Introduction to elementary function algorithms
 Jean-Michel Muller

June 2004

Elementary functions

- sine, cosine, arctangent, exponential, logarithm. . .
- most algorithms for approximating these functions give a result in a small domain only $\Rightarrow 3$ steps : range reduction, approximation, computation of final result.

Desirable properties

- speed;
- accuracy;
- reasonable amount of resource (ROM/RAM, silicon area used by a dedicated hardware...);
- preservation of important mathematical properties such as monotonicity, and symmetry. Monotonicity failures can cause problems in evaluating divided differences;
- range limits getting a sine larger than 1 may lead to unpleasant surprises, for instance, when computing

$$
\sqrt{1-\sin ^{2} x}
$$

Computing System	$\sin x$
Exact result	$-0.8522008497671888017727 \ldots$
HP 48 GX	-0.852200849762
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	$0.87402806 \ldots$
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \ldots$
IBM 3090/600S-VF AIX 370	0.0
DECstation 3100	NaN
TI 89	Trig. arg. too large

TAB. $1-\sin (x)$ for $x=10^{22}$

Polynomial approximations to functions

- assume we have FP addition and multiplication available in hardware;
$- \pm, \times$, comparisons \rightarrow the functions of one variable we can compute are piecewise polynomials .
- it is natural to try to approximate functions by polynomials.

Rational functions: sometimes interesting, but in most cases the delay of FP division and the fact that it is not pipelined makes evaluation of rational functions rather costly.

A few notations

$-\mathcal{P}_{n}$: set of the polynomials of degree less than or equal to n;

- we want to approximate a function f by an element p^{*} of \mathcal{P}_{n} on an interval $[a, b]$;
- there is much better do do than using Taylor approximations;
- done by minimizing a "distance" $\left\|p^{*}-f\right\|$;
- minimax approximations : the distance is

$$
\left\|p^{*}-f\right\|_{\infty}=\max _{a \leq x \leq b}\left|p^{*}(x)-f(x)\right| .
$$

In 1885, Weierstrass proved that a continuous function can be approximated as accurately as desired by a polynomial.

Theorem 1 (Weierstrass, 1885) Let f be a continuous function.
For any $\epsilon>0$ there exists a polynomial p such that $\|p-f\|_{\infty} \leq \epsilon$.
Another theorem, due to Chebyshev, gives a characterization of the minimax approximations to a function.

Theorem 2 (Chebyshev) p^{*} is the minimax degree-n approximation to f on $[a, b]$ if and only if there exist at least $n+2$ values

$$
a \leq x_{0}<x_{1}<x_{2}<\ldots<x_{n+1} \leq b
$$

such that :

$$
p^{*}\left(x_{i}\right)-f\left(x_{i}\right)=(-1)^{i}\left[p^{*}\left(x_{0}\right)-f\left(x_{0}\right)\right]= \pm\left\|f-p^{*}\right\|_{\infty} .
$$

FIG. $1-\exp \left(-x^{2}\right)$ and its degree-3 minimax approx. on $[0,3]$.

Fig. 2 - Difference between $\exp \left(-x^{2}\right)$ and its degree-3 minimax approximation on $[0,3]$.

Getting the approximations

- Remes algorithm (1934) : minimax approximation to a function in a given interval ;
- difficult to predict accuracy vs degree : very function-dependent;
- implemented in the numapprox package of Maple ;
- best "truncated" polynomial approximations : algorithm suggested by Brisebarre, Muller and Tisserand (2004).

Fig. 3 - Number of significant bits (obtained as $-\log _{2}$ (error)) of the minimax polynomial approximations to various functions on $[0,1]$.

Introduction to shift and add algorithms

- algorithms that do not use \times or \div;
- the most famous: CORDIC (Volder 59, Walther 71) : first large-scale implementations HP 35, Intel 8087, Motorola 68881 ;
- introduction to theoretical bakery \Rightarrow link with elementary functions;
- simple algorithms;
- more efficient algorithms using redundancy.

Let us weigh a loaf of bread

Pair of scales, weights $w_{0}, w_{1}, w_{2}, \ldots$ that satisfy :

- $\forall i, w_{i}>0$;
- the sequence w_{i} is decreasing and $\sum w_{i}<+\infty$;
- $\forall i, w_{i} \leq \sum_{k=i+1}^{\infty} w_{k}$.
first exercise the weights are either unused or put in the pan that does not contain the bread.

FIG. 4 - Restoring decomposition

Theorem 3 (Restoring decomposition) Let (w_{n}) be a decreasing sequence of real numbers >0 such that $\sum_{i=0}^{\infty} w_{i}<\infty$. If

$$
\begin{equation*}
\forall n, w_{n} \leq \sum_{k=n+1}^{\infty} w_{k} \tag{1}
\end{equation*}
$$

then $\forall t \in\left[0, \sum_{k=0}^{\infty} w_{k}\right]$, the sequences $\left(t_{n}\right)$ and $\left(d_{n}\right)$ defined as

$$
\begin{align*}
t_{0} & =0 \\
t_{n+1} & =t_{n}+d_{n} w_{n} \\
d_{n} & = \begin{cases}1 & \text { if } t_{n}+w_{n} \leq t \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{align*}
$$

satisfy $t=\sum_{n=0}^{\infty} d_{n} w_{n}=\lim _{n \rightarrow \infty} t_{n}$.

Second exercise

Same pair of scales \& weights, but now we must use all weights However, they can be put in both pans.

FIG. 5 - Non-restoring algorithm

Another greedy algorithm :
Theorem 4 (Non-restoring algorithm) Let $\left(w_{n}\right)$ be a sequence satisfying the conditions of Theorem 3. $\forall t \in\left[-\sum_{k=0}^{\infty} w_{k}, \sum_{k=0}^{\infty} w_{k}\right]$, the sequences $\left(t_{n}\right)$ and $\left(d_{n}\right)$ defined as

$$
\begin{align*}
& t_{0}=0 \\
& t_{n+1}=t_{n}+d_{n} w_{n} \\
& d_{n}=\left\{\begin{aligned}
1 & \text { if } t_{n} \leq t \\
-1 & \text { otherwise }
\end{aligned}\right. \tag{3}
\end{align*}
$$

satisfy $t=\sum_{n=0}^{\infty} d_{n} w_{n}=\lim _{n \rightarrow \infty} t_{n}$.
Theorem 5 The sequences $\ln \left(1+2^{-n}\right)$ and $\arctan 2^{-n}$ satisfy the conditions of Theorems 3 and 4

From theoretical bakery to the exponential function

$$
\begin{aligned}
& w_{n}=\ln \left(1+2^{-n}\right) . \text { Let } t \in\left[0, \sum_{k=0}^{\infty} w_{k}\right]=[0,1.56 \cdots] . \\
& t_{0} \quad=0 \\
& t_{n+1}=t_{n}+d_{n} \ln \left(1+2^{-n}\right)
\end{aligned} d_{n}=\left\{\begin{array}{ll}
1 & \text { if } t_{n}+\ln \left(1+2^{-n}\right) \leq t \\
0 & \text { otherwise }
\end{array} .\right.
$$

satisfy $t=\sum_{n=0}^{\infty} d_{n} \ln \left(1+2^{-n}\right)=\lim _{n \rightarrow \infty} t_{n}$.
Let E_{n} be such that $\forall n, E_{n}=e^{t_{n}}$

- $t_{0}=0 \Rightarrow E_{0}=1$.
- when $t_{n+1} \neq t_{n}$ (i.e., when $d_{n}=1$), $t_{n+1}=t_{n}+\ln \left(1+2^{-n}\right)$. $E_{n}=e^{t_{n}} \Rightarrow E_{n}$ multiplied by $\exp \ln \left(1+2^{-n}\right)=\left(1+2^{-n}\right)$.

Since $t_{n} \rightarrow t, E_{n} \rightarrow e^{t}$.

Algorithm 1 (expo-1, inputs : t, N (nb of steps), output : E_{N})

$t_{0}=0 \quad E_{0}=1 ;$ build t_{n} and E_{n} as follows

$$
\begin{align*}
t_{n+1} & =t_{n}+\ln \left(1+d_{n} 2^{-n}\right) \\
E_{n+1} & =E_{n}\left(1+d_{n} 2^{-n}\right)=E_{n}+d_{n} E_{n} 2^{-n} \\
d_{n} & = \begin{cases}1 & \text { if } t_{n}+\ln \left(1+2^{-n}\right) \leq t \\
0 & \text { otherwise }\end{cases} \tag{4}
\end{align*}
$$

This algorithm : only + , and \times by powers of 2 (mere shifts).
Constants $\ln \left(1+2^{-n}\right)$ precomputed and stored (n bits of accuracy $\Rightarrow \approx n$ constants).

Replace $\ln \left(1+2^{-n}\right)$ by $\log _{a}\left(1+2^{-n}\right) \longrightarrow$ algorithm for a^{t}.

From exponentials to logarithms

We want to compute $\ell=\ln (x)$. First assume ℓ is known (!!!) and compute its exponential (yes, I know it is x) using :

$$
\begin{align*}
& t_{0}=0 E_{1}=1 \\
& t_{n+1}=t_{n}+d_{n} \ln \left(1+2^{-n}\right) \tag{5}\\
& E_{n+1}=E_{n}+d_{n} E_{n} 2^{-n}
\end{align*}
$$

with $d_{n}=\left\{\begin{array}{ll}1 & \text { if } t_{n}+\ln \left(1+2^{-n}\right) \leq \ell \\ 0 & \text { otherwise. }\end{array} \quad t_{n} \rightarrow \ell, E_{n} \rightarrow e^{\ell}=x\right.$.
Cannot be used since needs ℓ. . From « $E_{n}=\exp \left(t_{n}\right)$ » that comparison can be replaced by $d_{n}= \begin{cases}1 & \text { if } E_{n} \times\left(1+2^{-n}\right) \leq x \\ 0 & \text { otherwise } .\end{cases}$
Same results, without requiring the knowledge of ℓ.

Algorithm 2 (logarithm-1)

- inputs : x, n, with $1 \leq x \leq \prod_{i=0}^{\infty}\left(1+2^{-i}\right) \approx 4.76$;
- output : $t_{n} \approx \ln x$.
$t_{0}=0, E_{0}=1$. Build t_{i} and E_{i} as follows

$$
\begin{align*}
t_{i+1} & =t_{i}+\ln \left(1+d_{i} 2^{-i}\right) \\
E_{i+1} & =E_{i}\left(1+d_{i} 2^{-i}\right)=E_{i}+d_{i} E_{i} 2^{-i} \\
d_{i} & = \begin{cases}1 & \text { if } E_{i}+E_{i} 2^{-i} \leq x \\
0 & \text { otherwise. }\end{cases} \tag{6}
\end{align*}
$$

Replace $\ln \left(1+2^{-n}\right)$ by $\log _{a}\left(1+2^{-n}\right) \rightarrow$ alg. for $\log _{a}$.

Trigonometric functions

- Non restoring decomposition (weights on both pans)
- Sequence $w_{n}=\arctan 2^{-n}$
- decomposition $\Rightarrow \theta=\sum_{k=0}^{\infty} d_{k} w_{k}, \quad d_{k}= \pm 1, \quad w_{k}=\arctan 2^{-k}$.

Rotation mode of CORDIC : perform a rotation of angle θ as a sequence of "micro-rotations" of angles $d_{n} w_{n}$. Start from (x_{0}, y_{0}). Get $\left(x_{n+1}, y_{n+1}\right)$ from $\left(x_{n}, y_{n}\right)$ by performing rotation of angle $d_{n} w_{n}$. Gives

$$
\begin{align*}
& t_{0}=0 \tag{7}\\
& t_{n+1}=t_{n}+d_{n} w_{n}
\end{aligned} \quad d_{n}=\left\{\begin{aligned}
1 & \text { if } t_{n} \leq \theta \\
-1 & \text { otherwise } ;
\end{align*}\right.
$$

nth rotation

$$
\begin{gather*}
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{rr}
\cos \left(d_{n} w_{n}\right) & -\sin \left(d_{n} w_{n}\right) \\
\sin \left(d_{n} w_{n}\right) & \cos \left(d_{n} w_{n}\right)
\end{array}\right)\binom{x_{n}}{y_{n}} . \tag{8}\\
d_{n}= \pm 1 \Rightarrow \cos \left(d_{n} w_{n}\right)=\cos \left(w_{n}\right) \text { and } \sin \left(d_{n} w_{n}\right)=d_{n} \sin \left(w_{n}\right) .
\end{gather*}
$$

Moreover, $\tan w_{n}=2^{-n}$. Therefore :

$$
\binom{x_{n+1}}{y_{n+1}}=\cos \left(w_{n}\right)\left(\begin{array}{cc}
1 & -d_{n} 2^{-n} \tag{9}\\
d_{n} 2^{-n} & 1
\end{array}\right)\binom{x_{n}}{y_{n}}
$$

Radix- 2 arithmetic \rightarrow all operations are very simple, with one serious exception : product by $\cos \left(w_{n}\right)=1 / \sqrt{1+2^{-2 n}}$.

Just ignore the problem and compute :

$$
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}
1 & -d_{n} 2^{-n} \tag{10}\\
d_{n} 2^{-n} & 1
\end{array}\right)\binom{x_{n}}{y_{n}}
$$

basic CORDIC iteration. Instead of a rotation, similarity of angle $w_{n} \&$ factor $1 / \cos w_{n}=\sqrt{1+2^{-2 n}}$.

Last modification $z_{n}=\theta-t_{n}$. Gives $z_{0}=\theta$,

$$
\left\{\begin{align*}
x_{n+1} & =x_{n}-d_{n} y_{n} 2^{-n} \tag{11}\\
y_{n+1} & =y_{n}+d_{n} x_{n} 2^{-n} \\
z_{n+1} & =z_{n}-d_{n} \arctan 2^{-n}
\end{align*}\right.
$$

with $d_{n}=1$ if $z_{n} \geq 0,-1$ otherwise.
$\left(x_{n}, y_{n}\right) \rightarrow$ result of similarity of angle θ \& factor
$K=1.646760258121 \cdots=\Pi \sqrt{1+2^{-2 i}}$ applied to $\left(x_{0}, y_{0}\right)$.

$$
\lim _{n \rightarrow \infty}\left(\begin{array}{c}
x_{n} \tag{12}\\
y_{n} \\
z_{n}
\end{array}\right)=K \times\left(\begin{array}{c}
x_{0} \cos z_{0}-y_{0} \sin z_{0} \\
x_{0} \sin z_{0}+y_{0} \cos z_{0} \\
0
\end{array}\right)
$$

For instance, $x_{0}=1 / K$ and $y_{0}=0$ give $x_{n} \rightarrow \cos (\theta)$ and $y_{n} \rightarrow \sin (\theta)$.

FIG. 6 - One iteration of CORDIC.

Generalized CORDIC

Due to John Walther, from HP. Implemented on HP 35, then Intel 8087. Basic iteration :

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}-m d_{n} y_{n} 2^{-\sigma(n)} \tag{13}\\
y_{n+1}=y_{n}+d_{n} x_{n} 2^{-\sigma(n)} \\
z_{n+1}=z_{n}-d_{n} w_{\sigma(n)}
\end{array}\right.
$$

$m=1$ gives previous algorithm.

m	w_{k}	$d_{n}=\operatorname{sign} z_{n}$ (Rotation Mode)	$d_{n}=-\operatorname{sign} y_{n}$ (Vectoring Mode)
1	$\arctan 2^{-k}$	$\begin{aligned} & x_{n} \rightarrow K\left(x_{0} \cos z_{0}-y_{0} \sin z_{0}\right) \\ & y_{n} \rightarrow K\left(y_{0} \cos z_{0}+x_{0} \sin z_{0}\right) \\ & z_{n} \rightarrow 0 \end{aligned}$	$\begin{aligned} & x_{n} \rightarrow K \sqrt{x_{0}^{2}+y_{0}^{2}} \\ & y_{n} \rightarrow 0 \\ & z_{n} \rightarrow z_{0}-\arctan \frac{y_{0}}{x_{0}} \end{aligned}$
0	2^{-k}	$\begin{aligned} & x_{n} \rightarrow x_{0} \\ & y_{n} \rightarrow y_{0}+x_{0} z_{0} \\ & z_{n} \rightarrow 0 \end{aligned}$	$\begin{aligned} & x_{n} \rightarrow x_{0} \\ & y_{n} \rightarrow 0 \\ & z_{n} \rightarrow z_{0}-\frac{y_{0}}{x_{0}} \end{aligned}$
-1	$\tanh ^{-1} 2^{-k}$	$\begin{aligned} & x_{n} \rightarrow K^{\prime}\left(x_{1} \cosh z_{1}+y_{1} \sinh z_{1}\right) \\ & y_{n} \rightarrow K^{\prime}\left(y_{1} \cosh z_{1}+x_{1} \sinh z_{1}\right) \\ & z_{n} \rightarrow 0 \end{aligned}$	$\begin{aligned} & x_{n} \rightarrow K^{\prime} \sqrt{x_{1}^{2}-y_{1}^{2}} \\ & y_{n} \rightarrow 0 \\ & z_{n} \rightarrow z_{1}-\tanh ^{-1} \frac{y_{1}}{x_{1}} \end{aligned}$

TAB. 2 - Fonctions computable with CORDIC.

Trigo $(m=1)$	$\sigma(n)=n$
Linear $(m=0)$	$\sigma(n)=n$
	$\sigma(n)=n-k$
Hyperbolic $(m=-1)$	where k is largest integer s.t.
	$3^{k+1}+2 k-1 \leq 2 n$

TAB. 3 - Value of $\sigma(n)$

Some references on CORDIC

- Some ideas go back to Briggs (1561-1631) ;
- CORDIC : Volder (1959) ;
- very similar ideas developed by Meggitt (1962) ;
- generalized version : Walther (1971). Implementations : HP35, Intel 8087, Motorola 68881.
- simple algorithms for log and exp : Specker (1965), DeLugish's PhD (1970) ;
- redundant versions : Takagi, Ercegovac \& Lang, Lee \& Lang, Duprat \& Muller ;
- Special Issue on CORDIC in the Journal of VLSI Signal Processing (june 2000).

A few words on correct rounding

- In general, the result of an arithmetic operation on two FP numbers is not exactly representable in the same FP format \Rightarrow must be rounded
- In a FP system that follows IEEE-754, the user can choose an active rounding mode from : rounding towards $-\infty,+\infty, 0$ and to the nearest even.
- The system should behave as if the results of,,$+- \div, \times$ and \sqrt{x} were first computed exactly, and then rounded accordingly to the active rounding mode.
- Operations that satisfy this property are called correctly rounded (or exactly rounded).

What about the elementary functions?

- No such requirement for the elementary functions
- Requiring correctly rounded results would not only improve the accuracy of computations : it would help to make numerical software more portable, help implementing interval arithmetic, and facilitate the preservation of properties such as monotonicity, symmetry, ...

The Table Maker's Dilemma

- Let f be an elementary function and x a FP number.
- Unless x is a very special case - e.g., $\sin (0)-, y=f(x)$ cannot be exactly computed. The only thing we can do is to compute an approximation y^{*} to y.
- Correctly rounded functions : we must know what the accuracy of this approximation should be to make sure that rounding y^{*} is always equivalent to rounding y.

The Table Maker's Dilemma (cont.)

- y^{*} and known bounds on the approximation error $\Rightarrow y$ belongs to some interval Y.
- breakpoint: a value z where the rounding changes :

$$
t_{1}<z<t_{2} \Rightarrow \diamond\left(t_{1}\right)<\diamond\left(t_{2}\right)
$$

where \diamond is the rounding function;

- "directed" rounding modes : the breakpoints are the FP numbers;
- rounding to the nearest mode : they are the exact middle of two consecutive FP numbers.

When does the problem occur?

If Y contains a breakpoint, we cannot provide $\diamond(y)$: computation must be carried again with larger accuracy. Two solutions :

- iteratively increase accuracy of approximation, until Y no longer contains a breakpoint. And yet, how many iterations will be necessary?
- compute, once and in advance, the smallest nonzero mantissa distance between the image $f(x)$ of a FP number x and a breakpoint \Rightarrow accuracy with which f must be approximated to make sure that rounding the approximation is equivalent to rounding the exact result.

Example

Worst case for natural logarithm in full double precision range :

$$
\begin{array}{r}
x=1.011000101010100010000110000100110110001010 \\
0110110110 \times 2^{678}
\end{array}
$$

whose logarithm is

$$
\begin{aligned}
& \log x=\overbrace{111010110.0100011110011110101 \cdots 110001}^{53 \text { bits }} \\
& \underbrace{000000000000000000 \cdots 000000000000000}_{65 \text { zeroes }} 1110 \ldots
\end{aligned}
$$

This is a "difficult case" in a directed rounding mode since it is very near a FP number.

TAB. 4 - Worst cases for the exponential function in the full range.

Interval	worst case (binary)
$\left[-\infty,-2^{-30}\right]$	$\begin{aligned} & \hline \exp \left(-1.1110110100110001100011101111101101100010011111101010 \times 2^{-27}\right) \\ & \quad=1.111111111111111111111111100 \cdots 0111000100 \quad 1 \quad 1^{59} 0001 \ldots \times 2^{-1} \end{aligned}$
$\left[-2^{-30}, 0\right)$	$\begin{aligned} & \exp \left(-1.0001 \times 2^{-51}\right) \\ & \quad=1.111111111111111 \cdots 11111111111111100 \quad 0 \quad 0^{100} 1010 \ldots \times 2^{-1} \end{aligned}$
$\left(0,+2^{-30}\right]$	$\begin{aligned} & \exp \left(1.11 \times 2^{-53}\right) \\ = & 1.00 \quad 1 \quad 1^{104} 0101 \ldots \end{aligned}$
$\left[2^{-30},+\infty\right]$	

Property 1 (Computation of exponentials) Let y be the exponential of a double-precision number x. Let y^{*} be an approximation to y such that the mantissa distance between y and y^{*} is bounded by ϵ.

- for $|x| \geq 2^{-30}$, if $\epsilon \leq 2^{-53-59}=2^{-112}$ then for any of the 4 rounding modes, rounding y^{*} is equivalent to rounding y; - for $|x|<2^{-30}$, if $\epsilon \leq 2^{-53-104}=2^{-157}$ then rounding y^{*} is equivalent to rounding y.

