Midterm Exam: May 28, 2004

- 1.16 (a) Show that the overflow in addition in the two's complement system can be detected by the exclusive-or of the carry-in and the carry-out of the most significant bit.
 - (b) Show that the last expression does not work properly in the ones' complement system.

Ling's adder (Doran 1988; Ling 1981) uses a more efficient recurrence for carries compared with the recurrence used in the carry-lookahead adders discussed in

Section 2.1. The expressions used there are

$$p_i = x_i \oplus y_i$$
, $g_i = x_i y_i$, $c_{i+1} = g_i + p_i c_i$, $s_i = c_i \oplus p_i$

Ling defines a new "carry" function $h_i = c_{i+1} + c_i$, resulting in the following adder expressions:

$$t_i = x_i + y_i$$
, $g_i = x_i y_i$, $h_i = g_i + t_{i-1} h_{i-1}$, $s_i = t_i \oplus h_i + g_i t_{i-1} h_{i-1}$

- (a) Show that Ling's expressions produce the correct sum.
- (b) Consider the expressions for a group of four bits and show that Ling's approach is more efficient than the conventional one with respect to the number of gates and fanin.

2.18

Using a prefix adder as a basis, design a network that produces simultaneously 2.21 s = x + y and z = x + y + 1. This network is useful in rounding for floating-point addition.

Design a network consisting of full-adders and half-adders to compute

z = a - 3b + 5c

3.24

.18

ment system. What is the least number of bits necessary to represent 2? (a)

- Show the bit-matrix before and after simplification. (b)
- Show your final network. Minimize the delay and the number of FA/HA (c) modules in the reduction to two operands.

where a, b, c are integers in the range [-4, 3], represented in the two's comple-

What is the minimum precision of the carry-propagate adder needed to (d) produce the final result? Which type of CPA would be best suited?

Consider the implementation of 12 × 12 multiplication with operands and product

in two's complement representation. Use 5×5 multiplication modules (two's

- complement representation). Determine how many modules are required. (a)
- Show the bit-matrix to be added, identifying the output bits of each (b) multiplication module.
- Determine the network of full-adders and half-adders required to reduce (c) the bit-matrix to two rows, using the column reduction approach.