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Elementary functions

— sine, cosine, arctangent, exponential, logarithm. ..

— most algorithms for approximating these functions give a result
In a small domain only = 3 steps : range reduction,
approximation, computation of final result.




Desirable properties

speed;

accuracy ;

reasonable amount of resource (ROM/RAM, silicon area used by
a dedicated hardware. . .);

preservation of important mathematical properties such as
monotonicity, and symmetry. Monotonicity failures can cause
problems in evaluating divided differences;

getting a sine larger than 1 may lead to unpleasant
surprises, for instance, when computing

\/1 — sin? z.




Computing System

Sin

Exact result

-0.8522008497671888017727. ..

HP 48 GX

-0.852200849762

matlab V.4.2 c.1 for Macintosh

0.8740

matlab V.4.2 c.1 for SPARC

-0.8522

Silicon Graphics Indy

0.87402806. ..

SPARC

-0.85220084976718879

IBM RS/6000 AIX 3005

-0.852200849. ..

IBM 3090/600S-VF AIX 370

0.0

DECstation 3100

T1 89

TAB. 1 —sin(x) for z = 1072




Polynomial approximations to functions

— assume we have FP addition and multiplication available in
hardware ;

— =+, X, comparisons — the functions of one variable we can

compute are Jollse=EERel\alolnlE 1.

— It is natural to try to approximate functions by polynomials.

Rational functions : sometimes interesting, but in most cases the
delay of FP division and the fact that it is not pipelined makes
evaluation of rational functions rather costly.




A few notations

— P, . set of the polynomials of degree less than or equal to n ;

— we want to approximate a function f by an element p* of P,, on
an interval [a, b] ;

— there is much better do do than using Taylor approximations;

— done by minimizing a “distance” ||p* — f||;

— approximations : the distance is

p* = flloo = max, p"(z) — f(x)].




In 1885, Weierstrass proved that a continuous function can be
approximated as accurately as desired by a polynomial.

Theorem 1 (Weierstrass, 1885) Let f be a continuous function.
For any € > 0 there exists a polynomial p such that ||p — f||c <.

Another theorem, due to Chebyshev, gives a characterization of
the minimax approximations to a function.

Theorem 2 (Chebyshev) p* is the minimax degree-n
approximation to f on |[a, b] if and only if there exist at least n + 2
values

a<xog<x1 <T9o <... <£Cn_|_1§b

such that :

p (i) — fla;) = (—1)i p" (z0) — f(z0)] = H|[f — ™|




FIG. 1 — exp(—x?) and its degree-3 minimax approx. on [0, 3].




FiG. 2 — Difference between exp(—z?) and its degree-3 minimax
approximation on [0, 3].




Getting the approximations

Remes algorithm (1934) : minimax approximation to a function in
a given interval ;

difficult to predict accuracy vs degree : very function-dependent;
Implemented in the numapprox package of Maple;

best “truncated” polynomial approximations : algorithm
suggested by Brisebarre, Muller and Tisserand (2004).




Nunmber of bits

Degree of the approximation

FiG. 3 — Number of significant bits (obtained as — log, (error)) of the
minimax polynomial approximations to various functions on [0, 1].




Introduction to shift and add algorithms

— algorithms that do not use x or +;

— the most famous : (Volder 59, Walther 71) : first
large-scale implementations HP 35, Intel 8087, Motorola 68881 ;

— Introduction to theoretical bakery = link with elementary
functions;;

— simple algorithms;;

— more efficient algorithms using redundancy.




Let us weigh a loaf of bread

Pair of scales, weights wg, wy, ws,...that satisfy :

— Vi, w; > 0;

— the sequence w; is decreasing and > " w; < +00;

— Vi, w; < Z,C;O:Z.H Wy .

the weights are either unused or put in the pan that
does not contain the bread.




FIG. 4 — Restoring decomposition




Theorem 3 (Restoring decomposition) Let (w,,) be a decreasing
sequence of real numbers > 0 such that .~ w; < oo. If

vn, w, < Z Wy, (1)
k=n-+1

then vt € [0, >, , wi], the sequences (¢,,) and (d,,) defined as

0
t, + d,w,
1 if t, +w, <t

0 otherwise

satisfy t = > dyw, = lim, . t,.

n=0




Second exercise

Same pair of scales & weights, but now we must use [=URVEb|alE.
However, they can be put in both pans.




FIG. 5 — Non-restoring algorithm




Another greedy algorithm :

Theorem 4 (Non-restoring algorithm) Let (w,,) be a sequence
satisfying the conditions of Theorem 3.Vt € [— >0 Wk, D e o Wk,
the sequences (t,,) and (d,,) defined as

0
(

1 ift, <t

—1 otherwise

\

satisfy t = > dyw, = lim, . t,.

n=0

Theorem 5 The sequences In (1 + 27") and arctan 27" satisfy the
conditions of Theorems 3 and 4




From theoretical bakery to the exponential function

wy, =In(1+27"). Lett € [0, —qwk] =[0,1.56--].

to = 0 . { 1 if tn+In(14+27") <t

ther = tn+daln(1+277) 0 otherwise

satisfy t = > dp,In(14+27") = limy,— 0 tn.
Let E,, be such that Vn, E,, = e»

—to=0= Eyg = 1.
— when t, 1 #t, (i.e., whend, =1),t,11 =%, +In(1+27").
E, = e = E, multiplied by expln (1 +27") = (1 +27").

Since t,, — t, £, — e’.




1; build ¢, and E,, as follows

tn +1In(14+d,27")
E,1+d,27")=FE,+d,E,27"
1 ift,+In(1+277) <t

(4)
dy,
0 otherwise.

This algorithm : only +, and x by powers of 2 (mere shifts).

Constants In (1 4+ 27") precomputed and stored (n bits of accuracy
== n constants).

Replace In (1 +27") by log, (1 + 2~™) — algorithm for a’.




From exponentials to logarithms

We want to compute ¢ = In(x). First assume ¢ is known (!!!) and
compute its exponential (yes, | know it is x) using :

trt tn + dpln (14277
B Ey + dpEp27"

_ 1 ift,+In(14+27") </
with d,, = ( ) < t, =0, B, — et = 1.
0 otherwise.

Cannot be used since needs /... From «F,, = exp (¢, )» that

| 1 if By, x(1+2") <z
comparison can be replaced by d,, =

0 otherwise.
Same results, without requiring the knowledge of /.




— inputs : z,n,with 1 <z < H,?io (1 + Q_i) ~ 4.76;
— output : ¢, =~ Inx.
to=0,E; =1. Build ¢{; and E; as follows

tit1 t; + In (1 + dZZ_Z)

Eiy1n = E(1+d27") =E +d;E2"

0 otherwise.

Replace In (1 +27") by log, (1 +27") — alg. for log,.




Trigonometric functions

— Non restoring decomposition (weights on both pans)
— Seguence w,, = arctan2™"

— decomposition = 0 = >_7°  drwy, di =+1, wy = arctan27".

slaizlifelghnlele[s8 of CORDIC : perform a rotation of angle 0 as a

sequence of “micro-rotations” of angles d,,w,,. Start from (xg, yo).

Get (z,41,Ynr1) from (x,,,y,) by performing rotation of angle
d,w,. Gives

1 ift, <6

(7)

—1 otherwise;




nth rotation

Tyl cos(d,wy) —sin(d,wy,) T

Yn1 sin(d,wy,) cos(d,wy,) YUn

d, = £1 = cos(d,w,) = cos(w,) and sin(d,w,) = d, sin(w,).
Moreover, tan w,, = 2~ ™. Therefore :

= cos (wy,)

Yn+1 an—n 1 Yn

Radix-2 arithmetic — all operations are very simple, with one
serious exception : product by cos(w,) = 1/v/1 + 2—2~,




Just ignore the problem and compute :

xn_|_1 ]. _dn2_n .CIZn

(10)

Yn+1 an—n 1 YUn

basic CORDIC iteration. Instead of a rotation, similarity of angle
w, & factor1/cosw, = /1 -+ 272",




Last modification z,, = 0 — t,,. Gives zo = 6,

( _
Ln+4+1 Lp — dnynz "

Ynt+1 = Yn T dnxnz_n

| Zn+1 = 2zp —dparctan27".

with d,, = 1 if z,, > 0, —1 otherwise.

(xn,yn) — result of similarity of angle 6 & factor

K = 1.646760258121 --- = [[ V1 + 2—2 applied to (zg, o).

T COS 2o — Yo SIN 2
lim,, o K X | xzgsin zg + yo cos zg (12)

0

For instance, o = 1/K and yo = 0 give x,, — cos(f) and
Yn — sin(6).




7 (g, Vi)

FIG. 6 — One iteration of CORDIC.




Generalized CORDIC

Due to John Walther, from HP. Implemented on HP 35, then Intel
8087. Basic iteration :

( Tpil = xn—mdnynQ_"(”)

—o(n)

Yn+1 — Yn + dnan

[ An+1 Zn T dnwa(n)7

m = 1 gives previous algorithm.




d, = signz,
(Rotation Mode)

dp = _Signyn
(Vectoring Mode)

arctan 2 k

xn — K (2o coszg — yosin zp)
Yn — K (yo cos zg + xg sin zq)

zn — 0

o0 = Kyfaf + 43

yn_>0
Yo

Zn — 29 — arctan BT

Tn — L0

Yn — Yo + ToZo

zZn — 0

LTn — L0

Yn — 0

ZnHZO—Z—g

tanh~127F

x, — K’ (21 coshz; + yi sinh z1)
yn — K’ (y1 cosh z1 4+ x1 sinh 21)

zn — 0

anK/\/x%—y%
yn_>0

Zn — 21 — tanh ™! g—l

TAB. 2 — Fonctions computable with CORDIC.




Trigo (m = 1)

Linear (m = 0)

on)=n—=k

Hyperbolic (m = —1) | where & is largest integer s.t.
3L 12k —1<2n

TaB. 3 — Value of o(n)




Some references on CORDIC

Some ideas go back to Briggs (1561-1631);

CORDIC : Volder (1959);

very similar ideas developed by Meggitt (1962) ;

generalized version : Walther (1971). Implementations : HP35,
Intel 8087, Motorola 68881.

simple algorithms for log and exp : Specker (1965), DelLugish’s
PhD (1970);

redundant versions : Takagi, Ercegovac & Lang, Lee & Lang,
Duprat & Muller;

Special Issue on CORDIC in the Journal of VLSI Signal
Processing (june 2000).




A few words on correct rounding

In general, the result of an arithmetic operation on two FP
numbers is not exactly representable in the same FP format

= must be

In a FP system that follows IEEE-754, the user can choose an
active rounding mode from : rounding towards —oo, +o00, 0 and
to the nearest even.

The system should behave as if the results of +, —, +, x and /=
were first computed exactly, and then rounded accordingly to the
active rounding mode.

Operations that satisfy this property are called

ol reltlale[sloN (Or exactly rounded).




What about the elementary functions ?

— No such requirement for the elementary functions

— Requiring correctly rounded results would not only improve the
accuracy of computations : it would help to make numerical
software more portable, help implementing interval arithmetic,
and facilitate the preservation of properties such as
monotonicity, symmetry, . ..




The Table Maker’s Dilemma

— Let f be an elementary function and x a FP number.
— Unless z is a very special case — e.g., sin(0) —, y = f(z) cannot
be exactly computed. The only thing we can do is to compute an

approximation y* to y.

— NelEo A ellale[sleNiblaleiifolalsi we must know what the accuracy

of this approximation should be to make sure that rounding y* is
always equivalent to rounding y.




The Table Maker’s Dilemma (cont.)

y* and known bounds on the approximation error = y belongs to
some interval Y.

oJ{=E1qel0llgles a value z where the rounding changes :
hh <z<1ly = O(tl) < <>(t2)

where ¢ is the rounding function;

“directed” rounding modes : the breakpoints are the FP
numbers;

rounding to the nearest mode : they are the exact middle of two
consecutive FP numbers.




When does the problem occur ?

If Y contains a breakpoint, we cannot provide ¢(y) : computation
must be carried again with larger accuracy. Two solutions :

— Iteratively increase accuracy of approximation, until Y no longer
contains a breakpoint. And yet, how many iterations will be
necessary ?

— compute, once and in advance, the smallest nonzero mantissa
distance between the image f(x) of a FP number x and a
breakpoint = accuracy with which f must be approximated to
make sure that rounding the approximation is equivalent to
rounding the exact result.




Example

Worst case for FEiiEielsEldialnl in full double precision range :

2z = 1.011000101010100010000110000100110110001010
0110110110 x 2°78

whose logarithm is

53 bits
logz = 111010110.0100011110011110101 - - - 110001

000000000000000000 - - - 000000000000000 1110...
65 zé?oes

This is a “difficult case” in a FellE=leconfolliglellalsRaglels(cF Since it IS

very near a FP number.




TAB. 4 —

Worst cases for the exponential function in the full range.

Interval

worst case (binary)

[— o0, —2_30]

exp(—1.1110110100110001100011101111101101100010011111101010 X 2_27)
=1.111111111111111111111111100---0111000100 1 1°90001... x 21

[_2—307 0)

exp(—1.0000000000000000000000000000000000000000000000000001 X 2_51)
= 1.111111111111111---11111111111111100 0 01091010... x 21

(0, +2739]

exp(1.1111111111111112111111111111111111111111111111111111 X 2_53)

= 1.0000000000000000000000000000000000000000000000000000 1 1104p101...

exp(1.0111111111111110011111111111111011100000000000100100 X 2_32)
= 1.0000000000000000000000000000000101111111111111101000 0 0°71101...

exp(1.1000000000000001011111111111111011011111111111011100 X 2_32)
= 1.0000000000000000000000000000000110000000000000010111 1 1°70010...

exp(1.1001111010011100101110111111110101100000100000001011 X 2_31)
1.0000000000000000000000000000001100111101001110010111 1 0°71010...

exp(110.00001111010100101111001101111010111011001111110100)
110101100.01010000101101000000100111001000101011101110 0 0°71000...




Property 1 (Computation of exponentials) Let y be the
exponential of a double-precision number z. Let y* be an
approximation to y such that the mantissa distance between y and
y* is bounded by e.

— for |z| > 2730 if e < 2773799 = 27112 then for any of the 4
rounding modes, rounding y* is equivalent to rounding y ;

— for |z| < 2739, if e < 27937104 = 27157 then rounding y* is
equivalent to rounding .




