
CS61C L24 Review Pipeline © UC Regents 1

CS61C - Machine Structures

Lecture 24 - Review Pipelined Execution

November 29, 2000
David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L24 Review Pipeline © UC Regents 2

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Memory:
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register

CS61C L24 Review Pipeline © UC Regents 3

Pipelined Execution Representation

°Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

CS61C L24 Review Pipeline © UC Regents 4

Review: Datapath for MIPS

Stage 1 Stage 2 Stage 3Stage 4 Stage 5

°Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
L

UI$ Reg D$ Reg

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory5. Write
Back

CS61C L24 Review Pipeline © UC Regents 5

Problems for Computers

°Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (e.g.,
read instruction and data from memory)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (read and write same data)

CS61C L24 Review Pipeline © UC Regents 6

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 7

Structural Hazard #1: Single Memory (2/2)

°Solution:
• infeasible and inefficient to create
second main memory

• so simulate this by having two Level 1
Caches

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS61C L24 Review Pipeline © UC Regents 8

Structural Hazard #2: Registers (1/2)

Read and write registers simultaneously?

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 9

Structural Hazard #2: Registers (2/2)

°Solution:
• Build registers with multiple ports, so
can both read and write at the same time

°What if read and write same register?
• Design to that it writes in first half of
clock cycle, read in second half of clock
cycle

• Thus will read what is written, reading
the new contents

CS61C L24 Review Pipeline © UC Regents 10

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

°Consider the following sequence of
instructions

CS61C L24 Review Pipeline © UC Regents 11

Dependencies backwards in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 12

• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6
A

L
UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

“or” hazard solved by register hardware

CS61C L24 Review Pipeline © UC Regents 13

• Dependencies backwards in time are
hazards

Data Hazard: Loads (1/2)

sub $t3,$t0,$t2
A

L
UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

• Can’t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L24 Review Pipeline © UC Regents 14

• Hardware must insert no-op in pipeline
Data Hazard: Loads (2/2)

sub $t3,$t0,$t2
A

L
UI$ Reg D$ Regbub

ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

CS61C L24 Review Pipeline © UC Regents 15

Administrivia: Rest of 61C
•Rest of 61C slower pace
F 12/1 Review: Caches/TLB/VM; Section 7.5
M 12/4 Deadline to correct your grade record
W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation
Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 Pimintel)
°Final: Just bring pencils: leave home back
packs, cell phones, calculators
°Will check that notes are handwritten
°Got a final conflict? Email now for Beta

CS61C L24 Review Pipeline © UC Regents 16

Control Hazard: Branching (1/6)

°Suppose we put branch decision-
making hardware in ALU stage

• then two more instructions after the
branch will always be fetched, whether or
not the branch is taken

°Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L24 Review Pipeline © UC Regents 17

Control Hazard: Branching (2/6)

° Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

CS61C L24 Review Pipeline © UC Regents 18

Control Hazard: Branching (3/6)

°Optimization #1:
• move comparator up to Stage 2
• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L24 Review Pipeline © UC Regents 19

° Insert a single no-op (bubble)

Control Hazard: Branching (4/6)

Add

Beq

Load

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UReg D$ RegI$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

° Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L24 Review Pipeline © UC Regents 20

Forwarding and Moving Branch Decision

°Forwarding/bypassing currently affects
Execution stage:

• Instead of using value from register read in
Decode Stage, use value from ALU output
or Memory output

°Moving branch decision from Execution
Stage to Decode Stage means
forwarding /bypassing must be
replicated in Decode Stage for branches.
I.e., Code below must still work:

addiu $s1, $s1, -4
beq $s1, $s2, Exit

CS61C L24 Review Pipeline © UC Regents 21

Control Hazard: Branching (5/6)

°Optimization #2: Redefine branches
• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS61C L24 Review Pipeline © UC Regents 22

Control Hazard: Branching (6/6)

°Notes on Branch-Delay Slot
• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs

- compiler must be very smart in order to find
instructions to do this

- usually can find such an instruction at least
50% of the time

CS61C L24 Review Pipeline © UC Regents 23

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L24 Review Pipeline © UC Regents 24

Try “Peer-to-Peer” Instruction

°Given question, everyone has one
minute to pick an answer

°First raise hands to pick
°Then break into groups of 5, talk about
the solution for a few minutes

°Then vote again (each group all votes
together for the groups choice)

°discussion should lead to convergence
°Give the answer, and see if there are
questions

°Will try this twice today

CS61C L24 Review Pipeline © UC Regents 25

How long to execute?
°Assume delayed branch, 5 stage
pipeline, forwarding/bypassing,
interlock on unresolved load hazards
Loop: lw $t0, 0($s1)

addiu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

°How many clock cycles on average to
execute this code per loop iteration?
a)<= 5 b) 6 c) 7 d) 8 e) >=9

° (after 1000 iterations, so pipeline is full)

CS61C L24 Review Pipeline © UC Regents 26

How long to execute?
°Assume delayed branch, 5 stage
pipeline, forwarding/bypassing,
interlock on unresolved hazards

°Look at this code:
Loop: lw $t0, 0($s1)

addiu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

°How many clock cycles to execute this
code per loop iteration?
a)<= 5 b) 6 c) 7 d) 8 e) >=9

1.
2. (data hazard so stall)

3.
4.
5.
6.
7. (delayed branch so execute nop)

CS61C L24 Review Pipeline © UC Regents 27

Rewrite the loop to improve performance
°Rewrite this code to reduce clock cycles
per loop to as few as possible:
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

°How many clock cycles to execute your
revised code per loop iteration?
a) 4 b) 5 c) 6 d) 7

CS61C L24 Review Pipeline © UC Regents 28

Rewrite the loop to improve performance
°Rewrite this code to reduce clock cycles
per loop to as few as possible:
Loop: lw $t0, 0($s1)

addiu $s1, $s1, -4
addu $t0, $t0, $s2
bne $s1, $zero, Loop
sw $t0, +4($s1)

°How many clock cycles to execute your
revised code per loop iteration?
a) 4 b) 5 c) 6 d) 7

(no hazard since extra cycle)
1.

3.
4.
5.

2.

(modified sw to put past addiu)

CS61C L24 Review Pipeline © UC Regents 29

State of the Art: Pentium 4
°1 8KB Instruction cache, 1 8 KB Data
cache, 256 KB L2 cache on chip

°Clock cycle = 0.67 nanoseconds, or 1500
MHz clock rate (667 picoseconds, 1.5 GHz)

°HW translates from 80x86 to MIPS-like
micro-ops

°20 stage pipeline
°Superscalar: fetch, retire up to 3
instructions /clock cycle; Execution out-
of-order

°Faster memory bus: 400 MHz

CS61C L24 Review Pipeline © UC Regents 30

Things to Remember (1/2)
°Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L24 Review Pipeline © UC Regents 31

Things to Remember (2/2)

°Pipelining a Big Idea: widely used
concept

°What makes it less than perfect?
• Structural hazards: suppose we had
only one cache?
⇒ Need more HW resources

• Control hazards: need to worry about
branch instructions?
⇒ Delayed branch or branch prediction

• Data hazards: an instruction depends on
a previous instruction?

