
Computer Arithmetic

Vojin G. Oklobdzija
Electrical and Computer Engineering Department

University of California Davis

As the ability to perform computation increased from the early days of computers and up to the
present so was the knowledge how to utilize the hardware and software to perform computation.
Digital computer arithmetic emerged from that period in two ways: one as an aspect of logic
design and other as development of efficient algorithms to utilize the available hardware.

Given that numbers in a digital computer are represented as a string of zeroes and ones and that
hardware can perform only relatively simple and primitive set of Boolean operations, all of the
arithmetic operations performed are based on a hierarchy of operations that are built upon the
very simple ones.

What distinguishes computer arithmetic is its intrinsic relation to technology and the ways things
are designed and implemented in a digital computer. This comes from the fact that the value of a
particular way to compute, or a particular algorithm, is directly evaluated from the actual speed
with which this computation is performed. Therefore there is a very direct and strong relationship
between the technology in which digital logic is implemented to compute and the way the compu-
tation is structured. This relationship is one of the guiding principles in development of the com-
puter arithmetic.

The subject of Computer Arithmetic can be, for simpler treatment, divided into: Number Repre-
sentation, Basic Arithmetic operations (such as: addition, multiplication and division) and Evalu-
ation of Functions.

Number Representation

The only way to represent information in a digital computer is via a string of bits i.e. zeroes and
ones. The number of bits being used depends of the length of the computer word which is a quan-
tity of bits on which hardware is capable on operating (sometimes also a quantity that is brought
to the CPU from memory in a single access). The first question is what relationship to use in
establishing correspondence between those bits and a number. Second, we need to make sure that
certain properties that exist in the corresponding number system are satisfied and that they
directly correspond to the operations being performed in hardware over the taken string of bits.

This relationship is defined by the rule which associates one numerical value designated as X (in
the text we will use capital X for the numerical value) with the corresponding bit string designated
as x.

x = {xn-1,xn-2,......,x0}

 where :

In this case the associated word (the string of bits) is n bits long.

When for every value X exist one and only one corresponding bit string x, we define the number
system as non-redundant. If however, we could have more than one bit string x that represents the
same value X, the number system is redundant.

Most commonly we are using numbers represented in a weighted number system where a numeri-
cal value is associated to the bit string x according to the equation:

where:
w0 = 1

and

The value ri is an integer designated as radix and in a non-redundant number system it is an inte-
ger equal to the number of allowed values for xi. In general xi could consist of more than one bit.
Numerical value associated with x is designated as explicit value of x.
In conventional number systems the radix ri is the same positive integer for all the digit positions
xi and with the canonical set of digit values:

An example of weighted number system with a mixed-radix would be representation of time in
weeks, days, hours, minutes and seconds with a range for representing 100 weeks:

r = 10, 10, 7, 24, 60, 60

In digital computers the radixes encountered are: 2, 4, 10 and 16 with 2 being most commonly
used one.

The digit set xi can be redundant and non-redundant.
If the number of different values xi can assume is than we have non-redundant digit set.
Otherwise if we have redundant digit set. Use of the redundant digit set has its advan-
tages in efficient implementation of algorithms (multiplication and division in particular).

Other number representations of interest are: nonweighted number systems where the relative
position of the digit does affect the weight, so that the appropriate interchange of any two digits
will not change the value x. The best example of such number system is Residue Number System
(RNS).

xi 0 1,∈

x xi wi×
i 0=

n 1–

∑=

wi wi 1 ri 1–×–=

Σi 0 1 2 3.…ri 1–, , ,{ }for 0 i n 1–≤ ≤()=

nx r≤
nx r>

We also define explicit value xe and implicit value Xi of a number represented by a bit-string x.
The implicit value is the only value of the interest to the user while explicit value provide the most
direct interpretation of the bit string x. Mapping of the of the explicit value to the implicit value is
obtained by an arithmetic function which defines the number representation used. It is a task of
the arithmetic designer to devise algorithms which result in the correct implicit value of the result
for the operations on the operand digits representing the explicit values. In the other words the
arithmetic algorithm needs to satisfy the closure property.

The relationship between the implicit value and the explicit value is best illustrated by the table
taken from [1].

Representation of Signed Integers

The two most common representations of signed integers are Sign and Magnitude (SM) represen-
tation and True and Complement (TC) representation. While SM representation might be easier to
understand and convert to and from, it has it’s own problems. Therefore we will find TC represen-
tation to be more commonly used.

Sign and Magnitude Representation (SM)

In SM representation signed integer Xi is represented by sign bit xs and magnitude xm (xs, xm).
Usually 0 represents positive sign (+) and 1 represents negative sign (-). The magnitude of the

Table 1: The relationship between the implicit value and the explicit value

Implied Attributes: Radix Point,
Negative Number

Representation,Others

Expression for Implicit
value Xi as a function of

explicit value xe

Numerical
implicit
value Xi

(in decimal)

Integer, Magnitude Xi = xe 27

Integer, “Two’s Complement” Xi = - 25 + xe -5

Integer, “One’s Complement” Xi = - (25 - 1) + xe -4

Fraction, Magnitude Xi = - 2-5 xe 27/32

Fraction, “Two’s Complement” Xi = - 2-4 (2-5 + xe) -5/16

Fraction, “One’s Complement” Xi = - 2-4 (2-5 + 1 + xe) -4/16

number xm can be represented in any way choosen for the representation of positive integers. Dis-
advantage of SM representation is that two representations of zero exist, positive and negative
zero: xs=0, xm=0 and xs=1, xm=0.

True and Complement Representation (TC)

In TC representation there is no separate bit used to represent the sign. Mapping between the
explicit and implicit value is defined as:

The illustration of the TC mapping is given in Table 2.[2]

In this representation positive integers are represented in the True Form while negative are repre-
sented in the Complement Form.

With respect to how is the complementation constant C chosen we can further distinguish two
representations within the TC system.

Table 2: True and Complement Mapping

xe Xi

0 0

1 1

2 2

- -

- -

C/2 - 1 C/2 - 1

C/2 + 1 -(C/2 - 1)

- -

- -

C-2 -2

C-1 -1

C 0

Xi

xe

xe C–⎩
⎨
⎧

=
xe

C
2
----<

xe
C
2
---->

If the complementation constant is chosen to be equal to the range of possible values taken by xe,

in a conventional number system where than we have defined Range Com-
plement (RC) system. If on the other hand, complementation constant is chosen to be:
we have defined Diminished Radix Complement (DRC),(also known as Digit Complement (DC))
number system. Representations of the RC and DRC number representation systems are shown in
Table 3.

As can be seen from the Table 3. Radix Complement system provides for one unique representa-
tion of zero because the complementation constant C = rn falls outside the range. There are two
representations of zero in Diminished Radix Complement system, xe = 0 and rn - 1. The RC repre-
sentation is not symmetrical and it is not closed system under the change of sign operation. The
range for RC is: [,].
The DRC is symmetrical and has the range of: [,].

For the radix r=2 RC and DRC number representations are commonly known as Two’s Comple-
ment and One‘s Complement number representation systems. Those two representations are illus-

Table 3: Mapping of the explicit value xe into RC and DRC number representations

xe Xi (RC) Xi (DRC)

0 0 0

1 1 1

2 2 2

- - -

- - -

- - -

- - -

- - -

-2 -1

-1 0

C r
n

= 0 xe r
n

1–≤ ≤
C r

n
1–=

1
2
---r

n
1–

1
2
---r

n
1–

1
2
---r

n
1–

1
2
---r

n 1
2
---– r

n 1
2
---r

n
1–⎝ ⎠

⎛ ⎞–

r
n

2–

r
n

1–

1
2
---– r

n 1
2
---r

n
1–

1
2
---r

n
1–⎝ ⎠

⎛ ⎞–
1
2
---r

n
1–

trated by an example in the Table 4 for the range of values .

Table 4: Two‘s Complement and One‘s Complement representation

Two‘s
Complement

C=8
One‘s

Complement
C=7

Xi xe

Xi
2’s

complement
xe

Xi
1’s

complement

3 3 011 3 011

2 2 010 2 010

1 1 001 1 001

0 0 000 0 000

-0 0 000 7 111

-1 7 111 6 110

-2 6 110 5 101

-3 5 101 4 100

-4 4 100 3 -

4 Xi 3≤ ≤()–

Algorithms for Elementary Arithmetic Operations

The algorithms for the arithmetic operation are dependent on the number representation system
used. Therefore their implementation should be examined for each number representation system
separately given that the complexity of the algorithm, as well as it’s hardware implementation is
dependent on it.

Addition and Subtraction in Sign and Magnitude System

In SM number system addition/subtraction is performed on pairs (us,um) and (ws,wm) resulting in
a sum (ss,sm), where us and ws are sign bits and um and wm are magnitudes. The algorithm is rela-
tively complex because it requires comparisons of the signs and magnitudes as well. Extending
the addition algorithm in order to perform subtraction is a relatively easy because it only involves
change of the sign of the operand being subtracted, There fore we will consider only the addition
algorithm.

The algorithm can be described as:

if us = ws (signs are equal) then:

ss = us and sm = um + wm (the operation includes checking for the overflow)

if then:

if um > wm : sm = um - wm , ss = us

else: sm = wm - um , ss = ws

Addition and Subtraction in True and Complement System

Addition in TC system is relatively simple. It is sufficient to perform modulo addition of the
explicit values therefore:

se = (ue + we) mod C
Proof will be omitted.

In the RC number system this is equivalent to passing the operands through and adder and dis-
carding the carry-out of the most significant position of the adder, which is equivalent to perform-
ing the modulo addition (given that C=rn).

In the DRC (DC) number system complementation constant is C = rn - 1. Modulo addition in
this case is performed by subtracting rn and adding 1. It turns that this operation can be performed
by simply passing the operands through an adder and feeding carry out from the most significant
digit position into the carry-in at the least significant digit position. This is also called addition

us ws≠

with end-around-carry.

Subtracting two numbers is performed as simply changing the sign of the operand to be subtracted
presiding the addition operation.

Change of Sign Operation

The change of sign operation involves the following operation:

Wi = - Zi

 we = (- ze) = (- ze) mod C = C - Zi mod C = C - ze

which means that change of sign operation consists of subtracting the operand ze from the com-
plementation constant C.
In the DRC (DC) system complementation is performed by simply complementing each digit of
the operand Zi with respect to r - 1. In case of r=2 this result in simple inversion of bits.

In case of RC system the complementation is performed by complementing each digit with
respect to r - 1 and adding one to the result.

Multiplication Algorithm

Multiplication operation is performed in a variety of forms, in hardware and software. In the
beginning of the computer development any complex operation was usually programmed in soft-
ware or coded in the microcode of the machine. Some limited hardware assistance was provided.
Today it is more likely to find full hardware implementation of the multiplication for the reasons
of speed and reduced cost of hardware. However, in all of them multiplication shares the basic
algorithm with some adaptations and modifications to particular implementation and number sys-
tem used. For simplicity we will describe a basic multiplication algorithm which operates on pos-
itive n-bit long integers X and Y resulting in the product P which is 2n bit long:

This expression indicates that the multiplication process is performed by summing n terms of a
partial product: . This product indicates that the i-th term is obtained by simple arithmetic
left shift of X for the i positions and multiplication by the single digit yi. For the binary radix r=2,
yi is 0 or 1 and multiplication by the digit yi is very simple to perform. The addition of n terms can
be performed at once, by passing the partial products through a network of adders (which is the
case of full hardware multiplier) or sequentially, by passing the partial product through an adder n
times. The algorithm to perform multiplication of X and Y can be described as:

p(0)= 0

P XY X yir
i

i 0=

n 1–

∑× X yir
i×

i 0=

n 1–

∑= = =

X yir
i×

It can be easily proved that this recurrence results in p(n)=XY.

Various modifications of the multiplication algorithm exist, one of the most famous is “Modified
Booth Recoding Algorithm” described by Booth in 1951. This algorithm allows for the reduction
of the number of partial products, thus speeding up the multiplication process. Generally speak-
ing, Booth algorithm is a case of using the redundant number system with the radix higher than 2.

Division Algorithm

Division is more complex process to implement because unlike multiplication it involves guess-
ing of the digits of the quotient. Here, we will consider an algorithm for division of two positive
integers designated as dividend Y, divisor X and resulting in a quotient Q and an integer remainder
Z according to the relation given:

In this case dividend contains 2n integers and divisor has n digits in order to produce a quotient
with n digits.

The algorithm for division is given with the following recurence relationship [2]:

z(0)=Y

z(j+1)=rz(j) - XrnQn-1-j for j=0,.....,n-1

this recurrence relation yields:

z(n) = rn(Y - XQ)

Y = XQ + z(n)r-n

which defines division process with remainder Z = z(n)r-n.
The selection of the quotient digit is done by satisfying that at each step in the division
process. This selection is a crucial part of the algorithm and the best known are restoring and non-
restoring division algorithms. In the former one the value of the tentative partial remainder z(j) is
restored after the wrong guess is made of the quotient digit qj. In the later this correction is not
done in a separate step, but rather in the step following. The best known division algorithm is so
called SRT algorithm independently developed by: Sweeney, Robertson and Tocher. Algorithms
for higher radix were further developed by Robertson and his students, most notably Ercegovac.

p
j 1+ 1

r
--- p

j
r

n
Xyj+()forj=0,....,n-1=

Y XQ Z+=

0 Z X<≤

Floating Point Representation

Number represented as signed integers can only cover the range limited by the number of digits n
and choice of the radix r. For the choice of radix r and n digits used, the maximum positive integer
that can be represented is rn-1.
Often scientific computation requires the use of very small numbers as well as very large ones
represented with some required precision. To satisfy those needs of the scientific, or engineering
computation Floating Point FP format is used to represent the numbers which are represented as:

Where S is a sign bit (0,1), B is a selected base, Exp is exponent (which contains it’s own sign, or
is biased), Fract is a fraction of the number. Typical FP number represented in a 32 bit word is
shown:

Using this particular representation we can represent the range of the numbers from:

for the negative numbers and

for the range of positive numbers.
Different computer manufacturers have adopted their own standards for the floating point number
representation such as: IBM, DEC, Intel. This has led to an effort to introduce a standard for float-
ing point representation and computation resulting in IEEE Standard 754. More about floating
point computation and representation can be found in [3].

X S B
Exp+−× Fract×=

S Exp Fraction
0 1 8 9 31

1 2
24–

–() 2
127

X 0.5 2
128–×–≤ ≤×–

0.5 2
128–

X 1 2
24–

–()≤ ≤× 2
127×

References:

[1] A. Avizienis, “Digital Computer Arithmetic: A Unified Algorithmic Specification”, Sympo-
sium on Computers and Automata, Polytechnic Institute of Brooklyn, April 13-15, 1971.

[2] M. Ercegovac, “Digital Systems and Hardware/Firmware Algorithms”, Chapter 12: Arith-
metic Algorithms and Processors, John Wiley & Sons, 1985.

[3] S.Waser, M.Flynn, “Introduction to Arithmetic for Digital Systems Designers”, Holt, Rinehart
and Winston 1982.

To Probe Further:

For more information about specific arithmetic algorithms and their implementation
one can see: Kai Hwang, “Computer Arithmetic: Principles, Architecture and
Design”, John Wiley & Sons 1979. Also: E. Swartzlander, “Computer Arithmetic,
Volume I & II, IEEE Computer Society Press 1980, Los Alamitos, California . Pub-
lications in IEEE Transactions on Electronic Computers and Proceedings of the
Computer Arithmetic Symposiums by various authors, most notably by Milos Erce-
govac are very good source for detailed information on particular algorithm or
implementation.
A good coverage of the Floating Point Arithmetic could be found in book by
Hwang and further details in IEEE Standard for Binary Floating Point Arithmetic,
ANSI/IEEE Standard 754, 1985 and its discussion in IEEE Computer Magazine
vol.14, No.3, p.51-62.

Defining Terms:

An Algorithm is decomposition of the computation into subcomputations with an
associated precedence relation that determine the order in which these sub-compu-
tations are performed [2].

Number Representation System is a defined rule which associates one numerical
value xe with every valid bit string x.

Non-Redundant number system is the system where for each bit string there is one
and only one corresponding numerical value xe.

Redundant number system is the system in which the numeric value xe could be

represented by more than one bit string.

Explicit value xe is a value associated with the bit string according to the rule
defined by the number representation system being used.

Implicit value Xi is the value obtained by applying the arithmetic function defined
for the interpretation of the explicit value xe.

	Table 1: The relationship between the implicit value and the explicit value
	Table 2: True and Complement Mapping
	Table 3: Mapping of the explicit value xe into RC and DRC number representations
	Table 4: Two‘s Complement and One‘s Complement representation

