

VLSI Arithmetic

\author{

Lecture 6

 Prof. Vojin G. Oklobdzija University of California
 http://www.ece.ucdavis.edu/acsel

Review

Lecture 5

Prefix Adders

 and
Parallel Prefix Adders

ADDITION: TWO-STEP PROCESS

1. Obtain carries (carry at i depends on $j \leq i$)

- non-trivial to do fast

2. Compute sum bits (local function)

Figure 2.2: Steps in addition.
from: Ercegovac-Lang

Prefix Adders

Following recurrence operation is defined:

$$
(g, p) o\left(g^{\prime}, p^{\prime}\right)=\left(g^{\prime}+p g^{\prime}, p p^{\prime}\right)
$$

such that:

$$
\begin{aligned}
& G_{i}, P_{i}=\left\{\begin{array}{l}
\left(g_{0}, p_{0}\right) \quad i=0 \\
\left(g_{i}, p_{i}\right) o\left(G_{i-1}, P_{i-1}\right) \quad 1 \leq i \leq n
\end{array}\right. \\
& c_{i+1}=G_{i} \quad \text { for } i=0,1, \ldots . . n
\end{aligned} c_{c_{1}=g_{0}+p_{0} c_{i n} \quad\left(g_{-1}, p_{-1}\right)=\left(c_{i n}, c_{i n}\right)}
$$

This operation is associative, but not commutative
It can also span a range of bits (overlapping and adjacent)

Parallel Prefix Adders: S. Knowles 1999

 operation ' \bullet ':$$
\begin{aligned}
& \left(\frac{g}{k}\right)_{i} \bullet\left(\frac{g}{k}\right)_{j}=\binom{g_{i}+\bar{k}_{i \cdot g}}{k_{i} \cdot \bar{k}_{j}} \\
& \left(\frac{g}{k}\right)_{h \ldots j} \bullet\left(\frac{g}{k}\right)_{j \ldots k}=\left(\frac{g}{k}\right)_{h \ldots i} \bullet\left(\frac{g}{k}\right)_{i \ldots k} \quad \text { operation is associative: } \mathrm{h}>\mathrm{i} \geq \mathrm{j} \geq \mathrm{k} \\
& \left(\frac{g}{k}\right)_{h \ldots j} \bullet\left(\frac{g}{k}\right)_{i \ldots k}=\left(\frac{g}{k}\right)_{h \ldots k} \quad \text { operation is idempotent: } \mathrm{h}>\mathrm{i} \geq \mathrm{j} \geq \mathrm{k} \\
& \left(\overline{k_{i} \cdot k_{i-1} \cdot} \cdot \frac{c_{i+1}}{k_{i-2}} \ldots \overline{k_{0}}\right)=\left(\frac{g}{k}\right)_{i} \bullet\left(\frac{g}{k}\right)_{i-1} \bullet\left(\frac{g}{k}\right)_{i-2} \ldots \bullet\left(\frac{g}{k}\right)_{0} \quad \text { produces carry: } \mathrm{c}_{\mathrm{in}}=0
\end{aligned}
$$

Prefix adders

Figure 2.17: Composition of spans in computing (g, a) signals.
from: Ercegovac-Lang

Parallel Prefix Adders: varietv of possibilities

from: Ercegovac-Lang

Parallel Prefix Adders: variety of possibilities

from: Ercegovac-Lang

Parallel Prefix Adders: variety of possibilities

$\left(g_{L}, a_{L}\right) g_{R}$
from: Ercegovac-Lang

Kogge-Stone Adder

Oklobdzija 2004
Computer Arithmetic

Brent-Kung Adder

Hybrid BK-KS Adder

Pyramid Adder:

M. Lehman, "A Comparative Study of Propagation Speed-up Circuits in Binary Arithmetic Units", IFIP Congress, Munich, Germany, 1962.

Fig. 2. Pyramid carly (cight bits) (Ex. 9).

Parallel Prefix Adders: Ladner-Fisher

 msb Isb

Figure 1: 32b Ladner-Fischer graph [16,8,4,2,1]
Exploits associativity, but not idempotency. Produces minimal logical depth

Parallel Prefix Adders: Ladner-Fisher

Two wires at each level. Uniform, fan-in of two. Large fan-out (of 16; n/2); Large capacitive loading combined with the long wires (in the last stages)

Oklobdzija 2004
Computer Arithmetic

Parallel Prefix Adders: Kogge-Stone

Exploits idempotency to limit the fan-out to 1. Dramatic increase in wires. The wire span remains the same as in Ladner-Fisher.

Buffers needed in both cases: K-S, L-F

Figure 3: 32b Kogge-Stone graph [1,1,1,1,1]

Parallel Prefix Adders: Brent-Kung

- Set the fan-out to one
- Avoids explosion of wires (as in K-S)
- Makes no sense in CMOS:
- fan-out = 1 limit is arbitrary and extreme
- much of the capacitive load is due to wire (anyway)
- It is more efficient to insert buffers in L-F than to use B-K scheme

Two Parallel Prefix Adder Structures

Kogge-Stone

- log(bits) carry stages
- Extra Wiring

Han-Carlson

- log(bits) + 1 carry stages
- Reduced Wiring and Gates

Parallel Prefix Adders: Han-Carlson

- Is a hybrid synthesis of L-F and K-S
- Trades increase in logic depth for a reduction in fan-out:
- effectively a higher-radix variant of K-S.
- others do it similarly by serializing the prefix computation at the higher fan-out nodes.
- Others, similarly trade the logical depth for reduction of fan-out and wire.

Parallel Prefix Adders: variety of possibilities

bounded by L-F and K-S at ends

Oklobdzija 2004

Parallel Prefix Adders: variety of possibilities Knowles 1999

Following rules are used:

- Lateral wires at the $j^{\text {th }}$ level span 2^{j} bits
- Lateral fan-out at $\mathrm{j}^{\text {th }}$ level is power of 2 up to 2^{j}
- Lateral fan-out at the $\mathrm{j}^{\text {th }}$ level cannot exceed that a the $(j+1)^{\text {th }}$ level.

Parallel Prefix Adders: variety of possibilities Knowles 1999

- The number of minimal depth graphs of this type is given in:

operand width (bits)	number of basic minimum-depth graphs
4	2
8	5
16	14
32	42
64	132
128	429
256	1430

- at 4-bits there is only K-S and L-F, afterwards there are several new possibilities.

Parallel Prefix Adders: variety of possibilities

Figure 5: 32b graph [4,4,2,2,1] Knowles 1999 example of a new 32-bit adder [4,4,2,2,1]

Parallel Prefix Adders: variety of possibilities

Knowles 1999

Example of a new 32-bit adder [4,4,2,2,1]

Parallel Pr Knowles 1999	$1 \times$		riety	of possibilites		
	Structure	Buffering	Delay (ref invs)	Length ($\mu \mathrm{m}$)	Transverse wire flux	
					By level	Total
Ladner-Fischer (fig 2)	[16,8,4,2,1]	[2,1,1,0,0]	13.7	38	[1,2,2,2,2]	9
-	[16,4,2,2,1]	[2,1,1,0,0]	13.2	38	[1,4,4,2,2]	13
-	[16,2,2,2,1]	[2,1,1,0,0]	13.0	41	[1,8,4,2,2]	17
(fig 6)	[4,4,2,2,1]	[1,1,0,0,0]	13.2	35	[4,4,4,2,2]	16
-	[4,4,2,2,1]	[1,1,1,0,0]	12.7	39	[4,4,4,2,2]	16
-	[2,2,2,1,1]	[1,1,1,0,0]	12.1	46	[8,8,4,4,2]	26
Kogge-Stone	[1,1,1,1,1]	[1,1,0,0,0]	12.1	63	[16,16,8,4,2]	42
Kogge-Stone	[1,1,1,1,1]	[1,1,1,0,0]	11.8	63	[16,16,8,4,2]	42

- Delay is given in terms of FO4 inverter delay: w.c.
(nominal case is $40-50 \%$ faster)
- K-S is the fastest
- K-S adders are wire limited (requiring 80% more area)
- The difference is less than 15% between examined schemes

Parallel Prefix Adders: variety of possibilities

Knowles 1999

Conclusion

- Irregular, hybrid schmes are possible
- The speed-up of 15% is achieved at the cost of large wiring, hence area and power
Figure 7: 16b hybrid graph
- Circuits close in speed to K-S are available at significantly lower wiring cost

Possibilities for Further Research

- The logical depth is important (Knowles was right)
- The fan-out is less important than fan-in (Knowles was wrong):
- It is possible to examine a variety of topologies with restricted and varied fan-in.
- Driving strength and Logical Effort rules were overlooked and at least neglected:
- It is possible to create number of topologies taking LE rules into account.
- It is further possible to combine the rules with compound domino implementation taking advantage of two different rules governing "dynamic" and "static".
- It is still possible to produce a better adder !

Other Types of Adders

Conditional Sum Adder

J. Sklansky, "Conditional-Sum Addition

Logic", IRE Transactions on Electronic
Computers, EC-9, p.226-231, 1960.

Conditional Sum Adder

Two adders use shared circuits

(b)

Figure 2.21: (a) Obtaining conditional outputs. (b) Combined conditi onal adder. from: Ercegovac-Lang

Conditional Sum Adder

$$
\begin{array}{llllllllllllllll}
x= & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array} 1
$$

Fig. 1-Example of a conditional-sum addition.

Conditional Sum Adder

Figure 2.23: Doubling the number of bits of the conditional sum.
from: Ercegovac-Lang

Conditional Sum Adder

Figure 2.24: 16 -bit conditional-sum adder $(m=4)$.

Conditional Sum Adder

(a)

Oklobdzija 2004
Computer Arithmetic

Carry-Select Adder

O. J. Bedrij, "Carry-Select Adder", IRE Transactions on Electronic Computers, June 1962, p.340-34

Carry-Select Sum Adder

Figure 2.22: Carry-select adder.

Carry-Select Adder

Addition under assumption of $\mathrm{C}_{\text {in }}=0$ and $\mathrm{C}_{\text {in }}=1$.

Fig. 11: 16-bit Carry-Select Adder

Carry Select Adder:

 combining two 32-b VBAs in select mode

Carry-Select Adder

Fig. 1-25-bit adder group.

