

VLSI Arithmetic

Lecture 9:
 Multipliers

Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel

Multiplication Algorithm*

Notation for our discussion of multiplication algorithms:
a Multiplicand
$a_{k-1} a_{k-2} \cdots a_{1} a_{0}$
x Multiplier
$x_{k-1} x_{k-2} \cdots x_{1} x_{0}$
$p \quad$ Product $(a \times x) \quad p_{2 k-1} p_{2 k-2} \cdots p_{1} p_{0}$
Initially, we assume unsigned operands

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers in dot notation.

Multiplication Algorithm*

Multiplication with right shifts: top-to-bottom accumulation $p^{(j+1)}=\left(p^{(i)}+x_{j} a 2^{k}\right) 2^{-1}$ with $p^{(0)}=0$ and \mid-add- \mid

$$
p^{(k)}=p=a x+p^{(0)} 2^{-k}
$$

Multiplication with left shifts: bottom-to-top accumulation $\begin{aligned} p^{(j+1)}=2 p^{(0)}+x_{k-j-1} a & \text { with } \\ \mid \text { shift } \mid & p^{(0)}=0 \text { and } \\ & p^{(k)}=p=a x+p^{(0)} 2^{k}\end{aligned}$
|-add--|

Multiplication Algorithm*

Right-shift algorithm
Left-shift algorithm

a	1010		$a \quad 1010$		
x	1011		$x$$===================$		
===	=====	======			
$p^{(0)}$	0000		$p^{(0)} \quad 0000$		
$+x_{0}{ }^{\text {a }}$	1010		$2 p^{(0)}$$+x_{3} a$		
	01010			1010	
$2 p^{(1)}$			$+x_{3}{ }^{\text {a }}$		
$p(1)$ $+x_{1} a$	$\begin{array}{lllll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}$	0	$p^{(1)}$	$\begin{array}{lllllll} & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0\end{array}$	
			$\begin{aligned} & 2 p^{(1)} \\ & +x_{2} a \end{aligned}$	0000	
$2 p^{(2)}$	01111	0			
$p^{(2)}$	0111	10	$p^{(2)}$	010100	
$+x_{2}{ }^{\text {a }}$	0000		$2 p^{(2)}$$+x_{1} a$	1000	
				1010	
$2 p^{(3)}$	0011110		$\begin{array}{lllllllll} p^{(3)} & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 2 p^{(3)} & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ +x_{0} a & & & & & 1 & 0 & 1 & 0 \end{array}$		
$p^{(3)}$	0011	110			
$+x_{3} a$	1010				
	$\begin{array}{llllllll} 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{array}$				
$2 p^{(4)}$ $p^{(4)}$			$+x_{0} a$	1101110	*from Parhami

Basic Hardware Multipliers

Hardware realization of the sequential multiplication algorithm with additions and right shifts. *from Parhami

Multiplication*

Combining the loading and shifting of the doublewidth register holding the partial product and the partially used multiplier.

Multiplication*

Hardware realization of the sequential multiplication algorithm with left shifts and additions.
*from Parhami

Multiplication of Signed Numbers

ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ

＊from Parhami
Sequential multiplication of 2＇s－complement numbers with right shifts（negative multiplier）．

Multiplier Recoding*

Table 9.1 Radix-2 Booth's recoding

x_{i}	x_{i-1}	y_{i}	Explanation

$0 \quad 0 \quad 0 \quad$ No string of 1 s in sight
$0 \quad 1 \quad 1 \quad$ End of string of $1 s$ in x
$\begin{array}{llll}1 & 0 & -1 & \text { Beginning of string of } 1 \mathrm{~s} \text { in } x\end{array}$
110 Continuation of string of 1 s in x

Example

(1) \begin{tabular}{ccccccccccccccccc}
1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 0 \& Operand x

-1 \& 0 \& 1 \& 0 \& 0 \& -1 \& 1 \& 0 \& -1 \& 1 \& -1 \& 1 \& 0 \& 0 \& -1 \& 0 \& | Recoded |
| :--- |
| version y |

\end{tabular}

Sequential multiplication of 2's-complement

Multiplication by Constants

Aspects of multiplication by integer constants:
Produce efficient code using as few registers as possible
Find the best code by a time/space-efficient algorithm
Use binary expansion
Example: multiply R_{1} by $113=(1110001)_{\text {two }}$
$R_{2} \leftarrow R_{1}$ shift-left 1
$\mathrm{R}_{3} \leftarrow \mathrm{R}_{2}+\mathrm{R}_{1}$
$R_{6} \leftarrow R_{3}$ shift-left 1
$\mathrm{R}_{7} \leftarrow \mathrm{R}_{6}+\mathrm{R}_{1}$
$\mathrm{R}_{112} \leftarrow \mathrm{R}_{7}$ shift-left 4
$\mathrm{R}_{113} \leftarrow \mathrm{R}_{112}+\mathrm{R}_{1}$
Only two registers are required; R_{1} and another
Shorter sequence using shift-and-add instructions
$\mathrm{R}_{3} \leftarrow \mathrm{R}_{1}$ shift-left $1+\mathrm{R}_{1}$
$\mathrm{R}_{7} \leftarrow \mathrm{R}_{3}$ shift-left $1+\mathrm{R}_{1}$

Multiplication by Constants

Use of subtraction (Booth's recoding) may help Example:
multiply R_{1} by $113=(1110001)_{\text {two }}=(100-10001)_{\mathrm{two}}$

$$
\begin{aligned}
& \mathrm{R}_{8} \leftarrow \mathrm{R}_{1} \text { shift-left } 3 \\
& \mathrm{R}_{7} \leftarrow \mathrm{R}_{8}-\mathrm{R}_{1} \\
& \mathrm{R}_{112} \leftarrow \mathrm{R}_{7} \text { shift-left } 4 \\
& \mathrm{R}_{113} \leftarrow \mathrm{R}_{112}+\mathrm{R}_{1}
\end{aligned}
$$

Use of factoring may help
Example: multiply R_{1} by $119=7 \times 17=(8-1) \times(16+1)$
$\mathrm{R}_{8} \leftarrow \mathrm{R}_{1}$ shift-left 3
$\mathrm{R}_{7} \leftarrow \mathrm{R}_{8}-\mathrm{R}_{1}$
$\mathrm{R}_{112} \leftarrow \mathrm{R}_{7}$ shift-left 4
$\mathrm{R}_{119} \leftarrow \mathrm{R}_{112}+\mathrm{R}_{7}$
Shorter sequence using shift-and-add/subtract instructions
$\mathrm{R}_{7} \leftarrow \mathrm{R}_{1}$ shift-left $3-\mathrm{R}_{1}$
$\mathrm{R}_{119} \leftarrow \mathrm{R}_{7}$ shift-left $4+\mathrm{R}_{7}$

Fast Multipliers

Viewing multiplication as a multioperand addition problem, there are but two ways to speed it up
a. Reducing the number of operands to be added: handling more than one multiplier bit at a time (high-radix multipliers, Chapter 10)
b. Adding the operands faster: parallellpipelined multioperand addition (tree and array multipliers, Chapter 11)

Using Higher Radix Multiplier

10.1 Radix-4 Multiplication

Radix- r versions of multiplication recurrences
Multiplication with right shifts: top-to-bottom accumulation

$$
\begin{array}{rlrl}
p^{(j+1)}= & \left(p^{(j)}+x_{j} a r^{k}\right) r^{-1} & \text { with } \quad p^{(0)}=0 \text { and } \\
& \mid- \text { add- } \mid & & p^{(k)}=p=a x+p^{(0)} r^{-k}
\end{array}
$$

Multiplication with left shifts: bottom-to-top accumulation

$$
\begin{array}{rlrl}
p^{(j+1)}=r p^{(j)}+x_{k-j-1} a & \text { with } \quad & p^{(0)} & =0 \text { and } \\
& p^{(k)} & =p=a x+p^{(0)} r^{k}
\end{array}
$$

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot notation.

Using Higher Radix Multiplier

Fig. 10.2 The multiple generation part of a radix-4 multiplier with precomputation of 3a.

Fig. 10.3 Example of radix-4 multiplication using the $3 a$ multiple. *from Parhami

Higher Radix Multiplier

Fig. 10.4 The multiple generation part of a radix-4 multiplier based on replacing $3 a$ with $4 a$ (carry into next higher radix-4 multiplier digit) and -a.

X_{i+1}	X_{i}	c	Mux control		Set carry
---	---	---			------------
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	0	0	1

10.2 Modified Booth's Recoding

Table 10.1 Radix-4 Booth's recoding yielding $\left(z_{k / 2} \cdots z_{1} z_{0}\right)_{\text {four }}$

x_{i+1}	x_{i}	x_{i-1}	y_{i+1}	y_{i}	$z_{i / 2}$	Explanation

0	0	0	0	0	0	No string of 1 s in sight
0	0	1	0	1	1	End of string of 1 s
0	1	0	0	1	1	Isolated 1
0	1	1	1	0	2	End of string of 1 s
1	0	0	-1	0	-2	Beginning of string of 1 s
1	0	1	-1	1	-1	End a string, begin new one
1	1	0	0	-1	-1	Beginning of string of 1 s
1	1	1	0	0	0	Continuation of string of 1 s

Example: (21 3122 32 $)_{\text {four }}$

Booth's Recoding

$\begin{aligned} & a \\ & x \\ & z \end{aligned}$	0110							Recoded version of x			
				0	1						
				-1		-2					
$p^{(0)}$		0	0	0	0						
$+z_{0} a$		1	0	1	0						
$4 p^{(1)}$		1	0	1	0						
$p^{(1)}$		1	1	1	0	1		0			
$+z_{1} a$		1	1	0	1						
$4 p^{(2)}$		1	0	1	1	1		0			
$p^{(2)}$				1	0	1		1	1	0	

Fig. 10.5 Example radix-4 multiplication with modified Booth's recoding of the 2's-complement multiplier.

Booth's Recoding

Fig. 10.6 The multiple generation part of a radix-4 multiplier based on Booth's recoding.

Booth's Recoding

Using Carry-Save Adders

Radix-4 multiplication with a carry-save adder used to combine the cumulative partial product, $x_{i} a$, and $2 x_{i+1}$ a into two numbers.

Booth recoding and multiple selection logic for high-radix or parallel multiplication.

Modified Booth Recording Implementation
Multiplicand Y

Higher Radix Multipliers

Radix-16 multiplication with the upper half of the cumulative partial product in carry-save form.

Tree and Array Multipliers

Tree and Array Multipliers

General structure of a full-tree multiplier.

Tree Multipliers

Possible CSA tree for a 7×7 tree multiplier.

Tree Multipliers

Schematic diagrams for full-tree and partial-tree multipliers.

Generating Partial Products

Generating Partial Products

*from G. Bewick

$10011000010000000001010101100011=2554336611_{10}=$ Product

Generating Partial Products using Booth's Recoding

Generating Partial Products using Booth's Recoding

Booth Partial Product Selector Logic

*from G. Bewick 11 May 2004

Radix-2 Booth Recoded Multiplier with Negative Partial Products

Figure A.2: 16 bit Booth 2 multiplication with negative partial products.

Radix-2 Booth Recoded Multiplier with Summed Sign Extension

Figure A.3: Negative partial products with summed sign extension.

Radix-2 Booth Recoded Multiplier with Summed Sign Extension

Figure A.4: Complete 16 bit Booth 2 multiplication.

Radix-2 Booth Recoded Multiplier with Summed Sign Extension and Reduced Logic Depth

Figure A.5: Complete 16 bit Booth 2 multiplication with height reduction.

Complete Signed Radix-2 Booth Recoded Multiplier

Figure A.6: Complete signed 16 bit Booth 2 multiplication.
*from G. Bewick

Tree Multipliers

Tree multiplier with a more regular structure based on 4-to-2 reduction modules.

Reduction using 4:2 Compressors

Tree Multipliers

Layout of a partial-products reduction tree composed of 4-to-2 reduction modules. Each solid arrow represents two numbers.

Multiplier Placement in a Standard Grid Topology

Floor Plan of a Multiplier

Figure 5.20: Floor plan of multiplier chip
*from G. Bewick

Delay Components of a Booth Recoded Parallel Multiplier

Figure 6.1: Delay components of Booth 3-14 multiplier.

Hollywood

