

VLSI Arithmetic

Lecture 10: Multipliers
 Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel

Motorola's PowerPCN 603 RISC Microprocessor

A Method for Generation of Fast Parallel Multipliers

 byVojin G. Oklobdzija David Villeger Simon S. Liu

Electrical and Computer Engineering
University of California
Davis

Fast Parallel Multipliers

Objective

Improved Speed of Parallel Multiplier via:

- Improvements in Partial-Product Bit Reduction Techniques
- Optimization of the Final Adder for the Uneven Signal Arrival Profile from the Multiplier Tree

Multiplication

Algorithm:

$$
\begin{gathered}
P=X Y=X \times \sum_{i=0}^{n-1} y^{i} r^{i}=\sum_{i=0}^{n-1} X \times y^{i} r^{i} \\
\mathrm{p}^{(0)}=0 \quad \text { initially } \\
p^{(j+1)}=\frac{1}{r}\left(p^{j}+r^{n} X y_{j}\right) \quad \text { for } j=0, \ldots, n-1 \\
p(n)=X Y \quad \text { afternsteps }
\end{gathered}
$$

6 Bit Multiplication

Parallel Multipliers

Fast Parallel Multipliers

Wallace:

Bit Reduction Using "Dadda" Counters

Generalized Counters (Stenzel):

Generalized Counters (Stenzel):

\qquad

Minimum Number of Stages (Dada's Rule)

Number of bits in the multiplier Minimum number of stages

3

1
4 2
$4<n \leq 6 \quad 3$
$6<n \leq 9 \quad 4$
$9<n \leq 13 \quad 5$
$13<n \leq 19 \quad 6$
$19<\mathrm{n} \leq 28 \quad 7$
$28<n \leq 42 \quad 8$
$42<n \leq 63 \quad 9$

Their Schemes

Use of 4:2 Compressors

A. Weinberger 1981
M. Santoro 1988

4:2 Compressor

Critical Signal Path in a 4:2 Compressor Tree

Re-designed 4:2 Compressor with 3 XOR Delay (Nagamatsu, Toshiba)

Critical Path in a 4:2 Compressor

Signal Arrival Profile for RWT (3:2) and MWT (4:2)

Signal Arrival Profile:
RWT- Regular Wallace Tree
MWT-Modified Wallace Tree

Using 9:2 Compressors

(P. Song, G. De Michelli 1991)

Compressor Tree Implemented with 9:2 Compressors

9:2 Compressor Structure

Critical Path: (Equivalent XOR Gate Delays)

Delay Expressed as No. of XOR Gate Delays

Equivalent XOR Delay vs. Multiplier Size

Use of Higher-Order Compressors

D. Villeger, V.G. Oklobdzija 1993

Design of a 13:2 Compressor from a 9:2 Compressor

Delay Profile of a 24:2 Compressor Tree

Delay from a Multiplier Tree built 24:2 Counters (incl. 9:2 and 4:2)

Compressor Family Characteristics

Compressor Counters

4-2
6-2
9-2
13-2
18-2
24-2
53-2

No of Full Adder Levels
2
3
4
5
6
7
9

No XOR Gates
3
5
6
8
9
11
14

Using Carry-Propagate Adders

(G. Bewick 1993)
(D. Villeger \& V. G. Oklobdzija 1993)

Column Compression Tree Consisting of 4-bit Adders

Bit Reduction Using 4-bit Adders (24X24)

A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers
 Using an Algorithmic Approach - TDM

(Oklobdzija, Villeger, Liu, 1994)

Partial Product Martix Divided into Vertical Compressor Slices

3-Dimensional View of Partial Product Reduction

Signal Delays in a Full Adder
$(3,2)$ Counter

Signal Delays in a Full Adder
 $(3,2)$ Counter

Three-Dimensional optimization Method: TDM (Oklobdzija, Villeger, Liu, 1996)

12
MÂtiplier Design

Method

Worst Case

TDM Arrangement

Two cases of signals passing through the next level

Example of Delay Optimization

Example of a not Optimized Interconnection

The 9th Vertical Compressor Slice of a Multiplier

Computer Tools

Method for Optimal Interconnection

Design of Parallel Multipliers

Algorithm for Automatic Generation of Partial Product Array.

Initialize:

Form $2 \mathrm{~N}-1$ lists $\mathrm{Li}\left(\mathrm{i}=0,2 \mathrm{~N}-2\right.$) each consisting of p_{i} elements where:

$$
p_{i}=i+1 \text { for } i \leq N-1 \text { and } p_{i}=2 N-1-i \text { for } i \geq N
$$

An element of a list $L_{i}\left(j=0, \ldots, p_{i-1}\right)$ is a pair: $<n_{j}, D_{j}>i$ where:
n_{j} : is a unique node identifying name
D_{j} : is a delay associated with that node representing a delay of a signal arriving to the node nj with respect to some reference point.

For $i=0,1$ and $2 \mathrm{~N}-2$: connect nodes from the corresponding lists L_{i} directly to the CPA.

Delays

$$
\begin{aligned}
& \operatorname{Delay}(S)=\operatorname{MAX}\left\{\operatorname{Delay}(A)+D_{\text {A-S }}, \operatorname{Delay}(B)+D_{B-S}, \operatorname{Delay}\left(C_{i n}\right)+D_{\text {Cin }} \text { S }\right\} \\
& \operatorname{Delay}(C)=\operatorname{MAX}\left\{\operatorname{Delay}(A)+D_{\text {A-C }}, \operatorname{Delay}(B)+D_{B-C}, \operatorname{Delay}\left(C_{i n}\right)+D_{C i n} \text { C }\right\}
\end{aligned}
$$

In our case the delays in a FA are :

$$
\begin{aligned}
& F A_{A \rightarrow S}=F A_{B \rightarrow S}=2 X O R \text { delays } \\
& F A_{C i n \rightarrow S}=F A_{A \rightarrow C}=F A_{B \rightarrow C}=F A_{\text {Cin } \rightarrow C}=1 \text { XOR delay } .
\end{aligned}
$$

In a HA:

$$
H A_{A \rightarrow S}=H A_{B \rightarrow S}=1 \text { XOR delay while } H A_{A \rightarrow C}=H A_{B \rightarrow C}=0.5 \text { XOR delay. }
$$

For $\mathrm{i}=2$ to $\mathrm{i}=2 \mathrm{~N}-3$ \{Partial Product Array Generation\}

Begin For

if length of Li is even Then
Begin If
sort the elements of Li in ascending order by the values of delay δ_{j}
connect an HA to the first 2 elements of Li starting with the slowest input

$$
\begin{aligned}
& \mathrm{Ds}=\max \left\{\delta_{\mathrm{A}}+\delta_{\mathrm{A}-\mathrm{S}}, \delta_{\mathrm{B}}+\delta_{\mathrm{B}-\mathrm{S}}\right\} \\
& \mathrm{Dc}=\max \left\{\delta_{\mathrm{A}}+\delta_{\mathrm{A}-\mathrm{C}}, \delta_{\mathrm{B}}+\delta_{\mathrm{B}-\mathrm{C}}\right\}
\end{aligned}
$$

remove 2 elements from L_{i}
insert the pair <Ds,NetName> into L_{i}
insert the pair < Dc,NetName> into $\mathrm{L}_{\mathrm{i}+1}$
decrement the length of L_{i} increment the length of $\mathrm{L}_{\mathrm{i}+1}$

End If;

while length of $\mathrm{Li}>3$

Begin While
sort the elements of Li in ascending order by the values of delay δj connect an FA to the first 3 elements of Li starting with the slowest input of the FA:

$$
\begin{aligned}
& \mathrm{Ds}=\max \left\{\delta \mathrm{c}_{\mathrm{A}}+\delta \mathrm{c}_{\mathrm{A}-\mathrm{S}}, \delta \mathrm{c}_{\mathrm{B}}+\delta \mathrm{c}_{\mathrm{B}-\mathrm{S}}, \delta \mathrm{c}_{\mathrm{Ci}}+\delta \mathrm{c}_{\mathrm{Ci}-}\right\} \\
& \mathrm{Dc}=\max \left\{\delta \mathrm{c}_{\mathrm{A}}+\delta \mathrm{c}_{\mathrm{A}-\mathrm{C}}, \delta \mathrm{c}_{\mathrm{B}}+\delta \mathrm{c}_{\mathrm{B}-\mathrm{C}}, \delta \mathrm{c}_{\mathrm{Ci}}+\delta \mathrm{c}_{\mathrm{Ci}-\mathrm{C}}\right\}
\end{aligned}
$$

remove 3 elements from Li
insert the pair <Ds,NetName> into Li
insert the pair <Dc,NetName> into Li+1
subtract 2 from the length of Li
increment the length of $\mathrm{Li}+1$
End While;
sort the elements of Li
connect an FA to the last 3 nodes of Li
connect the S and C to the bit i and $\mathrm{i}+1$ of the CPA

End For;

End Method;

Competing Approaches

Comparison between TDM and other representative schemes, in XOR levels.

Multiplier Word-length	Wallace Tree [7]	$4: 2$ Tree [11]	Fadavi- Ardekani [16]	TDM
3	2	2	2	2
4	4	3	3	3
6	6	6	5	5
8	8	6	7	5
9	8	8	7	6
11	10	9	8	7
12	10	9	8	7
16	12	9	10	8
19	14	12	11	9
24	16	12	12	10
32	18	15	13	11
42	20	15	14	12
53	20	15	15	13
64			16	14
95			17	15

Critical Path Delay [CMOS: Leff $=\mathbf{1} \mu, T=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$]

$\mathrm{N}=24$-bits	$4: 2$ Design	9:2 Design	Fadavi-Ardekani	TDM Design
Delay $[\mathrm{nS}]$	14.0	13.0	11.7	10.5

Algorithm for Implementation of Fast Parallel Multipliers

[1] V. G. Oklobdzija, D. Villeger, and S. S. Liu, "A Method For Speed Optimized Partial Product Reduction And Generation Of Fast Parallel Multipliers Using An Algorithmic Approach," IEEE Transactions on Computers, Vol 45, No.3, March, 1996.
[2] V. G. Oklobdzija and D. Villeger, "Improving Multiplier Design By Using Improved Column Compression Tree And Optimized Final Adder In CMOS Technology," IEEE Transactions on VLSI Systems, Vol.3, No.2, June, 1995, 25 pages.
[3] V. G. Oklobdzija and D. Villeger, "Multiplier Design Utilizing Improved Column Compression Tree And Optimized Final Adder In CMOS Technology," Proceedings of the 1993 International Symposium on VLSI Technology, Systems and Applications, pp. 209-212, 1993.
[4] P. Stelling, C. Martel, V. G. Oklobdzija, R. Ravi, "Optimal Circuits for Parallel Multipliers," IEEE Transaction on Computers, Vol. 47, No.3, pp. 273-285, March, 1998.

Organization of Hitachi's DPL multiplier

Booth's

Hitachi's 4:2 compressor structure

$I_{4} \quad$ MUX

DPL multiplexer circuit

Addition Under Non-equal Signal Arrival Profile Assumption

P. Stelling , V. G. Oklobdzija, "Design Strategies for Optimal Hybrid Final Adders in a Parallel Multiplier", special issue on VLSI Arithmetic, Journal of VLSI Signal Processing, Kluwer Academic Publishers, Vol.14, No.3, December 1996

Signal Arrival Profile form the Parallel Multiplier Partial-Product Recuction Tree

Latest-Earliest Output Profile For TDM PPRT

Fig. 15. Selection of the adder types in the three regions of the multiplier.
Oklobdzija, Villeger, IEEE Transactions on VLSI Systems, June, 1995

Fig. 16. Determination of bit positions S_{1} and S_{2} determining the size of the adders used.

Optimal 1-Level Carry-Skip Adder for Uniform (All 0) Input

Optimal 1-Level Carry-Skip Adder for Uniform Input Applied to Final Adder Input Profile

Preliminary Final Adder Design

Hybrid Ripple-Carry/1-Level Carry-Skip

Optimal Final Adder Design

Hybrid Ripple-Carry/1-Level Carry-Skip

Optimal Hybrid Ripple-Carry/1-Level Carry-Skip/Carry Select Adder for Uniform Input

Optimal Hybrid Ripple-Carry/1-Level Carry-Skip/Carry Select Adder for Uniform Input Applied to Final Adder Input Profile

Optimal Final Adder Design

Hybrid Ripple-Carry/1-Level Carry-Skip/Carry Select

Output Delays of Final Adder Designs

Performing Multiply-Add Operation in the Multiply Time

P. Stelling, V. G. Oklobdzija, " Achieving Multiply-Accumulate Operation in the Multiply Time", Thirteenth International Symposium on Computer Arithmetic, Pacific Grove, California, July 5-9, 1997.

Final Adder: Implementation

bits 0-15

Final Adder: Implementation

bits $16-30$

Final Adder: Implementation

bits 31-39

Fast Parallel Multipliers

- Different Counter and Compressor Families were compared. The best way is to build a compressor of the maximal size (i.e. the entire size of the multiplier)
- The Essence of the optimal tree is optimal wiring and NOT the use of counter/compressor family
- The use of Carry-Propagate Adders is advantageous for larger size multipliers in the first stage and for particular technology
- Tuning of the Final Adder into the signal arrival profile is more important than the speed of the Final Adder.

