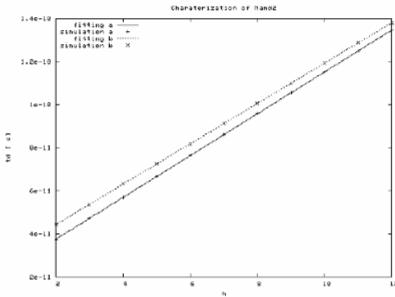
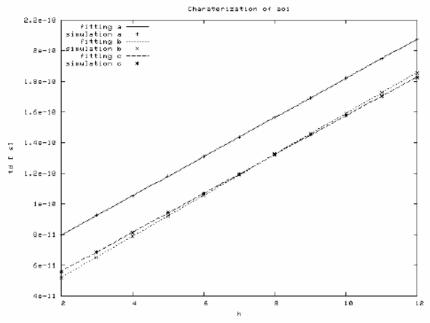
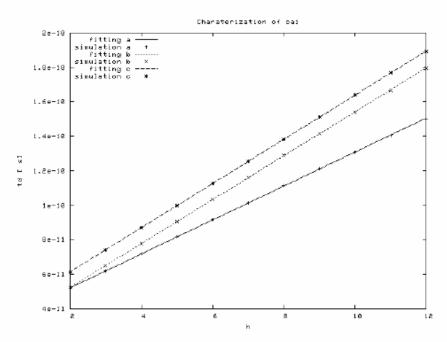

Homework 3 Solutions


Problem 1:

The characterization of required gates is summarized below.





**** AOI [a+(b*c)]! ****								
input	g[norm]	p[norm]	g[ps]	p[ps]				
a	1.5701	6.6493	12.7830	54.1340				
b	1.6424	3.1206	13.3710	25.4060				
С	1.5593	3.7645	12.6950	30.6480				

**** OAI [a*(b+c)]! ****							
input	g[norm]	p[norm]	g[ps]	p[ps]			
a	1.2089	3.9877	9.8419	32.4650			
b	1.5611	3.3255	12.7090	27.0740			
С	1.5732	4.4000	12.8080	35.8220			

Problem 2:

Using the gate characterization of problem 1, the optimal stage effort, fo can be computed.

$$f_o = (GBH)^{1/6} = [(g^3_{OAI} g^2_{AOI} g_{NAND2})(2^5)(64/1)]^{1/6} = 5.44$$

The corresponding gate sizes are (from the output to the input):

$$\begin{split} &C_{OAI_6} = b \ C_{out} \ g \ / \ f_o = (2)(64C_{in})(1.57) \ / \ 5.44 = 36.9C_{in} \\ &C_{AOI_5} = (2)(36.9C_{in})(1.66) \ / \ 5.44 = 22.5C_{in} \\ &C_{OAI_4} = (2)(22.5C_{in})(1.57) \ / \ 5.44 = 13.0C_{in} \\ &C_{AOI_3} = (2)(13.0C_{in})(1.66) \ / \ 5.44 = 7.93C_{in} \\ &C_{OAI_2} = (2)(7.93C_{in})(1.57) \ / \ 5.44 = 4.57C_{in} \\ &C_{NAND2\ 1} = (4.57C_{in})(1.19) \ / \ 5.44 = 1.0C_{in} \end{split}$$

The total delay of the path:

D =
$$(6 f_o + 3p_{OAI} + 2p_{AOI} + p_{NAND2}) \tau =$$

= $[6 (5.44) + 3 (4.40) + 2 (3.67) + 2.22] (8.14ps) = 451ps$

Problem 3:

(a) With LE sizing, it is observed that all nodes at the same stage level have equal loading. Therefore, the branching factor at each node can be easily computed as:

$$b = (g_{AOI/OAI} + g_{INV}) / g_{AOI/OAI}$$

The detail spreadsheet is attached below. The computation of G, B, H and gate sizes are straight-forward. The computation of f_opt will lead to circular recurrence. To avoid that, f_est is used for sizing. The solution is reached when $f_est = f_opt$. It is indicated by Error cell.

	NAND2	AOI	OAI	INV	tau
g	1.19	1.66	1.57	1	8.14
р	2.22	3.67	4.4	1.48	
	f_est	5.13	Error	0.000	
	Cin	1.00			_
					_
	Stage	Off-path	On-path	Branch	
			NAND2		
	1		1.00	1.00	
		INV	OAI		
	2	1.68	2.63	1.64	
		INV	AOI		
-	3	3.24	5.37	1.60	
		INV	OAI		
=	4	6.46	10.15	1.64	
		INV	AOI		
	5	12.47	20.70	1.60	
	Load	64	64		
		-			-
	G_calc	8.08			
	B_calc	6.88			
	H_calc	64			
:	fopt_calc	5.13			
:			-		
		(tau)	(ps)		
	Total Delay	44.02	358.37		

(b) Using the netlist (included in the end), SPICE simulation data is obtained. Note that Cin is set to $1\mu m$.

The worst-case delay goes through the bottom AOI of stage 5. The resulting delay is 353.5ps. It agrees very well to the estimation (358.4ps).