Introduction to elementary function algorithms

Jean-Michel Muller

June 2004

Elementary functions

- sine, cosine, arctangent, exponential, logarithm...
- most algorithms for approximating these functions give a result in a small domain only \Rightarrow 3 steps : range reduction, approximation, computation of final result.

Desirable properties

- speed;
- accuracy;
- reasonable amount of resource (ROM/RAM, silicon area used by a dedicated hardware...);
- preservation of important mathematical properties such as monotonicity, and symmetry. Monotonicity failures can cause problems in evaluating divided differences;
- range limits getting a sine larger than 1 may lead to unpleasant surprises, for instance, when computing

$$\sqrt{1-\sin^2 x}.$$

Computing System	$\sin x$
Exact result	-0.8522008497671888017727
HP 48 GX	-0.852200849762
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	0.87402806
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	-0.852200849
IBM 3090/600S-VF AIX 370	0.0
DECstation 3100	NaN
TI 89	Trig. arg. too large

TAB. 1 –
$$\sin(x)$$
 for $x = 10^{22}$

Polynomial approximations to functions

- assume we have FP addition and multiplication available in hardware;
- \pm , ×, comparisons \rightarrow the functions of one variable we can compute are piecewise polynomials .
- it is natural to try to approximate functions by polynomials.

Rational functions : sometimes interesting, but in most cases the delay of FP division and the fact that it is not pipelined makes evaluation of rational functions rather costly.

A few notations

- \mathcal{P}_n : set of the polynomials of degree less than or equal to n;
- we want to approximate a function f by an element p^* of \mathcal{P}_n on an interval [a, b];
- there is much better do do than using Taylor approximations;
- done by minimizing a "distance" $||p^* f||$;
- minimax approximations : the distance is

$$||p^* - f||_{\infty} = \max_{a \le x \le b} |p^*(x) - f(x)|.$$

In 1885, Weierstrass proved that a continuous function can be approximated as accurately as desired by a polynomial.

Theorem 1 (Weierstrass, 1885) Let *f* be a continuous function. For any $\epsilon > 0$ there exists a polynomial *p* such that $||p - f||_{\infty} \le \epsilon$.

Another theorem, due to Chebyshev, gives a characterization of the minimax approximations to a function.

Theorem 2 (Chebyshev) p^* is the minimax degree-*n* approximation to *f* on [*a*, *b*] if and only if there exist at least n + 2values

$$a \le x_0 < x_1 < x_2 < \ldots < x_{n+1} \le b$$

such that :

$$p^*(x_i) - f(x_i) = (-1)^i \left[p^*(x_0) - f(x_0) \right] = \pm ||f - p^*||_{\infty}$$

Getting the approximations

- Remes algorithm (1934) : minimax approximation to a function in a given interval;
- difficult to predict accuracy vs degree : very function-dependent ;
- implemented in the numapprox package of Maple;
- best "truncated" polynomial approximations : algorithm suggested by Brisebarre, Muller and Tisserand (2004).

FIG. 3 – Number of significant bits (obtained as $-\log_2(error)$) of the minimax polynomial approximations to various functions on [0, 1].

Introduction to shift and add algorithms

- algorithms that do not use \times or \div ;
- the most famous : CORDIC (Volder 59, Walther 71) : first large-scale implementations HP 35, Intel 8087, Motorola 68881;
- introduction to theoretical bakery \Rightarrow link with elementary functions;
- simple algorithms;
- more efficient algorithms using redundancy.

Let us weigh a loaf of bread

Pair of scales, weights w_0 , w_1 , w_2 ,... that satisfy :

- $\forall i, w_i > 0$;
- the sequence w_i is decreasing and $\sum w_i < +\infty$;
- $\forall i, w_i \leq \sum_{k=i+1}^{\infty} w_k.$

first exercise the weights are either unused or put in the pan that does not contain the bread.

Theorem 3 (Restoring decomposition) Let (w_n) be a decreasing sequence of real numbers > 0 such that $\sum_{i=0}^{\infty} w_i < \infty$. If

$$\forall n, w_n \le \sum_{k=n+1}^{\infty} w_k \tag{1}$$

then $\forall t \in [0, \sum_{k=0}^{\infty} w_k]$, the sequences (t_n) and (d_n) defined as

$$t_{0} = 0$$

$$t_{n+1} = t_{n} + d_{n}w_{n}$$

$$d_{n} = \begin{cases} 1 & \text{if } t_{n} + w_{n} \leq t \\ 0 & \text{otherwise} \end{cases}$$

$$(2)$$

satisfy $t = \sum_{n=0}^{\infty} d_n w_n = \lim_{n \to \infty} t_n$.

Second exercise

Same pair of scales & weights, but now we must use all weights . However, they can be put in both pans.

Another greedy algorithm :

Theorem 4 (Non-restoring algorithm) Let (w_n) be a sequence satisfying the conditions of Theorem 3. $\forall t \in [-\sum_{k=0}^{\infty} w_k, \sum_{k=0}^{\infty} w_k]$, the sequences (t_n) and (d_n) defined as

$$\begin{aligned}
t_0 &= 0 \\
t_{n+1} &= t_n + d_n w_n \\
d_n &= \begin{cases} 1 & \text{if } t_n \leq t \\
-1 & \text{otherwise}
\end{aligned} \tag{3}$$

satisfy $t = \sum_{n=0}^{\infty} d_n w_n = \lim_{n \to \infty} t_n$.

Theorem 5 The sequences $\ln(1 + 2^{-n})$ and $\arctan 2^{-n}$ satisfy the conditions of Theorems 3 and 4

From theoretical bakery to the exponential function

$$w_n = \ln(1+2^{-n})$$
. Let $t \in [0, \sum_{k=0}^{\infty} w_k] = [0, 1.56 \cdots]$.

$$\begin{aligned} t_0 &= 0 \\ t_{n+1} &= t_n + d_n \ln \left(1 + 2^{-n} \right) \end{aligned} d_n &= \begin{cases} 1 & \text{if } t_n + \ln \left(1 + 2^{-n} \right) \le n \\ 0 & \text{otherwise} \end{cases}$$

satisfy
$$t = \sum_{n=0}^{\infty} d_n \ln (1 + 2^{-n}) = \lim_{n \to \infty} t_n$$
.

Let E_n be such that $\forall n, E_n = e^{t_n}$

$$- t_0 = 0 \Rightarrow E_0 = 1.$$

- when $t_{n+1} \neq t_n$ (i.e., when $d_n = 1$), $t_{n+1} = t_n + \ln(1 + 2^{-n})$. $E_n = e^{t_n} \Rightarrow E_n$ multiplied by $\exp \ln(1 + 2^{-n}) = (1 + 2^{-n})$.

Since $t_n \to t$, $E_n \to e^t$.

Algorithm 1 (expo-1, inputs : t, N (nb of steps), output : E_N) $t_0 = 0$ $E_0 = 1$; build t_n and E_n as follows

$$t_{n+1} = t_n + \ln (1 + d_n 2^{-n})$$

$$E_{n+1} = E_n (1 + d_n 2^{-n}) = E_n + d_n E_n 2^{-n}$$

$$d_n = \begin{cases} 1 & \text{if } t_n + \ln (1 + 2^{-n}) \le t \\ 0 & \text{otherwise.} \end{cases}$$
(4)

This algorithm : only +, and × by powers of 2 (mere shifts). Constants $\ln(1+2^{-n})$ precomputed and stored (*n* bits of accuracy $\Rightarrow \approx n$ constants).

Replace $\ln(1+2^{-n})$ by $\log_a(1+2^{-n}) \longrightarrow$ algorithm for a^t .

From exponentials to logarithms

We want to compute $\ell = \ln(x)$. First assume ℓ is known (!!!) and compute its exponential (yes, I know it is x) using :

 $t_0 = 0 \qquad E_1 = 1$ $t_{n+1} = t_n + d_n \ln \left(1 + 2^{-n} \right)$ (5) $E_{n+1} = E_n + d_n E_n 2^{-n}$ with $d_n = \begin{cases} 1 & \text{if } t_n + \ln(1+2^{-n}) \le \ell \\ 0 & \text{otherwise.} \end{cases}$ $t_n \to \ell, E_n \to e^{\ell} = x.$ Cannot be used since needs ℓ ... From « $E_n = \exp(t_n)$ » that comparison can be replaced by $d_n = \begin{cases} 1 & \text{if } E_n \times (1+2^{-n}) \leq x \\ 0 & \text{otherwise.} \end{cases}$ Same results, without requiring the knowledge of ℓ .

Algorithm 2 (logarithm-1)

- inputs : x, n, with $1 \le x \le \prod_{i=0}^{\infty} (1+2^{-i}) \approx 4.76;$
- output : $t_n \approx \ln x$.

 $t_0 = 0, E_0 = 1$. Build t_i and E_i as follows

$$t_{i+1} = t_i + \ln (1 + d_i 2^{-i})$$

$$E_{i+1} = E_i (1 + d_i 2^{-i}) = E_i + d_i E_i 2^{-i}$$

$$d_i = \begin{cases} 1 & \text{if } E_i + E_i 2^{-i} \leq x \\ 0 & \text{otherwise.} \end{cases}$$
(6)

Replace $\ln(1+2^{-n})$ by $\log_a(1+2^{-n}) \rightarrow \text{alg. for } \log_a$.

Trigonometric functions

- Non restoring decomposition (weights on both pans)
- Sequence $w_n = \arctan 2^{-n}$
- decomposition $\Rightarrow \theta = \sum_{k=0}^{\infty} d_k w_k, \quad d_k = \pm 1, \quad w_k = \arctan 2^{-k}.$

Rotation mode of CORDIC : perform a rotation of angle θ as a sequence of "micro-rotations" of angles $d_n w_n$. Start from (x_0, y_0) . Get (x_{n+1}, y_{n+1}) from (x_n, y_n) by performing rotation of angle $d_n w_n$. Gives

$$\begin{aligned} t_0 &= 0 \\ t_{n+1} &= t_n + d_n w_n \end{aligned} \qquad d_n = \begin{cases} 1 & \text{if } t_n \le \theta \\ -1 & \text{otherwise}; \end{cases}$$
(7)

nth rotation

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \cos(d_n w_n) & -\sin(d_n w_n) \\ \sin(d_n w_n) & \cos(d_n w_n) \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$$
 (8)

 $d_n = \pm 1 \Rightarrow \cos(d_n w_n) = \cos(w_n)$ and $\sin(d_n w_n) = d_n \sin(w_n)$. Moreover, $\tan w_n = 2^{-n}$. Therefore :

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \cos(w_n) \begin{pmatrix} 1 & -d_n 2^{-n} \\ d_n 2^{-n} & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$$
(9)

Radix-2 arithmetic \rightarrow all operations are very simple, with one serious exception : product by $\cos(w_n) = 1/\sqrt{1+2^{-2n}}$.

Just ignore the problem and compute :

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & -d_n 2^{-n} \\ d_n 2^{-n} & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
(10)

basic **CORDIC** iteration. Instead of a *rotation*, *similarity* of angle $w_n \& \text{factor } 1/\cos w_n = \sqrt{1+2^{-2n}}$.

Last modification $z_n = \theta - t_n$. Gives $z_0 = \theta$,

$$\begin{cases} x_{n+1} = x_n - d_n y_n 2^{-n} \\ y_{n+1} = y_n + d_n x_n 2^{-n} \\ z_{n+1} = z_n - d_n \arctan 2^{-n}. \end{cases}$$
(11)

with $d_n = 1$ if $z_n \ge 0$, -1 otherwise.

 $(x_n, y_n) \rightarrow$ result of similarity of angle θ & factor $K = 1.646760258121 \cdots = \prod \sqrt{1 + 2^{-2i}}$ applied to (x_0, y_0) .

$$\lim_{n \to \infty} \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = K \times \begin{pmatrix} x_0 \cos z_0 - y_0 \sin z_0 \\ x_0 \sin z_0 + y_0 \cos z_0 \\ 0 \end{pmatrix}$$
(12)

For instance, $x_0 = 1/K$ and $y_0 = 0$ give $x_n \to \cos(\theta)$ and $y_n \to \sin(\theta)$.

Generalized CORDIC

Due to John Walther, from HP. Implemented on HP 35, then Intel 8087. Basic iteration :

$$\begin{cases} x_{n+1} = x_n - m d_n y_n 2^{-\sigma(n)} \\ y_{n+1} = y_n + d_n x_n 2^{-\sigma(n)} \\ z_{n+1} = z_n - d_n w_{\sigma(n)}, \end{cases}$$
(13)

m = 1 gives previous algorithm.

m	${w}_k$	$d_n = \operatorname{sign} z_n$ (Rotation Mode)	$d_n = -\operatorname{sign} y_n$ (Vectoring Mode)
1	$\arctan 2^{-k}$	$x_n \to K (x_0 \cos z_0 - y_0 \sin z_0)$ $y_n \to K (y_0 \cos z_0 + x_0 \sin z_0)$ $z_n \to 0$	$x_n \to K \sqrt{x_0^2 + y_0^2}$ $y_n \to 0$ $z_n \to z_0 - \arctan \frac{y_0}{x_0}$
0	2^{-k}	$ \begin{array}{c} x_n \to x_0 \\ y_n \to y_0 + x_0 z_0 \\ z_n \to 0 \end{array} $	$ \begin{array}{c} x_n \to x_0 \\ y_n \to 0 \\ z_n \to z_0 - \frac{y_0}{x_0} \end{array} $
-1	$\tanh^{-1} 2^{-k}$	$ \begin{array}{c} x_n \to K' \left(x_1 \cosh z_1 + y_1 \sinh z_1 \right) \\ y_n \to K' \left(y_1 \cosh z_1 + x_1 \sinh z_1 \right) \\ z_n \to 0 \end{array} $	$x_n \to K' \sqrt{x_1^2 - y_1^2}$ $y_n \to 0$ $z_n \to z_1 - \tanh^{-1} \frac{y_1}{x_1}$

TAB. 2 – Fonctions computable with CORDIC.

Trigo ($m = 1$)	$\sigma(n) = n$	
Linear ($m = 0$)	$\sigma(n) = n$	
	$\sigma(n) = n - k$	
Hyperbolic ($m = -1$)	where k is largest integer s.t.	
	$3^{k+1} + 2k - 1 \le 2n$	

TAB. 3 – Value of $\sigma(n)$

Some references on CORDIC

- Some ideas go back to Briggs (1561-1631);
- CORDIC : Volder (1959);
- very similar ideas developed by Meggitt (1962);
- generalized version : Walther (1971). Implementations : HP35, Intel 8087, Motorola 68881.
- simple algorithms for log and exp : Specker (1965), DeLugish's PhD (1970);
- redundant versions : Takagi, Ercegovac & Lang, Lee & Lang, Duprat & Muller;
- Special Issue on CORDIC in the Journal of VLSI Signal Processing (june 2000).

A few words on correct rounding

- In general, the result of an arithmetic operation on two FP numbers is not exactly representable in the same FP format
 ⇒ must be rounded
- In a FP system that follows IEEE-754, the user can choose an *active rounding mode* from : rounding towards $-\infty$, $+\infty$, 0 and to the nearest even.
- The system should behave as if the results of $+, -, \div, \times$ and \sqrt{x} were first computed exactly, and then rounded accordingly to the active rounding mode.
- Operations that satisfy this property are called correctly rounded (or exactly rounded).

What about the elementary functions?

- No such requirement for the elementary functions
- Requiring correctly rounded results would not only improve the accuracy of computations : it would help to make numerical software more portable, help implementing interval arithmetic, and facilitate the preservation of properties such as monotonicity, symmetry,

The Table Maker's Dilemma

- Let f be an elementary function and x a FP number.
- Unless x is a very special case e.g., sin(0) –, y = f(x) cannot be exactly computed. The only thing we can do is to compute an *approximation* y^* to y.
- Correctly rounded functions : we must know what the accuracy of this approximation should be to make sure that rounding y^* is always equivalent to rounding y.

The Table Maker's Dilemma (cont.)

- y^* and known bounds on the approximation error $\Rightarrow y$ belongs to some interval Y.
- breakpoint : a value z where the rounding changes :

 $t_1 < z < t_2 \Rightarrow \diamond(t_1) < \diamond(t_2)$

where \diamond is the rounding function;

- "directed" rounding modes : the breakpoints are the FP numbers;
- rounding to the nearest mode : they are the exact middle of two consecutive FP numbers.

When does the problem occur?

- If Y contains a breakpoint, we cannot provide $\diamond(y)$: computation must be carried again with larger accuracy. Two solutions :
- iteratively increase accuracy of approximation, until Y no longer contains a breakpoint. And yet, how many iterations will be necessary?
- compute, once and in advance, the smallest nonzero mantissa distance between the image *f*(*x*) of a FP number *x* and a breakpoint ⇒ accuracy with which *f* must be approximated to make sure that rounding the approximation is equivalent to rounding the exact result.

TAB. 4 – Worst cases for the exponential function in the full range.

Interval	worst case (binary)
$\left[-\infty, -2^{-30}\right]$	$\exp(-1.11101101001100011000111011111011010010$
	$= 1.1111111111111111111111100 \cdots 0111000100 \ 1 \ 1^{59}0001 \ldots \times 2^{-1}$
$[-2^{-30},0)$	$\exp(-1.000000000000000000000000000000000000$
	$= 1.11111111111111111111111111111111100 \ 0 \ $
$(0, +2^{-30}]$	$\exp(1.11111111111111111111111111111111111$
	= 1.000000000000000000000000000000000000
$[2^{-30}, +\infty]$	$\exp(1.01111111111111100111111111111111000000$
	= 1.000000000000000000000000000000000000
	$\exp(1.100000000000000101111111111111111111$
	= 1.000000000000000000000000000000000000
	$\exp(1.10011110100111001011101111111010110000010000$
	= 1.000000000000000000000000000000000000
	$\exp(110.00001111010100101111001101111010111001111$
	= 110101100.010100001011010000010011100100

Property 1 (Computation of exponentials) Let y be the exponential of a double-precision number x. Let y^* be an approximation to y such that the mantissa distance between y and y^* is bounded by ϵ .

- for $|x| \ge 2^{-30}$, if $\epsilon \le 2^{-53-59} = 2^{-112}$ then for any of the 4 rounding modes, rounding y^* is equivalent to rounding y;
- for $|x| < 2^{-30}$, if $\epsilon \le 2^{-53-104} = 2^{-157}$ then rounding y^* is equivalent to rounding y.