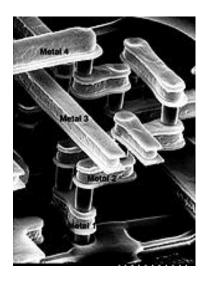


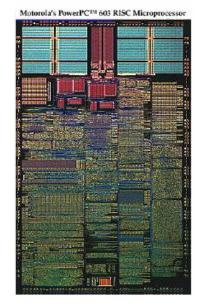
VLSI Arithmetic

Lecture 6



Prof. Vojin G. Oklobdzija University of California

http://www.ece.ucdavis.edu/acsel



Review

Lecture 5

Prefix Adders and Parallel Prefix Adders

ADDITION: TWO-STEP PROCESS

- 1. Obtain carries (carry at i depends on $j \leq i$)
 - non-trivial to do fast
- 2. Compute sum bits (local function)

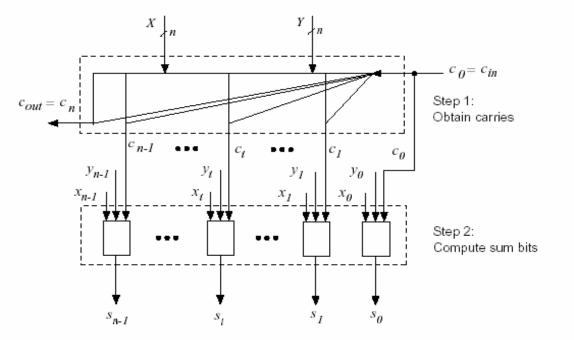


Figure 2.2: Steps in addition.

from: Ercegovac-Lang

Prefix Adders

Following recurrence operation is defined: (g, p)o(g',p')=(g+pg', pp')

such that:

$$\begin{split} G_{i}, \ P_{i} &= \begin{cases} \left(g_{0}, \ p_{0}\right) & i=0 \\ & \left(g_{i}, \ p_{i}\right)O(G_{i-1}, \ P_{i-1}) & 1 \leq i \leq n \\ & c_{i+1} &= G_{i} & \text{for } i=0, \ 1, \ \dots \ n \\ & c_{1} &= g_{0} + p_{0} \ c_{in} & \left(g_{-1}, \ p_{-1}\right) = (c_{in}, c_{in}) \end{split}$$

This operation is associative, but not commutative It can also span a range of bits (overlapping and adjacent)

Oklobdzija 2004

Parallel Prefix Adders: S. Knowles 1999

operation '•':

$$\left(\frac{g}{k}\right)_{i} \bullet \left(\frac{g}{k}\right)_{j} = \left(\frac{g_{i} + \overline{k}_{i} \cdot g_{j}}{k_{i} \cdot \overline{k}_{j}}\right)$$

$$\left(\frac{g}{k}\right)_{h\ldots j} \bullet \left(\frac{g}{k}\right)_{j\ldots k} = \left(\frac{g}{k}\right)_{h\ldots i} \bullet \left(\frac{g}{k}\right)_{i\ldots k}$$

operation is associative: h>i≥j≥k

$$\left(\frac{g}{k}\right)_{h\ldots j} \bullet \left(\frac{g}{k}\right)_{i\ldots k} = \left(\frac{g}{k}\right)_{h\ldots k}$$

operation is idempotent: h>i≥j≥k

$$\left(\frac{c_{i+1}}{k_i \cdot k_{i-1} \cdot k_{i-2}} \dots \cdot k_0\right) = \left(\frac{g}{k}\right)_i \cdot \left(\frac{g}{k}\right)_{i-1} \cdot \left(\frac{g}{k}\right)_{i-2} \dots \cdot \left(\frac{g}{k}\right)_0 \quad \text{produces carry: } c_{in} = 0$$

Prefix adders

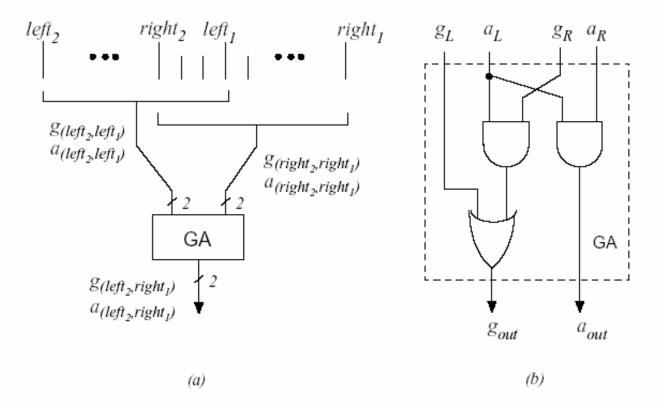
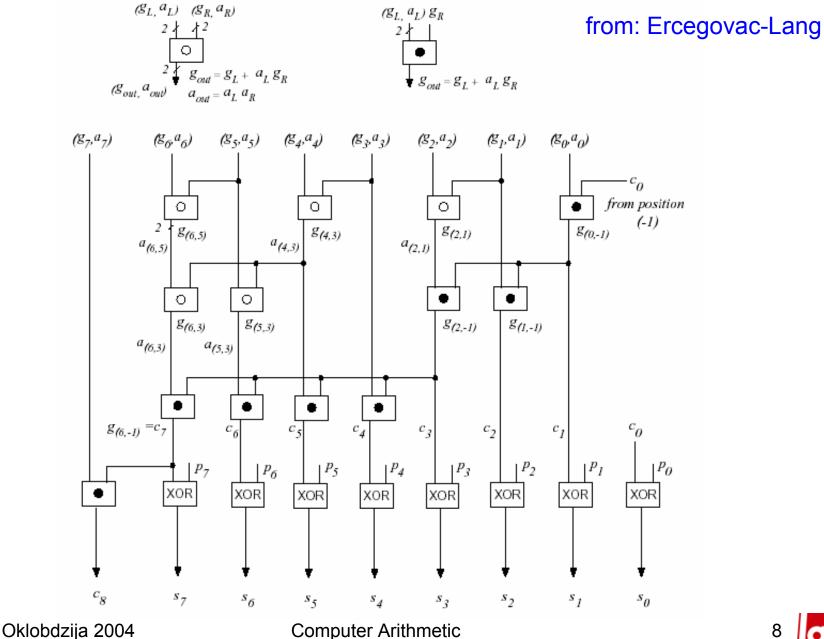
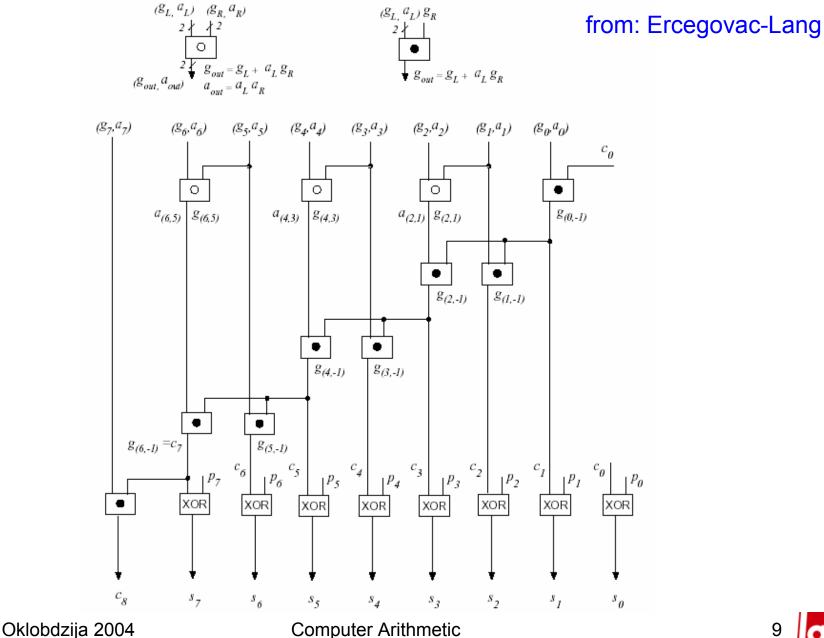
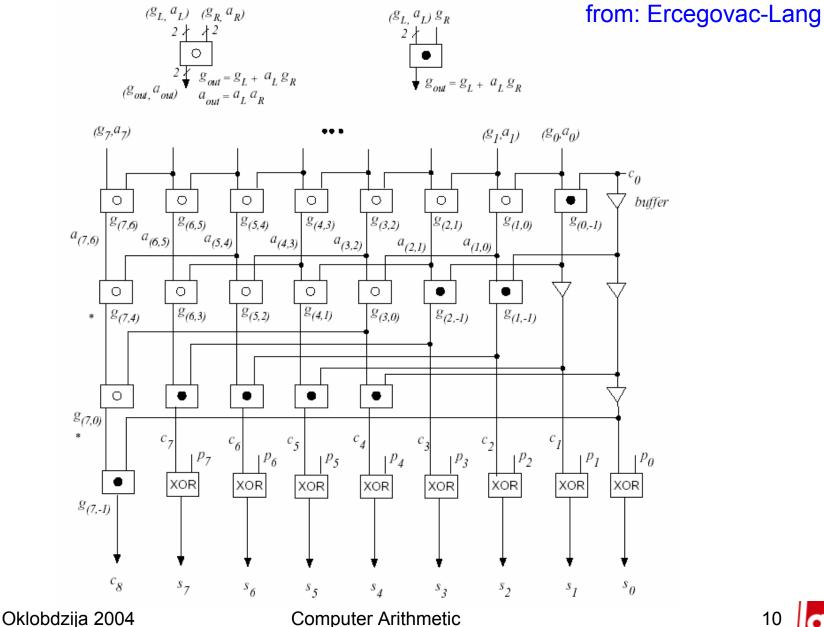


Figure 2.17: Composition of spans in computing (g, a) signals.

from: Ercegovac-Lang

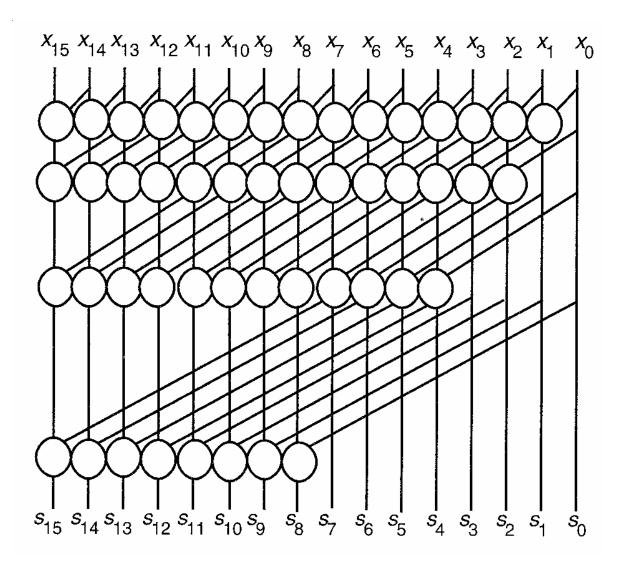






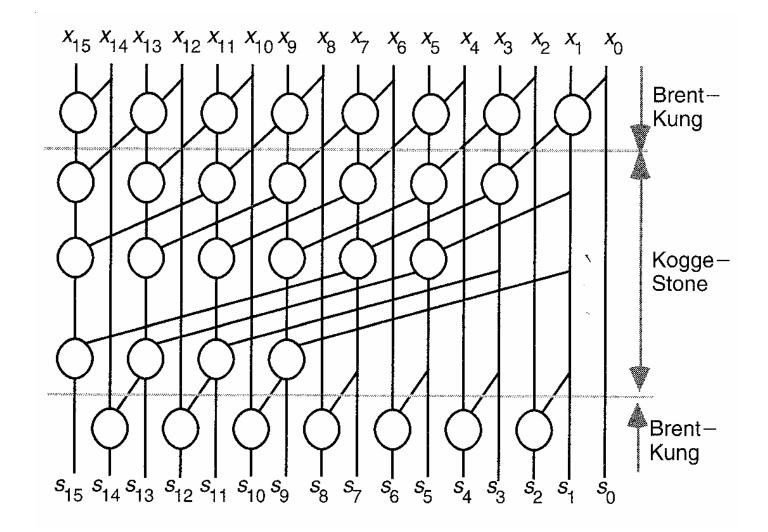
10 **ap**

Kogge-Stone Adder



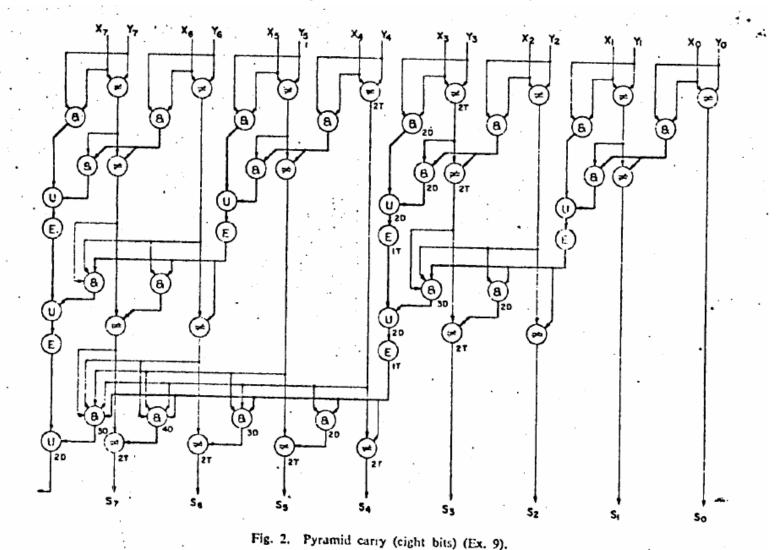
Brent-Kung Adder $x_{15} x_{14} x_{13} x_{12} x_{11} x_{10} x_9 x_8 x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0$ Level 1 2 3 4 5 6 $s_{15} s_{14} s_{13} s_{12} s_{11} s_{10} s_9 s_8 s_7 s_6 s_5$ $s_4 s_3$ *s*₂ *s*₁ s_0

Hybrid BK-KS Adder



Pyramid Adder:

M. Lehman, "A Comparative Study of Propagation Speed-up Circuits in Binary Arithmetic Units", IFIP Congress, Munich, Germany, 1962.



Parallel Prefix Adders: Ladner-Fisher

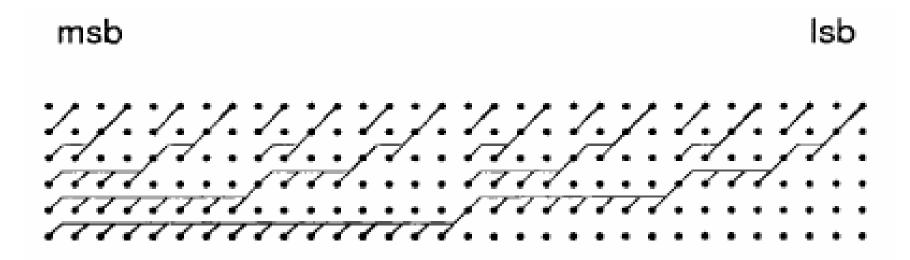
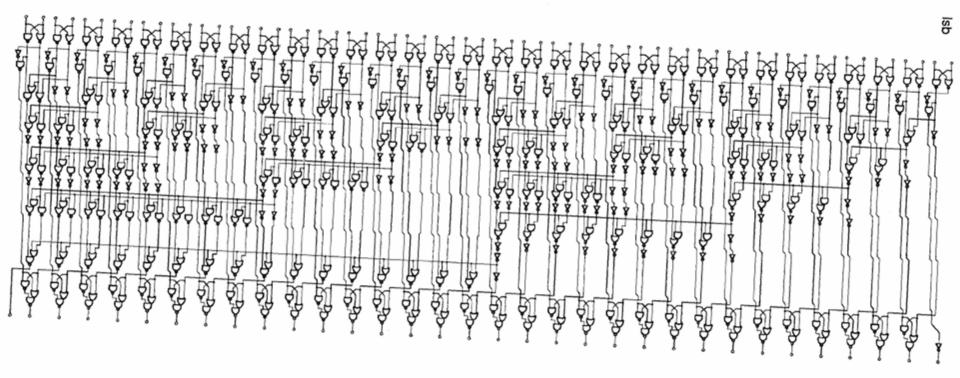


Figure 1: 32b Ladner-Fischer graph [16,8,4,2,1]

Exploits associativity, but not idempotency. Produces minimal logical depth

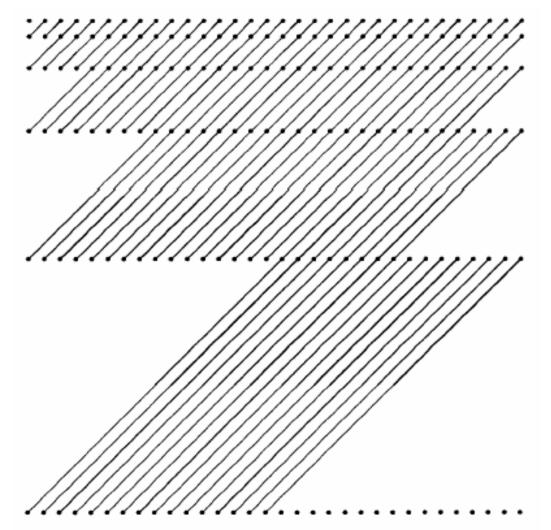
Parallel Prefix Adders: Ladner-Fisher (16,8,4,2,1)



Two wires at each level. Uniform, fan-in of two. Large fan-out (of 16; n/2); Large capacitive loading combined with the long wires (in the last stages)

msb

Parallel Prefix Adders: Kogge-Stone



Exploits idempotency to limit the fan-out to 1. Dramatic increase in wires. The wire span remains the same as in Ladner-Fisher.

Buffers needed in both cases: K-S, L-F

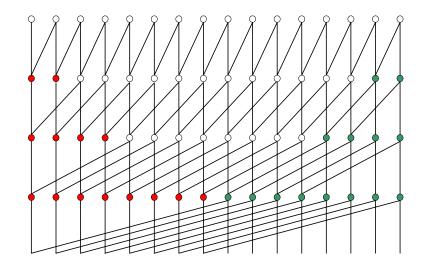
Figure 3: 32b Kogge-Stone graph [1,1,1,1,1]

Parallel Prefix Adders: Brent-Kung

- Set the fan-out to one
- Avoids explosion of wires (as in K-S)
- Makes no sense in CMOS:
 - fan-out = 1 limit is arbitrary and extreme
 - much of the capacitive load is due to wire (anyway)
- It is more efficient to insert buffers in L-F than to use B-K scheme

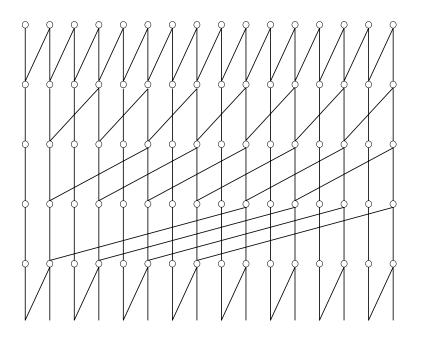
Two Parallel Prefix Adder Structures

Kogge-Stone



log(bits) carry stagesExtra Wiring

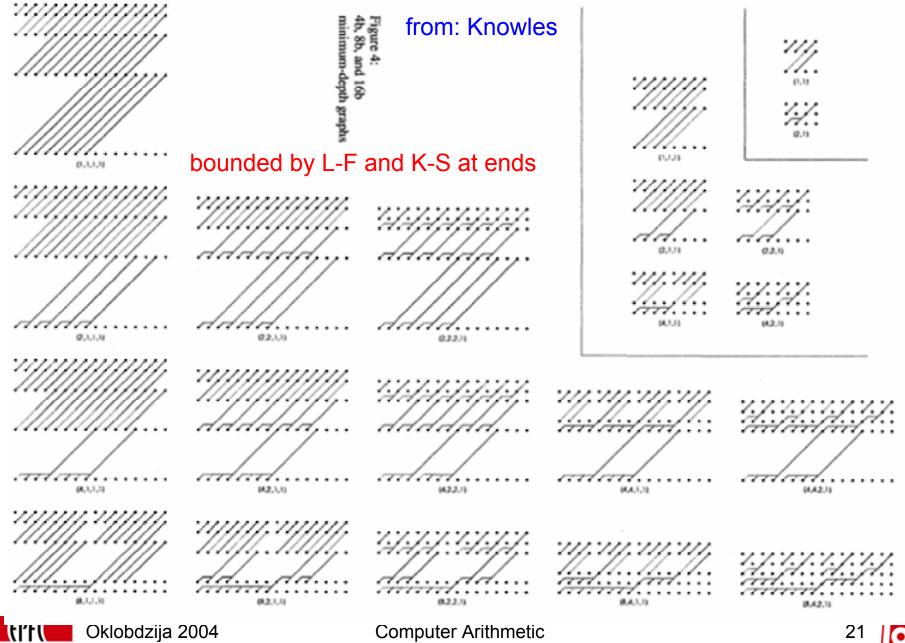
Han-Carlson



log(bits) + 1 carry stages
Reduced Wiring and Gates

Parallel Prefix Adders: Han-Carlson

- Is a hybrid synthesis of L-F and K-S
- Trades increase in logic depth for a reduction in fan-out:
 - effectively a higher-radix variant of K-S.
 - others do it similarly by serializing the prefix computation at the higher fan-out nodes.
- Others, similarly trade the logical depth for reduction of fan-out and wire.



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Following rules are used:

- Lateral wires at the jth level span 2^j bits
- Lateral fan-out at jth level is power of 2 up to 2^j
- Lateral fan-out at the jth level cannot exceed that a the (j+1)th level.

• The number of minimal depth graphs of this type is given in:

operand width (bits)	number of basic minimum-depth graphs
4	2
8	5
16	14
32	42
64	132
128	429
256	1430

 at 4-bits there is only K-S and L-F, afterwards there are several new possibilities.

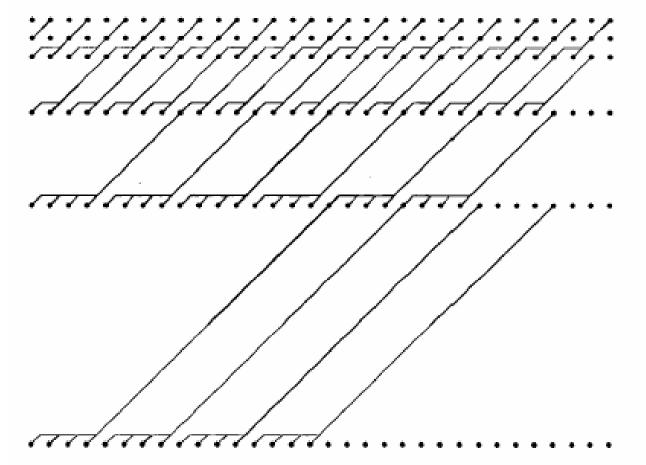
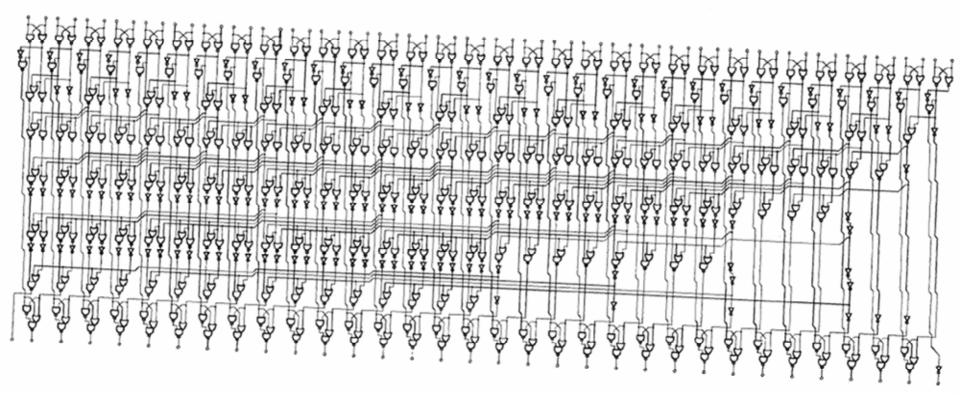


Figure 5: 32b graph [4,4,2,2,1] Knowles 1999 example of a new 32-bit adder [4,4,2,2,1]

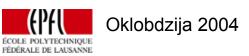
Knowles 1999



Example of a new 32-bit adder [4,4,2,2,1]

	Structure	Buffering	Delay	Length	Transverse	wire flux
			(ref invs)	(µm)	By level	Total
Ladner-Fischer (fig 2)	[16,8,4,2,1]	[2,1,1,0,0]	13.7	38	[1,2,2,2,2]	9
-	[16,4,2,2,1]	[2,1,1,0,0]	13.2	38	[1,4,4,2,2]	13
-	[16,2,2,2,1]	[2,1,1,0,0]	13.0	41	[1,8,4,2,2]	17
(fig 6)	[4,4,2,2,1]	[1,1,0,0,0]	13.2	35	[4,4,4,2,2]	16
-	[4,4,2,2,1]	[1,1,1,0,0]	12.7	39	[4,4,4,2,2]	16
-	[2,2,2,1,1]	[1,1,1,0,0]	12.1	46	[8,8,4,4,2]	26
Koggo Stopo	[1,1,1,1,1]	[1,1,0,0,0]	12.1	63	[16,16,8,4,2]	42
Kogge-Stone	[1,1,1,1,1]	[1,1,1,0,0]	11.8	63	[16,16,8,4,2]	42

- Delay is given in terms of FO4 inverter delay: w.c. (nominal case is 40-50% faster)
- K-S is the fastest
- K-S adders are wire limited (requiring 80% more area)
- The difference is less than 15% between examined schemes



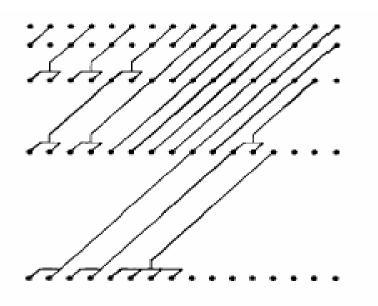


Figure 7: 16b hybrid graph

Conclusion

- Irregular, hybrid schmes are possible
- The speed-up of 15% is achieved at the cost of large wiring, hence area and power
- Circuits close in speed to K-S are available at significantly lower wiring cost

Possibilities for Further Research

- The logical depth is important (Knowles was right)
- The fan-out is less important than fan-in (Knowles was wrong):
 - It is possible to examine a variety of topologies with restricted and varied fan-in.
- Driving strength and Logical Effort rules were overlooked and at least neglected:
 - It is possible to create number of topologies taking LE rules into account.
 - It is further possible to combine the rules with compound domino implementation taking advantage of two different rules governing "dynamic" and "static".
- It is still possible to produce a better adder !

Other Types of Adders

J. Sklansky, "Conditional-Sum Addition Logic", IRE Transactions on Electronic Computers, EC-9, p.226-231, 1960.

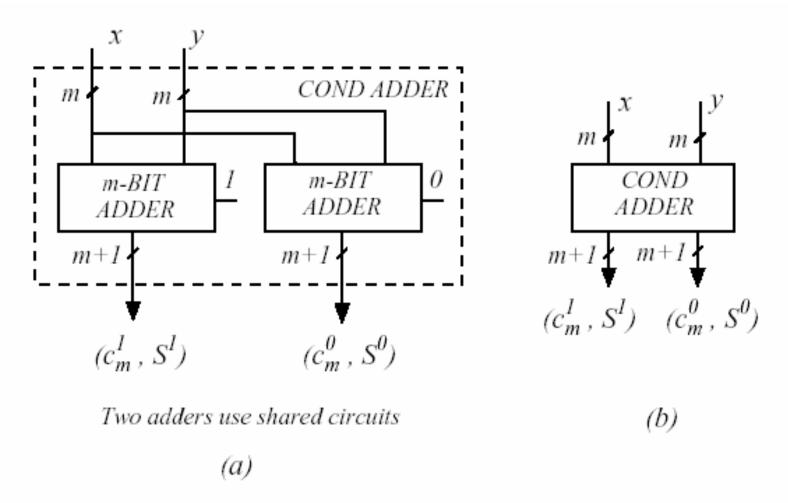


Figure 2.21: (a) Obtaining conditional outputs. (b) Combined conditi onal adder. from: Ercegovac-Lang

<u> </u>	T										_					_	 •	
L L	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
.Xi	11	ο	1	I.	L	ο	I.	1	0	L	1	0	1	1	0	I	ASSUMED	TIME
y i	0	0	0	1	1	0	0	1	I	0	I.	t	0	1	1	ο	CARRY	INTERVAL
S	1	0	T	0	0	0	Г	0	П	T	0	П	Π	0	Π	T		
C	0	0	0	1	1	0	0	lı.	0	0	11	0	0	1	ю	0	0	-
S	0	1	0	1	1	1	0	1	0	0	1	0	0	1	0	!		т,
C		0	1	1		0	1	1	1	I.	1	LL.	1	- 1	1			
S	LL.	0	0	ο	0	0	0	ο	II.	1	0	1	0	0	T	1	0	
C	0		1		1		1		0		1		1		0		•	-
S	1	L	0	L	0	L	0	I.	0	0	1	ο	0	t				τ _ι
C	0		1		1		1		IL.		1		1		<u> </u>		1	
S	1	•	0	0	0	1	0	0	0	0	0	T	0	0	1	1	0	
C .	0				1				1				11				l v l	-
S	1	I	0	1	ю	1	ο	1	ю	ο	ı	ο						τ _z
c	0				1				1		•							
5	1	1	0	T	0	1	0	0	0	0	T	0	6	0	1	1	 	
c	0								1								0	-
5	1	L	0	I.	ο		ο	1										
C	0																	
Sį	1	I.	0	I	0	1	0	I	0	0	1	0	0	0	1	1		
Cit	0													-	-		0	ार्ग्स
	_		-				_	_		-			_	_			 	

Fig. 1-Example of a conditional-sum addition.

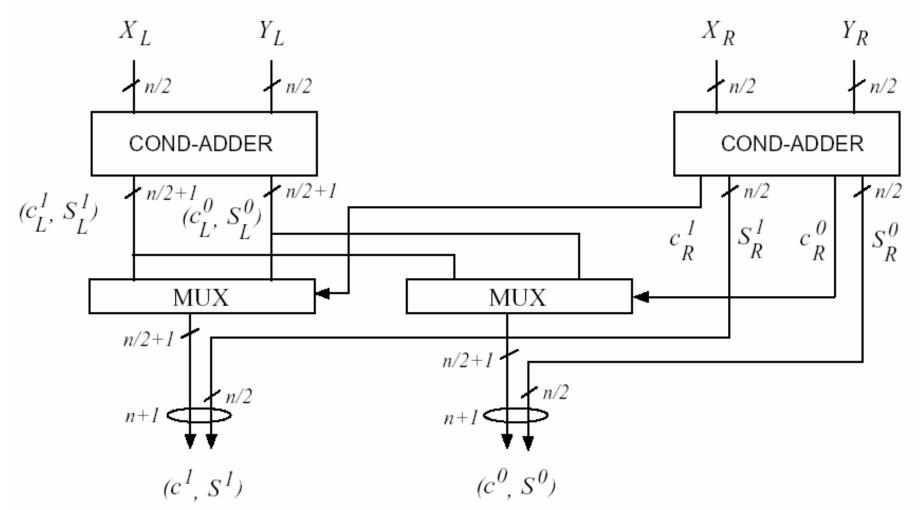


Figure 2.23: Doubling the number of bits of the conditional sum.

from: Ercegovac-Lang

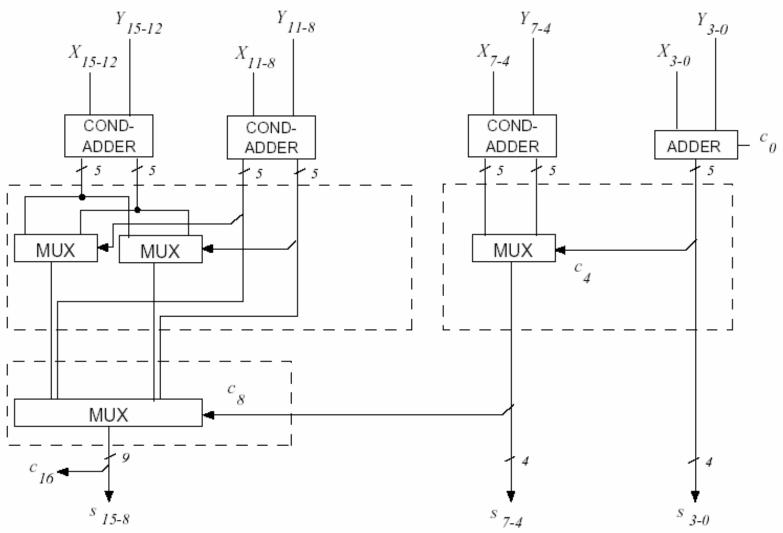
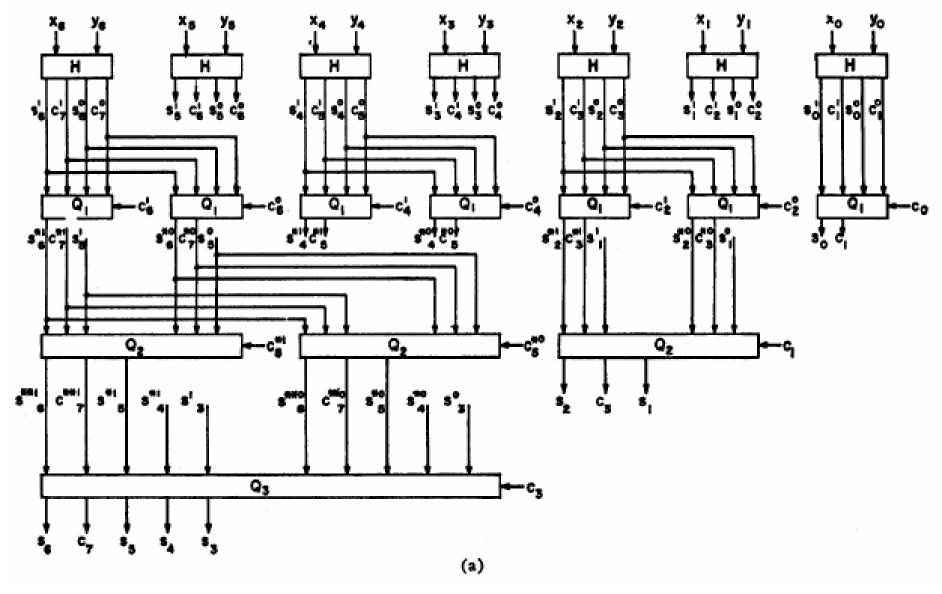


Figure 2.24: 16-bit conditional-sum adder (m = 4).

Computer Arithmetic

from: Ercegovac-Lang



Carry-Select Adder

O. J. Bedrij, "Carry-Select Adder", IRE Transactions on Electronic Computers, June 1962, p.340-34

Carry-Select Sum Adder

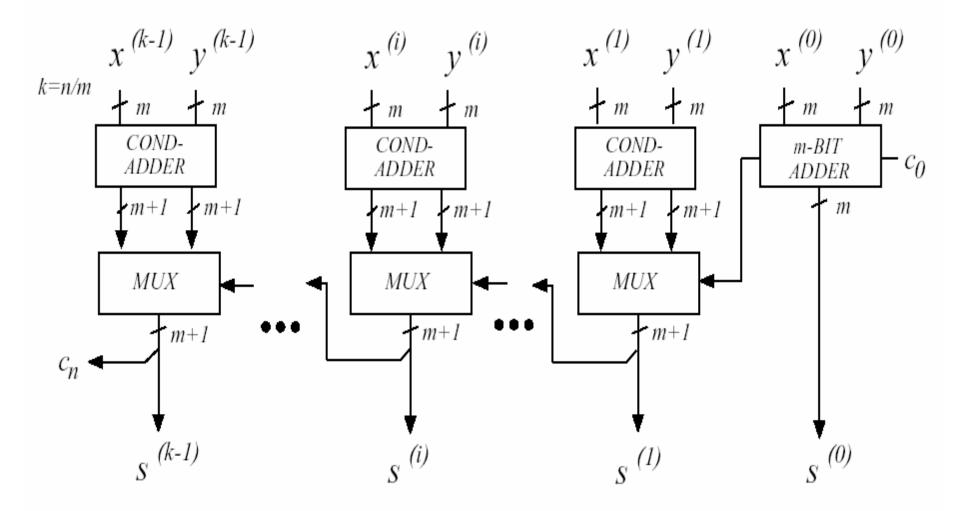


Figure 2.22: Carry-select adder.

Computer Arithmetic

from: Ercegovac-Lang

Carry-Select Adder

Addition under assumption of $C_{in}=0$ and $C_{in}=1$.

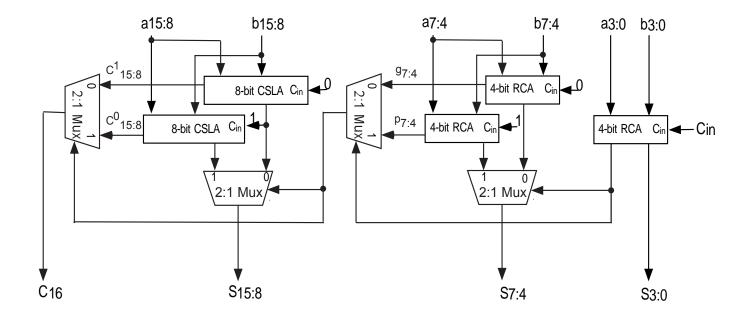
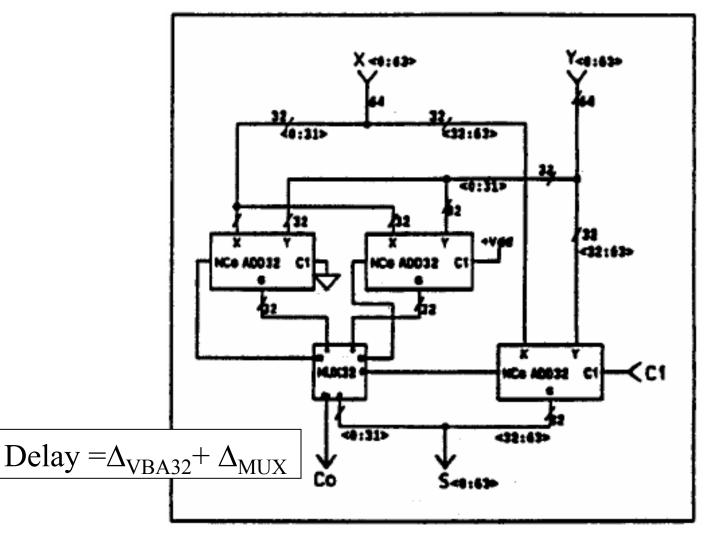


Fig. 11: 16-bit Carry-Select Adder

Carry Select Adder: combining two 32-b VBAs in select mode



Carry-Select Adder

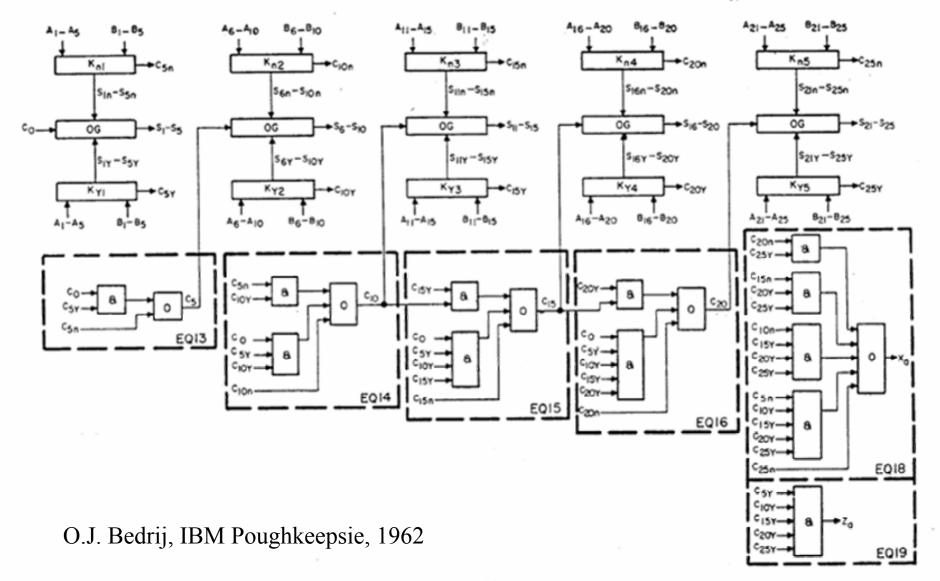


Fig. 1-25-bit adder group.