

VLSI Arithmetic

Lecture 11: Division

Prof. Vojin G. Oklobdzija University of California
http://www.ece.ucdavis.edu/acsel

Division

DPart Goals
*Review shift-subtract division schemes
*Learn about faster dividers
*Discuss speed/cost tradeoffs in dividers
\square Part Synopsis
*Division is the hardest basic operation
*Fortunately, it is also the least common
*Division speedup: high-radix, array, ...
*Combined multiplication/division hardware
*Digit-recurrence vs convergence division

Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:
z Dividend
d Divisor
q Quotient

$$
\begin{aligned}
& z_{2 k-1} z_{2 k-2} \cdots z_{1} z_{0} \\
& d_{k-1} d_{k-2} \cdots d_{1} d_{0} \\
& q_{k-1} q_{k-2} \cdots q_{1} q_{0}
\end{aligned}
$$

$s \quad$ Remainder $(z-d \times q) \quad s_{k-1} s_{k-2} \cdots s_{1} s_{0}$

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot notation.

Division

\square Division is more complex than multiplication: * Need for quotient digit selection or estimation *Possibility of overflow: the high-order k bits of z must be strictly less than d, this overflow check *also detects the divide-by-zero condition.

Integer division
Fractional division

Division

${ }_{2}{ }^{4} d$	$\begin{array}{lllllll} 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & & & \end{array}$	$Z_{\text {frac }}$ $d_{\text {frac }}$	0111 1010101
$s^{(0)}$	01110101	$s^{(0)}$	01110101
$2 s^{(0)}$	01110101	$2 s^{(0)}$	0.1110101
$-q_{3} 2^{4} d$	$1010\left\{q_{3}=1\right\}$	$-q_{-1} d$. $1010\left\{q_{-1}=1\right\}$
$s^{(1)}$	0100101	$s^{(1)}$	0100101
$2 s^{(1)}$	0100101	$2 s^{(1)}$	0.100101
$-q_{2} 2^{4} d$	$0000\left\{q_{2}=0\right\}$	$-q_{-2} d$. $0000\left\{q_{-2}=0\right\}$
$s^{(2)}$	100101	$s^{(2)}$	100101
$2 s^{(2)}$	100101	$2 s^{(2)}$	1.00101
$-q_{1} 2^{4} d$	$1010\left\{q_{1}=1\right\}$	$-q_{-3} d$. $1010\left\{q_{-3}=1\right\}$
$s^{(3)}$	10001	$s^{(3)}$. 10001
$2 s^{(3)}$	10001	$2 s^{(3)}$	1.0001
$-q_{0} 2^{4} d$	$1010\left\{q_{0}=1\right\}$	$-q_{-1} d$. $1010\left\{q_{-4}=1\right\}$
$s^{(4)}$	0111	$s^{(4)}$. 0111
s	0111	$S_{\text {frac }}$	0.00000111
	1011	$q_{\text {frac }}=$. 1011

Fig. 13.2 Examples of sequential division with integer and fractional operands.

Programmed Division

Register usage for programmed division.

Restoring Hardware Dividers

Division with signed operands: q and s are defined by

$$
z=d \times q+s \quad \operatorname{sign}(s)=\operatorname{sign}(z) \quad|s|<|d|
$$

Examples of division with signed operands

$$
\begin{array}{lllll}
z=5 & d=3 & \Rightarrow & q=1 & s=2 \\
z=5 & d=-3 & \Rightarrow & q=-1 & s=2 \\
z=-5 & d=3 & \Rightarrow & q=-1 & s=-2 \\
z=-5 & d=-3 & \Rightarrow & q=1 & s=-2
\end{array}
$$

Magnitudes of q and s are unaffected by input signs Signs of q and s are derivable from signs of z and d Will discuss direct signed division later

Restoring Hardware Dividers

Division with signed operands: q and s are defined by

$$
z=d \times q+s \quad \operatorname{sign}(s)=\operatorname{sign}(z) \quad|s|<|d|
$$

Examples of division with signed operands

$$
\begin{array}{lllll}
z=5 & d=3 & \Rightarrow & q=1 & s=2 \\
z=5 & d=-3 & \Rightarrow & q=-1 & s=2 \\
z=-5 & d=3 & \Rightarrow & q=-1 & s=-2 \\
z=-5 & d=-3 & \Rightarrow & q=1 & s=-2
\end{array}
$$

Magnitudes of q and s are unaffected by input signs Signs of q and s are derivable from signs of z and d Will discuss direct signed division later

Restoring Hardware Dividers

*from Parhami
Shift/subtract sequential restoring divider.

Restoring
 Division

=========================

| z | | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | No overflow, since: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2^{4} d$ | 0 | 1 | 0 | 1 | 0 | | | | | |
| $(0111)_{\mathrm{two}}^{<}(1010)_{\mathrm{two}}$ | | | | | | | | | | |

Fig. 13.6 Example of restoring unsigned division.

Nonrestoring and Signed Division

The cycle time in restoring division must accommodate:

- shifting the registers
- allowing signals to propagate through the adder
- determining and storing the next quotient digit
- storing the trial difference, if required

Later events depend on earlier ones in the same cycle Such dependencies tend to lengthen the clock cycle.

Nonrestoring division algorithm assume $q_{k-j}=1$ and perform

- subtraction
- store the difference as the new partial remainder
(the partial remainder can become incorrect, hence the name
"nonrestoring")

Nonrestoring Division

Why it is acceptable to store an incorrect value in the partial-remainder register?

Shifted partial remainder at start of the cycle is u Subtraction yields the negative result $u-2^{k} d$

Option 1: restore the partial remainder to correct value u, shift, and subtract to get $2 u-2^{k} d$
Option 2: keep the incorrect partial remainder $u-2^{k} d$, shift, and add to get $2\left(u-2^{k} d\right)+2^{k} d=2 u-2^{k} d$
＝ニニニニニニニニニニニニニニニニニニニニニニニニ
Non－restoring Division

z	0111	010	No overflow，since：$(0111)_{\mathrm{two}}<(1010)_{\mathrm{two}}$
$2^{4} d$	01010		
$-2^{4} d$	10110		
＝$==$	0		Positive， so subtract
$2 s^{(0)}$	0 1 1 1	101	
$+\left(-2^{4} d\right)$	10110		
$s^{(1)}$	00100	101	Positive，so set $q_{3}=1$ and subtract
$2 s^{(1)}$	010001	01	
$+\left(-2^{4} d\right)$	10110		
$s^{(2)}$	111111	01	Negative，so set $q_{2}=0$ and add
$2 s^{(2)}$	11110	1	
$+2^{4} d$	01010		
$s^{(3)}$	01000	1	Positive，so set $q_{1}=1$ and subtract
$2 s^{(3)}$	10001		
$+\left(-2^{4} d\right)$	10110		
$s^{(4)}$	$\begin{array}{llll}0 & 0 & 111\end{array}$		Positive，so set $q_{0}=1$
s		0111	
		1011	
			＊from Parhami

Nonrestoring Division Example

(a) Restoring

(b) Nonrestoring

(0 1110101)two / (1010)two

(117)ten / (10)ten
*from Parhami

Division

Restoring division

$q_{k-j}=0$ means no subtraction (or subtraction of 0)
$q_{k-j}=1$ means subtraction of d

Nonrestoring division

We always subtract or add
As if quotient digits are selected from the set $\{1,-1\}$
1 corresponds to subtraction
-1 corresponds to addition
Our goal is to end up with a remainder that matches the sign of the dividend

This idea of trying to match the sign of s with the sign z, leads to a direct signed division algorithm

$$
\text { If } \operatorname{sign}(s)=\operatorname{sign}(d) \text { then } q_{k-j}=1 \text { else } q_{k-j}=-1
$$

Division

Two problems must be dealt with at the end:

1. Converting the quotient with digits 1 and -1 to binary
2. Adjusting the results if final remainder has wrong sign (correction step involves addition of $\pm d$ to remainder and subtraction of ± 1 from quotient)

Correction might be required even in unsigned division (when the final remainder is negative)

$$
\begin{aligned}
& \text { Division } \\
& \text { *from Parhami }
\end{aligned}
$$

Fig. 13.9 Example of nonrestoring signed division.

Division

Shift-subtract sequential nonrestoring divider.

14.1 Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1

$$
s^{(j)}=r s^{(j-1)}-q_{k-j}\left(r^{k} d\right) \text { with } s^{(0)}=z \text { and } s^{(k)}=r^{k} s
$$

High-radix dividers of practical interest have $r=2^{b}$ (and, occasionally, $r=10$)

Fig. 14.1 Radix-4 division in dot notation.

Radix-4 integer division

High-Radix Division

z	01231123	$Z_{\text {frac }}$	7003
$4^{4} d$	1003	$d_{\text {frac }}$. 99
$s^{(0)}$	01231123	$s^{(0)}$	7003
$4 s^{(0)}$	01231123	$10 s^{(0)}$	7.003
$-q_{3} 4^{4} d$	$01203\left\{q_{3}=1\right\}$	$-q_{-1} d$	$6.93\left\{q_{-1}=7\right\}$
$s^{(1)}$	0022123	$s^{(1)}$. 073
$4 s^{(1)}$	0022123	$10 s^{(1)}$	0.73
$-q_{2} 4^{4} d$	00000 \{ $\left.q_{2}=0\right\}$	$-q_{-2} d$	$0.00\left\{q_{-2}=0\right\}$
$s^{(2)}$	022123	$s^{(2)}$	73
$4 s^{(2)}$	022123	$S_{\text {frac }}$	0073
$-q_{1} 4^{4} d$	$01203\left\{q_{1}=1\right\}$	$q_{\text {frac }}$	70
$s^{(3)}$	10033		
$4 s^{(3)}$	10033		
$-q_{0} 4^{4} d$	$03012\left\{q_{0}=2\right\}$		
$s^{(4)}$	1021		
s	1021		
\underline{q}	1012		*from Parhami

Fig. 14.2 Examples of high-radix division with integer and fractional operands.

High-Radix Division

Radix-2 nonrestoring division, fractional operands

$$
s^{(j)}=2 s^{(j-1)}-q_{-j} d \text { with } s^{(0)}=z \text { and } s^{(k)}=2^{k} s
$$

Fig. 14.3 The new partial remainder, $\boldsymbol{s}^{(0)}$, as a function of the shifted old partial remainder, $2 s^{(j-1)}$, in radix-2 nonrestoring division.

High-Radix Division

Fig. 14.4 The new partial remainder $s^{())}$as a function of $2 s^{(i-1)}$, with q_{-j} in $\{-1,0,1\}$.

SRT Division

Fig. 14.5 The relationship between new and old partial remainders in radix-2 SRT division.

SRT Division

SRT algorithm (Sweeney, Robertson, Tocher)
$2 s^{(j-1)} \geq+1 / 2=(0.1)_{2 \text { 's-compl }}$

$$
\Rightarrow 2 s^{(j-1)}=\left(0.1 u_{-2} u_{-3} \cdots\right)_{2} \text { 's-compl }
$$

$2 s^{(j-1)}<-1 / 2=(1.1)_{2}$'s-compl

$$
\Rightarrow 2 s^{(j-1)}=\left(1.0 u_{-2} u_{-3} \cdots\right)_{2 \text { 's-compl }}
$$

Skipping over identical leading bits by shifting
$s^{(j-1)}=0.0000110 \ldots$ Shift left by 4 bits and subtract; append q with 0001
$s^{(j-1)}=1.1110100 \cdots$ Shift left by 3 bits and add; append q with 00^{-1}

Average skipping distance (statistically): 2.67 bits

Z	01000101	In［－1／2，1／2），so OK
d	1010	In［1／2，1），so OK
－d	1.0110	
$s^{(0)}$	0.01100000101	
$2 s^{(0)}$	0.1000101	$\geq 1 / 2$, so set $q_{-1}=1$
＋（－d）	1.0110	and subtract
$s^{(1)}$	1.1110101	
$2 s^{(1)}$	1．110101	$\ln [-1 / 2,1 / 2)$ ，so $q_{-2}=0$
$s^{(2)}=2 s^{(1)}$	1.110101	
$2 s^{(2)}$	1.10101	$\ln [-1 / 2,0)$, so $q_{-3}=0$
$s^{(3)}=2 s^{(2)}$	1.10101	
$2 s^{(3)}$	1.0101	$<-1 / 2$ ，so $q_{-4}=-1$
＋d	0.1010	and add
$s^{(4)}$	1.1111	Negative，
＋d	0.1010	so add to correct
$s^{(4)}$	0.1001	
s	0.00001001	
q	0．1 0 0－1	Ucorrected BSD form
q	0.0110	Convert，subtract ulp

Fig．14．6 Example of unsigned radix－2 SRT division．

SRT Division

Fig. 14.7 Constant thresholds used for quotient digit selection in radix-2 division with \boldsymbol{q}_{k-j} in $\{-1,0,1\}$.

Using Carry-Save Adder

Fig. 14.8 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

SRT Division

Overlap regions in radix-2 SRT division.

14.4 Choosing the Quotient Digits

Fig. 14.10 A p-d plot for radix-2 division with $d \in[1 / 2,1)$, partial remainder in [-d, d), and quotient digits in [-1, 1].
*from Parhami

Radix-4 SRT

Division
*from Parhami

Fig. 14.11 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-3,3]$.

Fig. $14.12 p-d$ plot for radix-4 SRT division with quotient digit set $[-3,3]$.

General High-Radix Dividers

Fig. 14.15 Block diagram of radix-r divider with partial remainder in stored-carry form.

Combined Multiply/Divide Units

Sequential radix-2 multiply/divide unit.

Other Methods for Division

$\square G e n e r a l ~ H i g h-R a d i x ~ D i v i d e r s ~$
-Division with prescaling
DArray Dividers
-Division by Convergence
*Division by repeated multiplication

* Division by reciprocation

Hollywood

