
Introduction to elementary function algorithms

Jean-Michel Muller

June 2004

1

Elementary functions

– sine, cosine, arctangent, exponential, logarithm. . .
– most algorithms for approximating these functions give a result

in a small domain only ⇒ 3 steps : range reduction,
approximation, computation of final result.

2

Desirable properties

– speed ;
– accuracy ;
– reasonable amount of resource (ROM/RAM, silicon area used by

a dedicated hardware. . .) ;
– preservation of important mathematical properties such as

monotonicity , and symmetry . Monotonicity failures can cause
problems in evaluating divided differences ;

– range limits getting a sine larger than 1 may lead to unpleasant

surprises, for instance, when computing
√

1 − sin2 x.

3

Computing System sinx

Exact result -0.8522008497671888017727. . .

HP 48 GX -0.852200849762

matlab V.4.2 c.1 for Macintosh 0.8740

matlab V.4.2 c.1 for SPARC -0.8522

Silicon Graphics Indy 0.87402806. . .

SPARC -0.85220084976718879

IBM RS/6000 AIX 3005 -0.852200849. . .

IBM 3090/600S-VF AIX 370 0.0

DECstation 3100 NaN

TI 89 Trig. arg. too large

TAB. 1 – sin(x) for x = 1022

4

Polynomial approximations to functions

– assume we have FP addition and multiplication available in
hardware ;

– ±, ×, comparisons → the functions of one variable we can

compute are piecewise polynomials .

– it is natural to try to approximate functions by polynomials.

Rational functions : sometimes interesting, but in most cases the
delay of FP division and the fact that it is not pipelined makes
evaluation of rational functions rather costly.

5

A few notations

– Pn : set of the polynomials of degree less than or equal to n ;
– we want to approximate a function f by an element p∗ of Pn on

an interval [a, b] ;
– there is much better do do than using Taylor approximations ;
– done by minimizing a “distance” ||p∗ − f || ;
– minimax approximations : the distance is

||p∗ − f ||∞ = max
a≤x≤b

|p∗(x) − f(x)|.

6

In 1885, Weierstrass proved that a continuous function can be
approximated as accurately as desired by a polynomial.

Theorem 1 (Weierstrass, 1885) Let f be a continuous function.
For any ε > 0 there exists a polynomial p such that ||p − f ||∞ ≤ ε.

Another theorem, due to Chebyshev, gives a characterization of
the minimax approximations to a function.

Theorem 2 (Chebyshev) p∗ is the minimax degree-n
approximation to f on [a, b] if and only if there exist at least n + 2

values

a ≤ x0 < x1 < x2 < . . . < xn+1 ≤ b

such that :

p∗(xi) − f(xi) = (−1)i [p∗(x0) − f(x0)] = ±||f − p∗||∞.

7

32.521.510.5

1

0.8

0.6

0.4

0.2

0

FIG. 1 – exp(−x2) and its degree-3 minimax approx. on [0, 3].

8

32.521.510.5

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

FIG. 2 – Difference between exp(−x2) and its degree-3 minimax
approximation on [0, 3].

9

Getting the approximations

– Remes algorithm (1934) : minimax approximation to a function in
a given interval ;

– difficult to predict accuracy vs degree : very function-dependent ;
– implemented in the numapprox package of Maple ;
– best “truncated” polynomial approximations : algorithm

suggested by Brisebarre, Muller and Tisserand (2004).

10

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

N
u
m
b
e
r

o
f

b
i
t
s

Degree of the approximation

exp(x)
log(1+x)
sqrt(x)
tan(x)

FIG. 3 – Number of significant bits (obtained as − log2(error)) of the
minimax polynomial approximations to various functions on [0, 1].

11

Introduction to shift and add algorithms

– algorithms that do not use × or ÷ ;

– the most famous : CORDIC (Volder 59, Walther 71) : first
large-scale implementations HP 35, Intel 8087, Motorola 68881 ;

– introduction to theoretical bakery ⇒ link with elementary
functions ;

– simple algorithms ;
– more efficient algorithms using redundancy.

12

Let us weigh a loaf of bread

Pair of scales, weights w0, w1, w2,. . . that satisfy :
– ∀i, wi > 0 ;
– the sequence wi is decreasing and

∑
wi < +∞ ;

– ∀i, wi ≤
∑∞

k=i+1 wk.

first exercise the weights are either unused or put in the pan that
does not contain the bread.

13

w0

w2
w3 w4

w1

w5
w6

FIG. 4 – Restoring decomposition

14

Theorem 3 (Restoring decomposition) Let (wn) be a decreasing
sequence of real numbers > 0 such that

∑∞

i=0 wi < ∞. If

∀n, wn ≤
∞∑

k=n+1

wk (1)

then ∀t ∈ [0,
∑∞

k=0 wk], the sequences (tn) and (dn) defined as

t0 = 0

tn+1 = tn + dnwn

dn =







1 if tn + wn ≤ t

0 otherwise

(2)

satisfy t =
∑∞

n=0 dnwn = limn→∞ tn.

15

Second exercise

Same pair of scales & weights, but now we must use all weights .

However, they can be put in both pans.

16

w3 w4

w5

w1
w2

w0

FIG. 5 – Non-restoring algorithm

17

Another greedy algorithm :

Theorem 4 (Non-restoring algorithm) Let (wn) be a sequence
satisfying the conditions of Theorem 3. ∀t ∈ [−∑∞

k=0 wk,
∑∞

k=0 wk],
the sequences (tn) and (dn) defined as

t0 = 0

tn+1 = tn + dnwn

dn =







1 if tn ≤ t

−1 otherwise

(3)

satisfy t =
∑∞

n=0 dnwn = limn→∞ tn.

Theorem 5 The sequences ln (1 + 2−n) and arctan 2−n satisfy the
conditions of Theorems 3 and 4

18

From theoretical bakery to the exponential function

wn = ln (1 + 2−n). Let t ∈ [0,
∑∞

k=0 wk] = [0, 1.56 · · ·].

t0 = 0

tn+1 = tn + dn ln
(
1 + 2−n

) dn =







1 if tn + ln
(
1 + 2−n

)
≤ t

0 otherwise

satisfy t =
∑∞

n=0 dn ln (1 + 2−n) = limn→∞ tn.

Let En be such that ∀n, En = etn

– t0 = 0 ⇒ E0 = 1.
– when tn+1 6= tn (i.e., when dn = 1), tn+1 = tn + ln (1 + 2−n).

En = etn ⇒ En multiplied by exp ln (1 + 2−n) = (1 + 2−n).

Since tn → t, En → et.

19

Algorithm 1 (expo-1, inputs : t, N (nb of steps), output : EN)

t0 = 0 E0 = 1; build tn and En as follows

tn+1 = tn + ln (1 + dn2−n)

En+1 = En (1 + dn2−n) = En + dnEn2−n

dn =







1 if tn + ln (1 + 2−n) ≤ t

0 otherwise.

(4)

This algorithm : only +, and × by powers of 2 (mere shifts).
Constants ln (1 + 2−n) precomputed and stored (n bits of accuracy
⇒≈ n constants).

Replace ln (1 + 2−n) by loga (1 + 2−n) −→ algorithm for at.

20

From exponentials to logarithms

We want to compute ` = ln(x). First assume ` is known (! ! !) and
compute its exponential (yes, I know it is x) using :

t0 = 0 E1 = 1

tn+1 = tn + dn ln (1 + 2−n)

En+1 = En + dnEn2−n

(5)

with dn =







1 if tn + ln (1 + 2−n) ≤ `

0 otherwise.
tn → `, En → e` = x.

Cannot be used since needs `. . . From «En = exp (tn)» that

comparison can be replaced by dn =







1 if En × (1 + 2−n) ≤ x

0 otherwise.

Same results, without requiring the knowledge of `.

21

Algorithm 2 (logarithm-1)
– inputs : x, n, with 1 ≤ x ≤

∏∞

i=0

(
1 + 2−i

)
≈ 4.76;

– output : tn ≈ lnx.

t0 = 0, E0 = 1. Build ti and Ei as follows

ti+1 = ti + ln
(
1 + di2

−i
)

Ei+1 = Ei

(
1 + di2

−i
)

= Ei + diEi2
−i

di =







1 if Ei + Ei2
−i ≤ x

0 otherwise.

(6)

Replace ln (1 + 2−n) by loga (1 + 2−n) → alg. for loga.

22

Trigonometric functions

– Non restoring decomposition (weights on both pans)
– Sequence wn = arctan 2−n

– decomposition ⇒ θ =
∑∞

k=0 dkwk, dk = ±1, wk = arctan 2−k.

Rotation mode of CORDIC : perform a rotation of angle θ as a
sequence of “micro-rotations” of angles dnwn. Start from (x0, y0).
Get (xn+1, yn+1) from (xn, yn) by performing rotation of angle
dnwn. Gives

t0 = 0

tn+1 = tn + dnwn

dn =







1 if tn ≤ θ

−1 otherwise ;
(7)

23

nth rotation




xn+1

yn+1



 =




cos(dnwn) − sin(dnwn)

sin(dnwn) cos(dnwn)








xn

yn



 . (8)

dn = ±1 ⇒ cos(dnwn) = cos(wn) and sin(dnwn) = dn sin(wn).
Moreover, tan wn = 2−n. Therefore :




xn+1

yn+1



 = cos (wn)




1 −dn2−n

dn2−n 1








xn

yn



 . (9)

Radix-2 arithmetic → all operations are very simple, with one
serious exception : product by cos(wn) = 1/

√
1 + 2−2n.

24

Just ignore the problem and compute :



xn+1

yn+1



 =




1 −dn2−n

dn2−n 1








xn

yn



 (10)

basic CORDIC iteration. Instead of a rotation, similarity of angle
wn & factor 1/ coswn =

√
1 + 2−2n.

25

Last modification zn = θ − tn. Gives z0 = θ,






xn+1 = xn − dnyn2−n

yn+1 = yn + dnxn2−n

zn+1 = zn − dn arctan 2−n.

(11)

with dn = 1 if zn ≥ 0, −1 otherwise.

(xn, yn) → result of similarity of angle θ & factor
K = 1.646760258121 · · · =

∏√
1 + 2−2i applied to (x0, y0).

limn→∞







xn

yn

zn







= K ×







x0 cos z0 − y0 sin z0

x0 sin z0 + y0 cos z0

0







(12)

For instance, x0 = 1/K and y0 = 0 give xn → cos(θ) and
yn → sin(θ).

26

(xi+1, yi+1)

(xi, yi)
tan−1 2−i

zi

z0

FIG. 6 – One iteration of CORDIC.

27

Generalized CORDIC

Due to John Walther, from HP. Implemented on HP 35, then Intel
8087. Basic iteration :







xn+1 = xn − mdnyn2−σ(n)

yn+1 = yn + dnxn2−σ(n)

zn+1 = zn − dnwσ(n),

(13)

m = 1 gives previous algorithm.

28

m wk

dn = signzn

(Rotation Mode)

dn = −signyn

(Vectoring Mode)

1 arctan 2−k

xn → K (x0 cos z0 − y0 sin z0)

yn → K (y0 cos z0 + x0 sin z0)

zn → 0

xn → K

√

x2
0 + y2

0

yn → 0

zn → z0 − arctan
y0
x0

0 2−k

xn → x0

yn → y0 + x0z0

zn → 0

xn → x0

yn → 0

zn → z0 −
y0
x0

−1 tanh−1 2−k

xn → K′ (x1 cosh z1 + y1 sinh z1)

yn → K′ (y1 cosh z1 + x1 sinh z1)

zn → 0

xn → K′

√

x2
1 − y2

1

yn → 0

zn → z1 − tanh−1 y1
x1

TAB. 2 – Fonctions computable with CORDIC.

29

Trigo (m = 1) σ(n) = n

Linear (m = 0) σ(n) = n

Hyperbolic (m = −1)

σ(n) = n − k

where k is largest integer s.t.

3k+1 + 2k − 1 ≤ 2n

TAB. 3 – Value of σ(n)

30

Some references on CORDIC

– Some ideas go back to Briggs (1561-1631) ;
– CORDIC : Volder (1959) ;
– very similar ideas developed by Meggitt (1962) ;
– generalized version : Walther (1971). Implementations : HP35,

Intel 8087, Motorola 68881.
– simple algorithms for log and exp : Specker (1965), DeLugish’s

PhD (1970) ;
– redundant versions : Takagi, Ercegovac & Lang, Lee & Lang,

Duprat & Muller ;
– Special Issue on CORDIC in the Journal of VLSI Signal

Processing (june 2000).

31

A few words on correct rounding

– In general, the result of an arithmetic operation on two FP
numbers is not exactly representable in the same FP format

⇒ must be rounded
– In a FP system that follows IEEE-754, the user can choose an

active rounding mode from : rounding towards −∞, +∞, 0 and
to the nearest even.

– The system should behave as if the results of +, −, ÷, × and
√

x

were first computed exactly, and then rounded accordingly to the
active rounding mode.

– Operations that satisfy this property are called

correctly rounded (or exactly rounded).

32

What about the elementary functions ?

– No such requirement for the elementary functions
– Requiring correctly rounded results would not only improve the

accuracy of computations : it would help to make numerical
software more portable, help implementing interval arithmetic,
and facilitate the preservation of properties such as
monotonicity, symmetry, . . .

33

The Table Maker’s Dilemma

– Let f be an elementary function and x a FP number.
– Unless x is a very special case – e.g., sin(0) –, y = f(x) cannot

be exactly computed. The only thing we can do is to compute an
approximation y∗ to y.

– Correctly rounded functions : we must know what the accuracy

of this approximation should be to make sure that rounding y∗ is
always equivalent to rounding y.

34

The Table Maker’s Dilemma (cont.)

– y∗ and known bounds on the approximation error ⇒ y belongs to
some interval Y .

– breakpoint : a value z where the rounding changes :

t1 < z < t2 ⇒ �(t1) < �(t2)

where � is the rounding function ;
– “directed” rounding modes : the breakpoints are the FP

numbers ;
– rounding to the nearest mode : they are the exact middle of two

consecutive FP numbers.

35

When does the problem occur ?

If Y contains a breakpoint, we cannot provide �(y) : computation
must be carried again with larger accuracy. Two solutions :

– iteratively increase accuracy of approximation, until Y no longer
contains a breakpoint. And yet, how many iterations will be
necessary ?

– compute, once and in advance, the smallest nonzero mantissa
distance between the image f(x) of a FP number x and a
breakpoint ⇒ accuracy with which f must be approximated to
make sure that rounding the approximation is equivalent to
rounding the exact result.

36

Example

Worst case for natural logarithm in full double precision range :

x = 1.011000101010100010000110000100110110001010

0110110110× 2678

whose logarithm is

log x =

53 bits
︷ ︸︸ ︷

111010110.0100011110011110101 · · · 110001

000000000000000000 · · · 000000000000000
︸ ︷︷ ︸

65 zeroes

1110...

This is a “difficult case” in a directed rounding mode since it is

very near a FP number.

37

TAB. 4 – Worst cases for the exponential function in the full range.

Interval worst case (binary)

[−∞, −2−30]
exp(−1.1110110100110001100011101111101101100010011111101010 × 2−27)

= 1.111111111111111111111111100 · · · 0111000100 1 1590001... × 2−1

[−2−30, 0)
exp(−1.0001 × 2−51)

= 1.111111111111111 · · · 11111111111111100 0 01001010... × 2−1

(0, +2−30]
exp(1.11 × 2−53)

= 1.00 1 11040101...

[2−30, +∞]

exp(1.0111111111111110011111111111111011100000000000100100 × 2−32)

= 1.0000000000000000000000000000000101111111111111101000 0 0571101...

exp(1.1000000000000001011111111111111011011111111111011100 × 2−32)

= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 × 2−31)

= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...

38

Property 1 (Computation of exponentials) Let y be the
exponential of a double-precision number x. Let y∗ be an
approximation to y such that the mantissa distance between y and
y∗ is bounded by ε.
– for |x| ≥ 2−30, if ε ≤ 2−53−59 = 2−112 then for any of the 4

rounding modes, rounding y∗ is equivalent to rounding y ;
– for |x| < 2−30, if ε ≤ 2−53−104 = 2−157 then rounding y∗ is

equivalent to rounding y.

39

