



# **VLSI** Arithmetic



Lecture 9: Carry-Save and

**Multi-Operand Addition** 

### Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel









A ripple-carry adder turns into a carry-save adder if the carries are saved (stored) rather than propagated.



\*from Parhami





Carry-propagate adder (CPA) and carry-save adder (CSA) functions in dot notation.



Specifying full- and half-adder blocks, with their inputs and outputs, in dot notation.









#### \*from Parhami



Addition of seven 6-bit numbers in dot notation.





Adding seven *k*-bit numbers and the CSA/CPA widths required.





### Wallace and Dadda Trees





6



The maximum number *n*(*h*) of inputs for an *h*-level carry-save-adder tree

| h                          | n(h)                        | h                             | n(h)                               | h                                | n(h)                                       |
|----------------------------|-----------------------------|-------------------------------|------------------------------------|----------------------------------|--------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5 | 2<br>3<br>4<br>6<br>9<br>13 | 7<br>8<br>9<br>10<br>11<br>12 | 28<br>42<br>63<br>94<br>141<br>211 | 14<br>15<br>16<br>17<br>18<br>19 | 474<br>711<br>1066<br>1599<br>2398<br>3597 |
| 6                          | 19                          | 13                            | 316                                | 20                               | 5395                                       |

\*from Parhami



In a Wallace tree, we reduce the number of operands at the earliest possible opportunity

In a Dadda tree, we reduce the number of operands at the latest possible opportunity that leads to no added delay (target the next smaller number in Table 8.1)

| h | n(h) | h  | n(h) | h  | n(h) |
|---|------|----|------|----|------|
| 0 | 2    | 7  | 28   | 14 | 474  |
| 1 | 3    | 8  | 42   | 15 | 711  |
| 2 | 4    | 9  | 63   | 16 | 1066 |
| 3 | 6    | 10 | 94   | 17 | 1599 |
| 4 | 9    | 11 | 141  | 18 | 2398 |
| 5 | 13   | 12 | 211  | 19 | 3597 |
| 6 | 19   | 13 | 316  | 20 | 5395 |



\*from Parhami





Total cost = 7-bit adder + 28 FAs + 1 HA

#### \*from Parhami



Adding seven 6-bit numbers using Dadda's strategy.





#### \*from Parhami



Adding seven 6-bit numbers by taking advantage of the final adder's carry-in.



# **Parallel Counters \***

Single-bit full-adder = (3; 2)-counter Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter Circuit reducing *n* bits to their  $\lceil \log_2(n + 1) \rceil$ -bit sum

=  $(n; \lceil \log_2(n + 1) \rceil)$ -counter



Fig. 8.16 A 10-input parallel counter also known as a (10; 4)counter.



\*from Parhami



### **Parallel Counters and Compressors \***



- Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of such counters for reducing five numbers to two numbers.
- (n; 2)-counters







## Adding Multiple Signed Numbers \*

Extended positions Sign Magnitude positions  $X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-2} X_{k-3} X_{k-4} \cdots$  $y_{k-1} y_{k-1} y_{k-1} y_{k-1} y_{k-1} y_{k-1} y_{k-2} y_{k-3} y_{k-4} \cdots$  $Z_{k-1} Z_{k-1} Z_{k-1} Z_{k-1} Z_{k-1} Z_{k-1} Z_{k-2} Z_{k-3} Z_{k-4} \cdots$ (a) Sign Magnitude positions Extended positions  $0 \quad \overline{x}_{k-1} x_{k-2} x_{k-3} x_{k-4} \cdots$ 1 1 1 1  $\overline{y}_{k-1} y_{k-2} y_{k-3} y_{k-4} \cdots$  $\overline{Z}_{k-1} Z_{k-2} Z_{k-3} Z_{k-4} \cdots$ 1 \*from Parhami (b)

Fig. 8.18 Adding three 2's-complement numbers using sign extension (a) or by the method based on negatively weighted sign bits (b).





13

## **Multi-Operand Addition**

#### <u>from</u>

### **Digital Arithmetic**, Morgan-Kauffman Publishers, 2004 Miloš Ercegovac and Tomàs Lang





- Bit-arrays for unsigned and signed operands
  - simplification of sign extension
- Reduction by rows and by columns
  - $\left[ p{:}2\right]$  modules and  $\left[ p{:}2\right]$  adders for reduction by rows
  - (p:q] counters and multicolumn counters for reduction by columns
- Sequential implementation
- Combinational implementation
  - Reduction by rows: arrays of adders (linear arrays, adder trees)
  - Reduction by columns: (p:q] counters
  - systematic design method for reduction by columns with (3:2] and (2:2] counters
- Pipelined adder arrays
- Partially combinational implementation

1

$$a_{0}a_{0}a_{0}a_{0}a_{1}a_{2} \dots a_{n}$$
  

$$b_{0}b_{0}b_{0}b_{0}b_{1}b_{2} \dots b_{n}$$
  

$$c_{0}c_{0}c_{0}c_{0}c_{1}c_{2} \dots c_{n}$$
  

$$d_{0}d_{0}d_{0}d_{0}d_{1}d_{2} \dots d_{n}$$
  

$$e_{0}e_{0}e_{0}e_{0}e_{1}e_{2} \dots e_{n}$$

### sign extension

Figure 3.1: SIGN-EXTENDED ARRAY FOR m = 5.



Figure 3.2: SIMPLIFYING SIGN-EXTENSION: (a) GENERAL CASE. (b) EXAMPLE OF SIMPLIFYING ARRAY WITH m = 5.

3 – Multi-Operand Addition

### REDUCTION

- By rows
- By columns



Figure 3.3: A [p:2] adder: (a) Input-output bit-matrix. (b) k-column [p:2] module decomposition.



Figure 3.4: A model of a [p:2] module.



Figure 3.5: Gate network implementation of [4:2] module.

3-Multi-Operand Addition



Figure 3.6: (a) [5:2] module. (b) [7:2] module.



Figure 3.7: (a) (p:q] reduction. (b) Counter representation.



Figure 3.8: Implementation of (7:3] counter by an array of full adders.



Figure 3.9: Gate network of a (7:3] counter.

11



Figure 3.10: (a) (5,5:4] counter. (b) (1,2,3:4] counter.

cycle time dependent on precision



(a)





Figure 3.11: SEQUENTIAL MULTIOPERAND ADDITION: a) WITH CONVENTIONAL ADDER. b) WITH [p:2] ADDER. c) WITH [3:2] ADDER.

- Reduction by rows: array of adders
  - Linear array
  - $-\operatorname{\mathsf{Adder}}$  tree
- Reduction by columns with (p:q] counters



Figure 3.12: LINEAR ARRAY OF [p:2] ADDERS FOR MULTIOPERAND ADDITION.

• k - the number of [p:2] CS adders for m operands:

$$pk = m + 2(k-1)$$
 
$$k = \left[\frac{m-2}{p-2}\right] \quad \text{[p:2] carry-save adders}$$

• The number of adder levels



Figure 3.13: Construction of a [p:2] carry-save adder tree.

$$m_l = p \left\lfloor \frac{m_{l-1}}{2} \right\rfloor + m_{l-1} mod \ 2$$

3 – Multi-Operand Addition

| Table 3.1: [3:2] Reduction sequence. |   |   |   |   |    |    |    |    |    |
|--------------------------------------|---|---|---|---|----|----|----|----|----|
| l                                    | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  |
| $m_l$                                | 3 | 4 | 6 | 9 | 13 | 19 | 28 | 42 | 63 |



$$l \approx \log_{p/2}(m_l/2)$$

17



Figure 3.14: [3:2] adder tree for 9 operands (magnitudes with n = 3).



Figure 3.15: Tree of [4:2] adders for m = 16.



Figure 3.16: Example of reduction using (7:3] counters.



Figure 3.17: Construction of (p:q] reduction tree.

| Number of levels    | 1 | 2  | 3  | 4  |  |
|---------------------|---|----|----|----|--|
| Max. number of rows | 7 | 15 | 35 | 79 |  |

Table 3.2: Sequence for (7:3] counters



Figure 3.18: Multilevel reduction with (7:3] counters



Figure 3.19: Full adder and half adder as (3:2] and (2:2] counters.



Figure 3.20: Reduction process.

 $e_i$  – number of bits in column i $f_i$  – number of full adders in column i $h_i$  – number of half adders in column i

$$e_i - 2f_i - h_i + f_{i-1} + h_{i-1} = m_{l-1}$$

resulting in

$$2f_i + h_i = e_i - m_{l-1} + f_{i-1} + h_{i-1} = p_i$$

Solution producing min number of carries:

$$f_i = \lfloor p_i/2 \rfloor \quad h_i = p_i \mod 2$$

Digital Arithmetic - Ercegovac/Lang 2003

3 – Multi-Operand Addition

|       |   |   |   |   | i |   |   |
|-------|---|---|---|---|---|---|---|
|       | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| l = 4 |   |   |   |   |   |   |   |
| $e_i$ |   |   | 8 | 8 | 8 | 8 | 8 |
| $m_3$ |   |   | 6 | 6 | 6 | 6 | 6 |
| $h_i$ |   |   | 0 | 0 | 0 | 1 | 0 |
| $f_i$ |   |   | 2 | 2 | 2 | 1 | 1 |
| l=3   |   |   |   |   |   |   |   |
| $e_i$ |   | 2 | 6 | 6 | 6 | 6 | 6 |
| $m_2$ |   | 4 | 4 | 4 | 4 | 4 | 4 |
| $h_i$ |   | 0 | 0 | 0 | 0 | 1 | 0 |
| $f_i$ |   | 0 | 2 | 2 | 2 | 1 | 1 |
| l = 2 |   |   |   |   |   |   |   |
| $e_i$ |   | 4 | 4 | 4 | 4 | 4 | 4 |
| $m_1$ |   | 3 | 3 | 3 | 3 | 3 | 3 |
| $h_i$ |   | 0 | 0 | 0 | 0 | 0 | 1 |
| $f_i$ |   | 1 | 1 | 1 | 1 | 1 | 0 |
| l = 1 |   |   |   |   |   |   |   |
| $e_i$ | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
| $m_0$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $h_i$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $f_i$ | 0 | 1 | 1 | 1 | 1 | 1 | 0 |



Figure 3.21: Reduction by columns of 8 5-bit magnitudes. Cost of reduction: 26 FAs and 4 HAs.

3 – Multi-Operand Addition

Operands in [-4,3). Result range:

 $-4 + (-12) + (-12) - 4 = -32 \le f \le 3 + 9 + 9 + 3 = 24$ 

transformed into

$$\begin{vmatrix} 1 & 0 & b_2' & a_2' & a_1 & a_0 \\ & c_2' & b_2' & b_1 & b_0 \\ & b_1 & b_0 & & \\ & c_2' & c_1 & c_0 \\ & & c_1 & c_0 & & \\ & & & d_2' & d_1 & d_0 \end{vmatrix}$$

|       |   |   |   | i |   |    |
|-------|---|---|---|---|---|----|
|       | 5 | 4 | 3 | 2 | 1 | 0  |
| l=3   |   |   |   |   |   |    |
| $e_i$ | 1 | 0 | 2 | 6 | 6 | 4  |
| $m_2$ | 4 | 4 | 4 | 4 | 4 | 4  |
| $h_i$ | 0 | 0 | 0 | 1 | 0 | 0  |
| $f_i$ | 0 | 0 | 0 | 1 | 1 | 0  |
| l=2   |   |   |   |   |   |    |
| $e_i$ | 1 | 0 | 4 | 4 | 4 | 4  |
| $m_1$ | 3 | 3 | 3 | 3 | 3 | 3  |
| $h_i$ | 0 | 0 | 0 | 0 | 0 | 1  |
| $f_i$ | 0 | 0 | 1 | 1 | 1 | 0  |
| l = 1 |   |   |   |   |   |    |
| $e_i$ | 1 | 1 | 3 | 3 | 3 | 3  |
| $m_0$ | 2 | 2 | 2 | 2 | 2 | 1* |
| $h_i$ | 0 | 0 | 0 | 0 | 0 | 0  |
| $f_i$ | 0 | 0 | 1 | 1 | 1 | 1  |



Digital Arithmetic - Ercegovac/Lang 2003Figure 3.22: Reduction array f = a + 3b + 3c + d.

3 – Multi-Operand Addition

33



Figure 3.23: Pipelined arrays with [4:2] adders for computing  $S[j] = \sum_{i=1}^{8} X[i, j], j = 1, \dots, N$ : (a) Linear array. (b) Tree array.



Figure 3.24: Partially combinational scheme for summation of 4 operands per iteration: (a) Nonpipelined. (b) Pipelined.



Figure 3.25: Scheme for summation of q operands per iteration.





# **VLSI** Arithmetic



Lecture 9b: Sign-Digit Arithmetic

### Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel







# Sign-Digit Addition

#### <u>from</u>

### **Digital Arithmetic**, Morgan-Kauffman Publishers, 2004 Miloš Ercegovac and Tomàs Lang





• Uses signed-digit representation (redundant)

$$x = \sum_{0}^{n-1} x_i r^i$$

with digit set

$$D = \{-a, \dots, -1, 0, 1, \dots, a\}$$

- Limits carry propagation to next position
- Addition algorithm:

Step 1: 
$$x + y = w + t$$
  
 $x_i + y_i = w_i + rt_{i+1}$ 

Step 2: 
$$s = w + t$$
  
 $s_i = w_i + t_i$ 

• No carry produced in Step 2

#### SD ADDER



Figure 2.34: Signed-digit addition.

$$(t_{i+1}, w_i) = \begin{cases} (0, x_i + y_i) & \text{if } -a + 1 \le x_i + y_i \le a - 1\\ (1, x_i + y_i - r) & \text{if } x_i + y_i \ge a\\ (-1, x_i + y_i + r) & \text{if } x_i + y_i \le -a \end{cases}$$

- algorithm modified for r=2

 $Case \ B: \ \text{two conventional operands; result SD}$ 

 $Case \ C: one \ conventional, \ one \ SD; \ result \ SD$ 

#### RECODING 1:

$$x_i + y_i = 2h_{i+1} + z_i \in \{-2, -1, 0, 1, 2\}$$
$$h_i \in \{0, 1\}, z_i \in \{-2, -1, 0\}$$
$$q_i = z_i + h_i \in \{-2, -1, 0, 1\}$$

**RECODING 2**:

$$q_i = z_i + h_i = 2t_{i+1} + w_i \in \{-2, -1, 0, 1\}$$
  
$$t_i \in \{-1, 0\}, \quad w_i \in \{0, 1\}$$

THE RESULT:  $s_i = w_i + t_i \in \{-1, 0, 1\}$ 



Figure 2.35: Double recoding method for signed-bit addition

49

$$P_{i} = \begin{cases} 0 & \text{if } (x_{i}, y_{i}) \text{ both nonnegative} \\ & (\text{which implies } t_{i+1} \geq 0) \\ 1 & \text{otherwise } (t_{i+1} \leq 0) \end{cases}$$

| $x_i + y_i$ | $P_{i-1}$      | $t_{i+1}$ | $w_i$ |
|-------------|----------------|-----------|-------|
| 2           | -              | 1         | 0     |
| 1           | $0(t_i \ge 0)$ | 1         | -1    |
| 1           | $1(t_i \le 0)$ | 0         | 1     |
| 0           | -              | 0         | 0     |
| -1          | $0(t_i \ge 0)$ | 0         | -1    |
| -1          | $1(t_i \le 0)$ | -1        | 1     |
| -2          | -              | -1        | 0     |

50

### METHOD 2 SD ADDER



Figure 2.36: Signed-bit addition using the information from previous digit

- $X \quad 0 \ 1 \ 1 \ 1 \ \overline{1} \ 1 \ 0 \ \overline{1} \ 1$
- $Y = 0 \ 1 \ 1 \ 0 \ \overline{1} \ 0 \ 1 \ 0 \ 1$
- P 000010010
- W 00010<u>1</u>1<u>1</u>0 T 0110<u>1</u>10010
- S 1 1 0 0 1  $\overline{1}$  1 0 0

- Case C:  $x_i \in \{0, 1\}$ ,  $y_i, s_i \in \{-1, 0, 1\}$
- Code: borrow-save  $y_i = y_i^+ y_i^-$ ,  $y_i^+, y_i^- \in \{0, 1\}$ , sim. for  $s_i$
- $x_i + y_i \in \{-1, 0, 1, 2\}$ : recode to  $(t_{i+1}, w_i)$ ,  $t_{i+1} \in \{0, 1\}$ ,  $w_i \in \{-1, 0\}$

$$\begin{aligned} x_i + y_i^+ - y_i^- &= 2t_{i+1} + w_i \\ \frac{x_i + y_i -1 \ 0 \ 1 \ 2}{w_i -1 \ 0 \ -1 \ 0} \\ t_{i+1} & 0 \ 0 \ 1 \ 1 \end{aligned}$$

$$w_{i} = (x_{i} \oplus y_{i}^{+} \oplus (y_{i}^{-})')'$$
  
$$t_{i+1} = x_{i}y_{i}^{+} + x_{i}(y_{i}^{-})' + y_{i}^{+}(y_{i}^{-})'$$

 $\implies$  implemented using a full-adder and inverters (for variables subtracted)



Figure 2.37: Redundant adder: one operand conventional, one operand redundant, result redundant.

• Apply double recoding



Figure 2.38: Redundant adder: operands and result redundant





# **VLSI** Arithmetic



Lecture 9c:

**Sign-Digit Arithmetic** 

### Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel







# Example of Sign-Digit Arithmetic: Viterbi Detector

from

A. K. Yeung, J. Rabaey, "A 210Mb/s Radix-4 Bit-Level Pipelined Viterbi Decoder", Proceedings of the International Solid-State Circuits Conference, San Francisco, California, 1995.





### 4-bit Add-Compare-Subtract Unit



compare-select unit Note: For simplicity, only the addition of one state metric and one branch metric is shown.





Figure 1: (a) 4b ACS unit using carry-propagation-free addition. (b) Bit-level pipelined ACS (clock doubling, retiming). (c) Bit-level pipelined, time-multiplexed ACS unit.

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE



## Radix-4 ACS (one bit)



#### Figure 3: Radix-4 ACS bit-slice circuit.



