digit adder in binary coded decimal (8-4-2-1) or in
‘‘excess-three’’ arithmetic processor.

Digit algorithms are classified according to the number of digits with the
same index i which enter as opetrands to form the i*" result digit. For example

z;+— 9 —x; ; and z; — x; ,
are one-digit algorithms, while
cgy «— [(x;+yy) + 10 ,

is a two-digit algorithm for radix-10, conventional arithmetic, and

11
S ¢— Z x.fvj) - 10 > t1+1 ’
=1



DIGITAL ARITHMETIC 519
is an eleven-digit algorithm in a minimal-redundancy signed-digit radix-10

arithmetic [17].
Another important property of a digit algorithm for the i*® position

z; «— 1(X;,y;)
is the number of positions j which affect z;, When j has only one value, the

digit algorithm is local. For examples, see the four preceding examples. When
j has k different values, the digit algorithm is k-dependent. For example

z; — 10| (x;+y;i+¢;) ,

with

¢; — |(Xj—1 +¥j-1 + €4-1) + 10,

is an (i + 1)-dependent digit algorithm in radix-10 conventional arithmetic.

B. Digit Algorithms for Three Classes of Number Systems

The concept of digit-algorithms is illustrated with the sets of digit-
algorithms for three classes of number representation systems:

(1) Conventional (symbol CO) with a fixed positive radix r; 2 2 and the

canonical digit-value set {0,1,2, -+- , r; — 1}
(2) Signed-Digit (symbol SD) with a fixed positive radix r; 2 3 and the re-
dundant digit-value set {-a, .-+, -1,0,1, .-+, al in which a is an in-

teger satisfying r; + 2 < a <r; (11, 171

(3) Residue (symbol RE) with a set of positive radices r; such that
GCD (r;, r;) = 1 for every pair of radices, and the digit-value sets
{0,1,2, ---, r; — 1} for every r, [14].

The Iverson (‘‘APL’") [7] notation is used to state digit algorithms, and zero-
otigin leftward indexing is employed. The notation is summarized in Table 1L
Note that the order of execution of APL statements is from right to left except as
indicated by parentheses.

Table III lists digit algorithms which use one or two operand digits x;, y; (per
position i) to form a single result-digit. The ““SYMBOL’’ column contains a sym-
bol used to identify the digit algorithm in vector algorithm specifications. The
rightmost column ‘‘DEP.k’’ lists the dependency k of the digit algorithm as de-
fined in the preceding section. Table IV lists the more complex digit algorithms
which produce two result-digits (except for the RE number system) and may re-
ceive more than two operand-digits (x*,x?,x3, -+, x™), or (x,y, ut, - .., u9).
All these digit algorithms are local. They are used to implement fast multiplica-
tion and multioperand summation vector algorithms, such as the ‘‘carry-save’’ ad-
dition for CO numbers. '




TABLE IIL

Summary of notation.

SYMBOL, NAME EXPLANATION

X d vector n-tuple of digits

X; digit ith component of x

x explicit value of x an integer, function of x and r, defined by
number system spec.

X implicit value of x arithmetic function of x, defined by
implied properties of x

r; radix of i*P digit integer (except: 0,1,—1)

Wy weight of ih digit Wo=1; Wy =10 X wy_,

2,- value set of i'P digit set of ¥; or more consecutive integers,
including O

£x size (length) of x count of digits in x

XavY relational operator result is 1 if the relation @ holds, and O

@ =i<<=>>x%} otherwise

IX magnitude of X

Y |X residue modulo Y residue of X

Lx floor integer such that | X< X <1 +|X holds

XX signum XX =(X>0)—(X<0) values are +1,0,—1

Xx¥Y power X to the Y power

= identity X = Y asserts identity; not to be confused

with operator =

TABLE IIL. - One-digit and two-digit algorithms with one-digit results.

ALGORITHM SYI‘ST%EM SYMBOL: DIGIT ALGORITHM: ARITHMETIC DEP,
NAME (N g Dxx/N8S SPECIFICATION k
TRANSFER All — Z§ —X; 1
LEFT SHIFT CO, SD DL.m/NS Ziim +— X; 1
(m positions)
RE not defined
RIGHT SHIFT CO, SD DRm/NS Zfn — X; 1
(m positions)
RE not defined
INVERSE CO, RE DI/NS Zye—(r;— 1) — x; 1
SD DI/SD Z;—0 — x : 1
CARRY CoO DC/CO Cj+11m~mcxi+ yi+ CI')>I‘1' i+ 1
2 digits
( gits) SD DC/SD i, = (Xx;+v;) X (a <| (x; +y)) 1
RE not defined
SUM co D+/CO S;+—1i| (Xi+ yi+ e i+1
(2 digits)
sSD D+-/SD S;e—Xj+yi+ti—1t4 Xry 2
RE D+/RE S; —r1; | (X7 + ¥ 1
BORROW Co DB/CO by +—((x;—y)—b) <0 P+ 1
(2 digits)
SD DB/SD bl e (X%, — ¥ X (a <] (x; —y ) 1
RE not defined
DIFFERENCE CO D—/CO d; +—r;| (x; =y — b P4l
2 digits
( & ) SD D—/SD di 4——<XI~ _— YI) + "f - tf+1 X Py 2
RE D—/RE dje—r;l(xi=v)p 1




DIGITAL ARITHMETIC 521

TABLE IV. Local-digit algorithms with multidigit inputs and/or two-digit results.

ALGORITHM NO.

gi‘%gs SX;’;‘EM Sg ﬂ?ﬁ? ARITII?I;%P’]IT‘IQI;%%%II’II‘F}I{?ATION
PRODUCT CO  Dx/CO  ps;r;|(x;x¥)
(2 digits) chI«-—-—L(ngS’i)':'ri
SD DX /SD PS; ¢— (X; XY —PCj+1XT;

PCipy (xx,-xyi)XL(((ri—l)—a)'*“ (x;>xy))* 5y
RE  Dx/RE 7 «—r;|(X;Xyy)

SUM CO!'  D+m/CO ms;e—r; | (xj+ - +xT)

(m digits) me;y, «— Lxj+- - +xT) Ty

*for CO, SD: SD!  D+m/SD  ms; «— (xj+- -+ x])—megy, Xy

r;+1 .

m<ry me; ., «— snixL(((ri—a)——l)-kl (xj+--- +x’,-”))*r r;
*for RE: where: 8n; «— X (x}+- R ¥ib

m, q are 2 1

arbitrary RE D+m/RE  z; 1y ] (X4 - o+ XT)

PRODUCT- CO® Dx+q/CO ns; «r;|(uj+uf+x;xyp)
AND-SUM L, .2 -~

(2 and g ) neyy, — Luj+ui+xxyp+r;

digits) SD DX+q/SD ns; ¢—(uj++-+uf-+x; Xy —ne; X1y

¥or CO: ne;yy sn;x'_(((rj—a)—l)+ | (af+--+uf+ x,xyi))-i- r;
a2 1 o

where: Sn; «—xX{uj+« - +uf XX

*tor SD: i (uj i +XXyy)
ggri—a+1 RE? DXx+q/RE zi+——-rgl(U§+"‘+u?+xi><Yi)

C. Vector Algorithms for Conventional Number Systems

In order to perform arithmetic, the digit algorithms are organized into vector
algorithms. A vector algorithm is a prescription for generating the result(s) from
the given operand(s). The operands are d vectors (x, y, etc.), employing zero-
origin leftward indexing and characterized by their length n, the radix vectorr
and the sets of allowed digit values %; for 05 i < n- 1. Inthe conventional
number systems the fixed radix r; > 1 and the canonical set of digit values are
employed for every position. The weight ri is associated with the digit x;.

The result may be either a digit vector (z,p, q, etc.), or a condition-code vec-
tor £. A d vector will be generated when an arithmetic operation (for example:
addition, subtraction, multiplication, division) is specified by the operation code.
A two-valued logic variable &; (1 for true and O for false) will be the result for
magnitude comparison, zero detection, overflow detection, range estimate, and
similar algorithms. ' : _

The vector algorithms describe the digits of the result(s) in terms of the oper-
and digits. Some digits of the result(s) may be specified directly as a function of
the particular number system (for instance, the right-end digit in a left shift,.
etc.). If the result is a condition-code logic variable, its value is specified in
terms of all or some digits of the operand(s).

The arithmetic algorithms usually specified by the set of operation codes are:
transfer, additive inverse (sign change), absolute value, addition, subtraction,




522 COMPUTERS AND AUTOMATA

multiplication, roundoff, arithmetic shifts (for normalization, overflow correction,
alignment in floating point) and division. Occasionally inter-radix conversions,
square root, exponentiation, trigonometric functions and other more-elaborate al-
gorithms may be specified, as well as intersystem or interformat conversions
(residue to binary, etc.). The extension and contraction of range, although not
explicitly stated, are implied in the above list. The preceding algorithms all
yield numeric results; besides them logic results are obtained from the sign test,
zero test, comparison and range-estimate algorithms.

Table V lists a typical set of vector algorithms with one or two operands.
This is the ‘‘user’s viewpoint’’ in which only the implicit values and the lengths
of the results are specified. The ‘‘Statement’’ column uses APL function nota-
tion to describe the vector algorithms. The dollar sign $ represents a number-
system identifier which uniquely identifies the details (both explicit and implied)
of the number representation system. In addition to operand length, radix vector,
indexing system, it also describes the implied properties, such as those listed in
Table I. A program specifying the result-digits by means of digit algorithms ex-
ists for every identifier.

Tables VI and VII illustrate vector algorithm descriptions for some of the

TABLE V. Common one-vector and two-vector algorithms:
symbols and ‘‘user’s’’ specifications.

VECTOR ALGORITHM STATEMENT' LENGTH pz* IMPLICIT VALUE 2

. TRANSFER Z—X n Z — X
RANGE EXTENSION®

m positions Z+——m REXS$ x n+m Z+—X
RANGE CONTRACTION

m positions Z+——m RCNS$ x n—m Z+—X
LEFT ARITH. SHIFT*

m positions z +—m LSH$ x n Z 4 —XXr;%m
RIGHT ARITH. SHIRT*

m positions z +—m RSH$ x n Z X Xr; % (—m)
ADDITIVE INVERSE z «— INV$ x n Ze—0~X
ROUNDOFF®

m positions %+ m RND$ x n—m Z e— (X ~D)
SUM z+—x SUMS$ y n Z— X+ Y
DIFFERENCE . z &~ X DIF$ y n - Z+—X-~-Y
PRODUCT zZ¢—x PRDS$ y n+n Ze—XxY
QUOTIENT® qe—Xx QNT$y n Q—X-W+ VY
REMAINDER® wee—x REMS$ y n We—X -0Ox Y
ZERO TEST’ €o—— ZRO$ x B ¢— X =0
POSITIVE TEST’ g, +— DPOS$ x g, +—X>0
NEGATIVE TEST’ e,+— NEG$ x g, —Xx<0
RANGE TEST (4, B)’ g, A4, BRTS$ x € +—(X < A4) V (X >B)

'The gsymbol § represents the number system identifier for the algorithm.

Operands x, y have the length n unless explicitly noted otherwise.

4If radix of x is not fixed, replace m by a vector listing the m new radices to be used.
Applicable to fixed-radix (r; # 2) operands only.

-} . :
The range of Dis D, ;, < D < Dmax; the range is a function of the m deleted digits
and their radices.

6Length of operand xis n+4+ n digits. The remainder W has the same sign as the divie
dend X and satisfies (| W) < (| ¥).

(o X
The tests yield two-valued results €j, which form the condition-code vector E.



DIGITAL ARITHMETIC

523

algorithms listed in Table V. The CO (cbnventional) number system with n-digit
operands and an even fixed radix r; has been selected. Two methods to represent
negative numbers are employed:

(1) The symbol RC stands for Range Complement (often called two’s or
ten’s complement when r; is 2 or 10, respectively) in which negative
numbers are represented as complements with respect to (r;)"

(2) The symbol DC stands for Digit Complement (colloquially: one’s, or
nine’s complement when r; is 2 or 10, respectively) in which negative
numbers are represented as complements with respect to (r)" - 1.

Table VI specifies vector algorithms which generate a digit vector as the re-
sult. The rightmost column identifies and labels the singularities which may oc-
cur with the given algorithm. Three common variants of the roundsff algorithm
are specified. The “exact round’’ singularity for method 2 identifies the case in

TABLE VI. Vector algorithm specifications.
VECTOR NUMBER DIGIT DIGIT ALGORITHMS NAME OF
AL GORITHM SYSTEM POSITIONS FOR SPECIFIED SINGULARITY
ID. ““$"’ IN =z POSITIONS OF =z (SEE TABLE VID
z «——m REXS$ x RC,DC O0,+-+,n—1 Z; — X3 None
' RG,DC  n,: - ,a+m—1 z;e—(r;—1)
X(xn——1>ri+ 2)
z «— m RCN$ x RC,DC 0,..-,n—m—1 2Z;e—x; Overflow
RC,DC n—m,---,n=1 z; «—1L0 (null) OF /RCN$
z +— m LSH$ x RC,DC m, ,n—1 DLm/CO Overflow
RC 0,-cr,m=1  Z;e0 OF/LSH$
DC 0,sve,m—1  zye—(r;—1)
X(xn_l}ri—:' 2)
#z «——m RSH$ RC,DC 0,¢++,n-m—1 DRm/CO Truncation
RC,DC n—m,-++,n—1 z; «—(r;=1) TR/RSHS$
X (X g8+ 2)
z «— INV} x DC 0,-++,n—1 DI/CO Inverse
RC 0,-++,n—1 D+/CO with: x; «—0 Anomaly
AN/INVS
Yie—(r—1)—x;
RC 0 c, +—1
z «——x SUMS y RC,DC 0,.-.,n-1 D+4+/CO or D—-/CO Overflow
or RC 0 o +— 0 or by —=0 OF SUMS or
' ‘ OF/DIF$
z +—x DIF$ y DC 0 o «— €, or by b,
%z —mRND$ x RC,DC 0,:--,m—-1  2z;«— 10 (pull)
(1) Truncation RC,DC m,-+:,n=1 Zi; —— X; None
(2) Local RC,DC m Z,, — X+ (X <P+ 2) Exact Round
Adjust- m-—[-l' DI n—-l Zi (--—Xi EX/RND2$
(3) Sum Adjust. RC,DC m D+/CO with: ¢, «— 0 Overflow
Yom — (X 20+ 2) OF/RND3$%
m+1l, .+ ,n—1 D+/CO with: ¥;— 0




524 COMPUTERS AND AUTOMATA

TABLE VIL Vector algorithms for tests and singularities.

VECTOR NUMBER ALGORITHM SPECIFICA TION
AL GORITHM SYSTEM
TESTS:
8, «—ZRO$ x RC B ¢+ (0=+/x)
‘ DC g «—(0=+/%0) V{((+/%)=(r;—1)x px)
g, +— POS$ x RC,DC g «—(x,_,<r;+2)
&, +—NEGS$ x RC,DC &, —(x,_,>r;%2)
SINGULARITIES:

oy +— OF/mRCN$ x RC,DC  og +— ((Xy_p,,<r; T 2) A (O#+/(mTx)) vV
oy ¢— OF/mLSHS$ x (Kpea ZE; T 2) A (PxX(r;=1)) %+ /(mtx)

o, «— TR/mRSH$ x RC oy +— (0%+/ (=mTx))
o, + EX/RND2% x DC oy — (O#+/(=mtx) V (exx(r;=1))#+/ (—mTx)
o ¢~ AN/INVS$ x RC oy e— (=1 T 2) A (/%) =(r; %+ 2))

DC oy —(0=+/%)

o3 +—OF/SUMS$ x, y RC,DC o3 e ((Xuy <1+ 2) A (Y <y 2) A (Zpa>r;+2))V
@3 +—OF/DIF$ x,y } ((Xppey ;5 2) A Yot 25+ 2) A (2,4<r;+2))
‘o, «— OF/RND3$ x RC,DC oy e ((Xpy<r; ¥ 2)A (2,_,> nE2)V

((Kpoy1,+2) A (250 <r+ 2))

which truncation should take place regardless of the value of X,. The sum and
difference algorithms represent the “‘ripple’’ carry or borrow implementation. The
methods of fast addition (lookahead, conditional sum, etc.) can also be specified
in a similar fashion. The specifications of fast addition, multiplication, and di-
vision will appear together with their comparative evaluations in a subsequent
paper.

Table VII specifies the algorithms which generate test results &; and singu-
larity indicators o;, Two new operator symbols appear in this table. The sum
reduction operator +/x forms the sum Xg + X3 + X3 + -+ x,_3 of all digits of x.
The ‘‘take’” operator k Tx takes the leftmost k digits of x if k is positive, and the
rightmost k digits of x if ¥ is negative.

In the singularity list, o, indicates that a left shift or range contraction can-
not be done without losing an ‘“overflow’’ part of the result. The signal o; indi-
cates that a right shift will result in an imprecise (truncated) result. The signal
o, indicates an anomaly in the inverse——for RC, it results in an overflow, and for
DC the ‘‘minus zero’’ is generated. Signals o3 and o4 detect overflow after add,
subtract and round (with addition) operations.

The main conclusion which can be drawn from Tables ITI-VII is that a purely
arithmetical specification of digital computer processors offers a compact and
technology-independent method of describing the operations which are needed.
The logic designer takes over at this point and chooses the algorithms which are
most effective for his present set of logic circuitry.

ACKNOWLEDGEMENT

This research was supported in part by the U. S. Atomic Energy Commission,
Contract No. AT(11-1) Gen 10, Project 14.




DIGITAL ARITHMETIC 525

Thanks are due to the many graduate students in the UCLA Computer Science
Department Course 225A ‘‘Computer System Design: Arithmetic Processors’’
whose comments and constructive criticism on the description of computer arith-
metic have stimulated the evolution of this paper.

l1]
(2]
(3]
[4]

[s]

(6]

[7]
L8]

(o]

[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]

REFERENCES

D. L. MacSorley, ‘‘High Speed Arithmetic in Digital Computers,’’ Proc. IRE, 49,
No. 1, 67-91 (January 1961).

S. Winograd, “On the Time Required to Perform Addition,?’ J. ACM, 12, No. 2, 277~
285 (1965).

S. Winograd, ‘“On the Time Required to Perform Multiplication,'’ J. ACH, 14, No. 4,
793-802 (1967).

A. Avizienis, ‘‘On the Problem of Computational Time and Complexity of Arithmetic
Functions,’’ Proc. ACM Symp. Theory of Computing, L.os Angeles, California, 255~
258 (May 5-6, 1969).

A. Avizienis, ‘“Theory of Digital-Computer Arithmetic,’® Notes for UCLA Course En-
gineering 225A, Ch, 1-3 (to be published).

A. A. Markov, Theory of Algorithms, USSR Academy of Sciences: MOSCOW, 1954.

English translation published by the Israel Program for Scientific Translations, PST
Catalog No. 219, Jerusalem (1961).

K. E. Iverson, 4 Programming Language (New York: Wiley, 1962).

G. W. Patterson, ‘“‘Algebraic Foundations of Number-Representation Systems,”” Univ.
of Pennsylvania, The Moore School of Electrical Engineering, Report No. 59-00
(September 1, 1958).

J. E. Robertson,; ‘‘Redundant Number Systems for Digital-Computer Arithmetic,”’
Notes for the University of Michigan Eng. Summer Conf., ““Topics in the Design of
Digital Computing Machines,’’ Ann Arbor, Mich. (Juiy 6~10, 1959).

H. L. Garner, ‘‘Number Systems and Arithmetic,’’ Advances in Computers, 6, 131~
194 (Academic Press, 1965).

A. Avizienis, ‘‘Signed~Digit Number Representations for Fast Parallel Arithmetic,”’
IRE Trans. Electr. Comput., EGC-10, No. 3, 389-400 (September 1961).

G. F. Songster, ‘‘Negative-Base Number Representation Systems,’’ IEEE Trans.
Comput., EC-12, No. 3, 274~277 (June 1963).

D. E. Knuth, ‘‘An Imaginary Number System,’’ Comm. ACM, 3, 245~-247 (April 1960).

A. Svoboda, ‘‘The Numerical System of Residual Classes,”’ Digital Information
Processors, 543-574 (W. Hoffman, Ed., New York: Interscience Publishers, 1962).

N. Metropolis and R. L. Ashenhurst, ¢egignificant-Digit Computer Arithmetic,”’ IRE
Trans. Elec. Comput., EC-7, No. 4, 265-267 (December 1958).

W. W. Peterson, Error-Correcting Codes, 236-244 (Massachusetts: The MIT Press,
1961).

A. Avizienis and C. Tung, “A Universal Arithmetic Building Element (ABE) and De-
sign Methods for Arithmetic Processors,’! IEEE Trans. Comput., C~19, No. 8, 733~
745 (August 1970).




