

VLSI Arithmetic

Lecture 11: Division

Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel

Part Goals

- Review shift-subtract division schemes
- Learn about faster dividers
- Discuss speed/cost tradeoffs in dividers
- Part Synopsis
 - Division is the hardest basic operation
 - Fortunately, it is also the least common
 - Division speedup: high-radix, array, ...
 - Combined multiplication/division hardware
 - Digit-recurrence vs convergence division

*from Parhami

Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:

- z Dividend
- d Divisor
- q Quotient

- $z_{2k-1}z_{2k-2}\cdots z_1z_0$ $d_{k-1}d_{k-2}\cdots d_1d_0$
- $q_{k-1}q_{k-2}\cdots q_1q_0$
- s Remainder $(z d \times q)$ $s_{k-1}s_{k-2} \cdots s_1s_0$

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot notation.

Division is more complex than multiplication:
 Need for quotient digit selection or estimation
 Possibility of overflow: the high-order k bits of z
 must be strictly less than d; this overflow check
 also detects the divide-by-zero condition.

In	teger division	Fractional division		
====== z 2 ⁴ d	0 1 1 1 0 1 0 1 1 0 1 0	====== Z _{frac} d _{frac}	. 0 1 1 1 0 1 0 1 . 1 0 1 0	
$s^{(0)}$ 2 $s^{(0)}$ $-q_3 2^4 d$	0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0	$s^{(0)}$ 2 $s^{(0)}$ $-q_{-1}d$.01110101 0.1110101 .1010{q_1=1}	
$s^{(1)} 2s^{(1)} -q_2 2^4 d$	$\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ \left\{ q_2 = 0 \right\} \end{array}$	$s^{(1)}$ 2 $s^{(1)}$ $-q_{-2}d$.0100101 0.100101 .0000{q_2=0}	
$\frac{s^{(2)}}{2s^{(2)}}$ $-q_1 2^4 d$	$ \begin{array}{c} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & \{q_1 = 1\}\end{array} $	$s^{(2)}$ 2s ⁽²⁾ -q_3d	.100101 1.00101 .1010{q_3=1}	
$s^{(3)} 2s^{(3)} -q_0 2^4 d$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s ⁽³⁾ 2s ⁽³⁾ -q ₋₁ d	. 1000 1 1.0001 . 1010{q_4=1}	
s ⁽⁴⁾ s <u>q</u>	0 1 1 1 0 1 1 1 1 0 1 1	s ⁽⁴⁾ s _{frac} q _{frac}	.0111 0.00000111 .1011	

*from Parhami

Fig. 13.2 Examples of sequential division with integer and fractional operands.

Programmed Division

Register usage for programmed division.

June 1, 2004

Restoring Hardware Dividers

Division with signed operands: q and s are defined by

 $z = d \times q + s$ sign(s) = sign(z) |s| < |d|

Examples of division with signed operands

z = 5	d = 3	\Rightarrow	q = 1	s = 2
z = 5	d = -3	\Rightarrow	q = -1	s = 2
z = -5	d = 3	\Rightarrow	q = -1	s = -2
z = -5	d = -3	\Rightarrow	q = 1	s = -2
anitudes of	and sare i	unaffer	ted by input	sians

Magnitudes of *q* and *s* are unaffected by input signs Signs of *q* and *s* are derivable from signs of *z* and *d* Will discuss direct signed division later

Restoring Hardware Dividers

Division with signed operands: q and s are defined by

 $z = d \times q + s$ sign(s) = sign(z) |s| < |d|

Examples of division with signed operands

z = 5	d = 3	\Rightarrow	q = 1	s = 2
z = 5	d = -3	\Rightarrow	q = -1	s = 2
z = -5	d = 3	\Rightarrow	q = -1	s = -2
z = -5	d = -3	\Rightarrow	q = 1	s = -2
anitudes of	and sare i	unaffer	ted by input	sians

Magnitudes of *q* and *s* are unaffected by input signs Signs of *q* and *s* are derivable from signs of *z* and *d* Will discuss direct signed division later

Restoring Hardware Dividers

Shift/subtract sequential restoring divider.

Restoring Division

=======	==:	===	===	==:	===	===	==	==	=	
z 2 ⁴ d –2 ⁴ d	0 1		0		1 0 0	0	1	0	1	No overflow, since: (0111) _{two} < (1010) _{two}
$s^{(0)}$ 2 $s^{(0)}$ +(-2 ⁴ d)	0 0 1	0 1 0		1 1 1		0 1	1 0	•	1	
$s^{(1)}$ 2s ⁽¹⁾ +(-2 ⁴ d)	0 0 1	0 1 0	1 0 1	0 0 1	0 1 0	1 0	0 1	1	-	Positive, so set q_3 = 1
$s^{(2)}$ $s^{(2)}=2s^{(1)}$ $2s^{(2)}$ $+(-2^{4}d)$	1 0 1 1	1 1 0 0	1 0 0 1	•	1 1 0 0	0 0 1	1 1		_	Negative, so set q ₂ =(and restore
$s^{(3)}$ 2s ⁽³⁾ +(-2 ⁴ d)	0 1 1	1 0 0	0 0 1	0 0 1	0 1 0	1			-	Positive, so set $q_1 = 1$
s ⁽⁴⁾ s q	0	0	1	1	1	0 1	1 0	1 1	- 1 1	Positive, so set $q_0 = 1$
	:==: Eva	=== mnl4		==: f ro	===	=== rina	== n	===	=	* <i>from Parhami</i>

Fig. 13.6 Example of restoring unsigned division.

Nonrestoring and Signed Division

The cycle time in restoring division must accommodate:

- shifting the registers
- allowing signals to propagate through the adder
- determining and storing the next quotient digit
- storing the trial difference, if required

Later events depend on earlier ones in the same cycle Such dependencies tend to lengthen the clock cycle.

Nonrestoring division algorithm assume $q_{k-i} = 1$ and perform

- subtraction
- store the difference as the new partial remainder

(the partial remainder can become incorrect, hence the name "nonrestoring")

Nonrestoring Division

Why it is acceptable to store an incorrect value in the partial-remainder register?

Shifted partial remainder at start of the cycle is uSubtraction yields the negative result $u - 2^k d$

Option 1: restore the partial remainder to correct value u, shift, and subtract to get $2u - 2^k d$ Option 2: keep the incorrect partial remainder $u - 2^k d$, shift, and add to get $2(u - 2^k d) + 2^k d = 2u - 2^k d$

Non-restoring Division

=======	===:	====	=====	=======	
Z		0 1	1 1	0101	No overflow, since:
2 ⁴ d	0	1 0	1 0		(0111) _{two} < (1010) _{two}
$-2^{4}d$	1	0 1	1 0		
======== s ⁽⁰⁾	===: 0	==== 0 1	===== 1 1	0 1 0 1	
$2s^{(0)}$	0	1 1		101	Docitivo
	-				Positive,
$+(-2^4d)$	1	0 1	1 0		so subtract
s ⁽¹⁾	0	0 1	0 0	101	
2s ⁽¹⁾	0	1 0	0 1	0 1	Positive, so set $q_3 = 1$
$+(-2^4d)$	1	0 1	1 0		and subtract
$\overline{s}^{(2)}$	1	1 1	1 1	0 1	
$2s^{(2)}$	1	1 1	• •	1	Negative, so set $q_2 = 0$
$+2^4d$	0	1 0		1	and add
		10			
$s^{(3)}$	0	1 0	0 0	1	
2 <i>s</i> ⁽³⁾	1	0 0	0 1		Positive, so set $q_1 = 1$
$+(-2^4d)$	1	0 1	1 0		and subtract
s ⁽⁴⁾	0	0 1	1 1		Positive, so set $q_0 = 1$
S				0 1 1 1	· ·
q				1011	
=======	===:	====	=====	=======	*from Parhami
Ein 12 7	Eve	م مام م	f	a ta vina unai	anad division

Fig. 13.7 Example of nonrestoring unsigned division.

Nonrestoring Division Example

ÉCOLE POLYTECHNIQUE 14 FÉDÉRALE DE LAUSANNE

June 1, 2004

Restoring division

 $q_{k-j} = 0$ means no subtraction (or subtraction of 0) $q_{k-j} = 1$ means subtraction of *d* **Nonrestoring division** We always subtract or add As if quotient digits are selected from the set {1, -1}

1 corresponds to subtraction

-1 corresponds to addition

Our goal is to end up with a remainder that matches the sign of the dividend

This idea of trying to match the sign of *s* with the sign *z*, leads to a direct signed division algorithm

If sign(s) = sign(d) then $q_{k-j} = 1$ else $q_{k-j} = -1$

*from Parhami

Two problems must be dealt with at the end:

- 1. Converting the quotient with digits 1 and -1 to binary
- Adjusting the results if final remainder has wrong sign (correction step involves addition of ±d to remainder and subtraction of ±1 from quotient)

Correction might be required even in unsigned division (when the final remainder is negative)

======= z 2 ⁴ d	==== 1	0 1		1 0		0	0	0	:= 1	Dividend = (33) _{ten} Divisor = (–7) _{ten}
_2 ⁴ d	0	0	1	_1	1				_	
s ⁽⁰⁾	0	0	0	1	0	0	0	0	1	
2s ⁽⁰⁾	0	0	1	0	0	0	0	1		$sign(s^{(0)}) \bullet sign(d),$
+2 ⁴ d	1	1	0	0	1					so set q_3 = -1 and add
$\overline{s^{(1)}}$	1	1	1	0	1	0	0	1	_	
2 <i>s</i> ⁽¹⁾	-	1	-	-	-	0	•	•		$sign(s^{(1)}) = sign(d),$
$+(-2^4d)$	0	0	1	1	1					so set $q_2 = 1$ and sub
s ⁽²⁾	0	0	0	0	1	0	1		_	
$2s^{(2)}$	•	0	_		-	1	•			$sign(s^{(2)}) \bullet sign(d),$
$+2^{4}d$		1								so set $q_1 = -1$ and add
$+(-2^4d)$	1	0	1	1	0					
$\overline{s^{(3)}}$	1	1	0	1	1	1			_	
$2s^{(3)}$	-	0	-	-	-					$sign(s^{(3)}) = sign(d),$
$+(-2^4d)$	0	0	1	1	1					so set $q_0 = 1$ and sub
$\bar{s}^{(4)}$	1	1	1	1	0				_	$sign(s^{(4)}) \bullet sign(z)$
$+(-2^4d)$	-	0	-	-						Corrective subtraction
s ⁽⁴⁾	0	0	1	0	1				_	
S						0	1	0	1	Remainder = (5) _{ten}
q						-1	1 -	-1	1	Uncorrected BSD form
q _{2's-compl}	===		==:	==:	==:		1	0	0	Corrected $q = (-4)_{ten}$
Fig. 13.9 Example of nonrestoring signed division.										

*from Parhami

Shift-subtract sequential nonrestoring divider.

*from Parhami

June 1, 2004

14.1 Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1

$$s^{(j)} = r s^{(j-1)} - q_{k-j}(r^k d)$$
 with $s^{(0)} = z$ and $s^{(k)} = r^k s$

High-radix dividers of practical interest have *r* = 2^{*b*} (and, occasionally, *r* = 10)

Fig. 14.1 Radix-4 division in dot notation.

High-Radix Division

Radix-4	integer division	Radix-10	fractional division
z 4 ⁴ d	0 1 2 3 1 1 2 3 1 0 0 3	===== Z _{frac} d _{frac}	.7003 .99
$s^{(0)}$ $4s^{(0)}$ $-q_3 4^4 d$	0 1 2 3 1 1 2 3 0 1 2 3 1 1 2 3 0 1 2 0 3 $\{q_3 = 1\}$	s ⁽⁰⁾ 10s ⁽⁰⁾ –q _{–1} d	
$s^{(1)}$ $4s^{(1)}$ $-q_2 4^4 d$	$\begin{array}{c} 0 & 0 & 2 & 2 & 1 & 2 & 3 \\ 0 & 0 & 2 & 2 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & \{q_2 = 0\} \end{array}$	s ⁽¹⁾ 10s ⁽¹⁾ –q_2d	. 0 7 3 0 . 7 3 0 . 0 0 { $q_{-2}=0$ }
$s^{(2)}$ 4 $s^{(2)}$ $-q_1 4^4 d$	0 2 2 1 2 3 0 2 2 1 2 3 0 1 2 0 3 $\{q_1 = 1\}$	s ⁽²⁾ s _{frac} q _{frac}	.73 .0073 .70
$s^{(3)} 4s^{(3)} -q_0 4^4 d$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
s ⁽⁴⁾ s q	1 0 2 1 1 0 2 1 1 0 1 2		*from Parham

n Parhami

High-Radix Division

Radix-2 nonrestoring division, fractional operands

Fig. 14.3 The new partial remainder, *s*^(j), as a function of the shifted old partial remainder, 2*s*^(j-1), in radix-2 nonrestoring division.

*from Parhami June 1, 2004

High-Radix Division

Fig. 14.4 The new partial remainder $s^{(j)}$ as a function of $2s^{(j-1)}$, with q_{-j} in $\{-1, 0, 1\}$.

SRT Division

Fig. 14.5 The relationship between new and old partial remainders in radix-2 SRT division.

SRT Division

SRT algorithm (Sweeney, Robertson, Tocher) $2s^{(j-1)} \ge +1/2 = (0.1)_{2'\text{s-compl}}$ $\implies 2s^{(j-1)} = (0.1u_{-2}u_{-3} \cdot \cdot \cdot)_{2'\text{s-compl}}$ $2s^{(j-1)} < -1/2 = (1.1)_{2'\text{s-compl}}$ $\implies 2s^{(j-1)} = (1.0u_{-2}u_{-3} \cdot \cdot \cdot)_{2'\text{s-compl}}$

Skipping over identical leading bits by shifting

 $s^{(j-1)} = 0.0000110 \cdots$ Shift left by 4 bits and subtract; append q with 0 0 0 1

 $s^{(j-1)} = 1.1110100 \cdots$ Shift left by 3 bits and add; append q with 0 0⁻¹

Average skipping distance (statistically): 2.67 bits

*from Parhami

June 1. 2004

SRT Division

z d —d	. 0 . 1 1 . 0	0)	1	0	1	In [–1/2,1/2), so OK In [1/2,1), so OK
====================================	0.0 0.1 1.0	0		D 1	-	0 1	1	\ge 1/2, so set q_{-1} = 1 and subtract
$\frac{s^{(1)}}{2s^{(1)}}$	1 . 1 1 . 1	-	0	1 C	1	1		In [–1/2,1/2), so q ₋₂ =0
$\frac{s^{(2)} = 2s^{(1)}}{2s^{(2)}}$	1.1 1.1	1 0	-	1 C D 1	•			In [–1/2, 0), so q ₋₃ =0
$s^{(3)} = 2s^{(2)}$ $2s^{(3)}$ +d	1 . 1 1 . 0 0 . 1	1	0	-				< –1/2, so q _{–4} =-1 and add
s ⁽⁴⁾ +d	1 . 1 0 . 1	-	-	-				Negative, so add to correct
s ⁽⁴⁾ s q q =========	0.1 0.0 0.1 0.0	0	0 (0 (0 - 1 1 (D 1	0	0	1	Ucorrected BSD form Convert, subtract <i>ulp</i>
	_				_			

Fig. 14.6 Example of unsigned radix-2 SRT division.

SRT Division

Fig. 14.7 Constant thresholds used for quotient digit selection in radix-2 division with q_{k-j} in {-1, 0, 1}.

*from Parhami June 1, 2004

Using Carry-Save Adder

Fig. 14.8 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

*from Parhami

June 1, 2004

SRT Division

Overlap regions in radix-2 SRT division.

14.4 Choosing the Quotient Digits

Fig. 14.10 A *p*-*d* plot for radix-2 division with $d \in [1/2,1)$, partial remainder in [–*d*, *d*), and quotient digits in [–1, 1]. *from Parhami

June 1, 2004

Radix-4 SRT Division

*from Parhami

Fig. 14.12 *p-d* plot for radix-4 SRT division with quotient digit set [-3, 3].

General High-Radix Dividers

Fig. 14.15 Block diagram of radix-*r* divider with partial remainder in stored-carry form.

ÉCOLE POLYTECHNIQUE 31

Combined Multiply/Divide Units

Sequential radix-2 multiply/divide unit.

Other Methods for Division

- General High-Radix Dividers
- Division with prescaling
- Array Dividers
- Division by Convergence
 - Division by repeated multiplication
 - Division by reciprocation

June 1. 2004

Multiplier Design

Hollywood • .