Homework 3 Solutions

Problem 1:

The characterization of required gates is summarized below.

$\star * * *$	OAI	$\left[\mathrm{a}^{\star}(\mathrm{b}+\mathrm{c})\right]!{ }^{* * * *}$		
input	$\mathrm{g}[$ norm $]$	$\mathrm{p}[$ norm $]$	$\mathrm{g}[\mathrm{ps}]$	$\mathrm{p}[\mathrm{ps}]$
a	1.2089	3.9877	9.8419	32.4650
b	1.5611	3.3255	12.7090	27.0740
c	1.5732	4.4000	12.8080	35.8220

Problem 2:

Using the gate characterization of problem 1, the optimal stage effort, f_{o} can be computed.

$$
\mathrm{f}_{\mathrm{o}}=(\mathrm{GBH})^{1 / 6}=\left[\left(\mathrm{g}^{3} \text { OAI } \mathrm{g}_{\text {AOI }}^{2} \mathrm{~g}_{\mathrm{NAND2}}\right)\left(2^{5}\right)(64 / 1)\right]^{1 / 6}=5.44
$$

The corresponding gate sizes are (from the output to the input):

$$
\begin{aligned}
& \mathrm{C}_{\text {OAI_6 }}=\mathrm{b}_{\text {out }} \mathrm{g} / \mathrm{f}_{\mathrm{o}}=(2)\left(64 \mathrm{C}_{\text {in }}\right)(1.57) / 5.44=36.9 \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\text {AOI_ } 5}=(2)\left(36.9 \mathrm{C}_{\text {in }}\right)(1.66) / 5.44=22.5 \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\text {OAI_4 }}=(2)\left(22.5 \mathrm{C}_{\text {in }}\right)(1.57) / 5.44=13.0 \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\mathrm{AOI}_{-} 3}=(2)\left(13.0 \mathrm{C}_{\text {in }}\right)(1.66) / 5.44=7.93 \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\text {OAI_ } 2}=(2)\left(7.93 \mathrm{C}_{\text {in }}\right)(1.57) / 5.44=4.57 \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\text {NAND2_1 }}=\left(4.57 \mathrm{C}_{\text {in }}\right)(1.19) / 5.44=1.0 \mathrm{C}_{\text {in }}
\end{aligned}
$$

The total delay of the path:

$$
\begin{aligned}
\mathrm{D} & =\left(6 \mathrm{f}_{\mathrm{o}}+3 \mathrm{p}_{\mathrm{OAI}}+2 \mathrm{p}_{\mathrm{AOI}}+\mathrm{p}_{\mathrm{NAND2} 2}\right) \tau= \\
& =[6(5.44)+3(4.40)+2(3.67)+2.22](8.14 \mathrm{ps})=451 \mathrm{ps}
\end{aligned}
$$

Problem 3:

(a) With LE sizing, it is observed that all nodes at the same stage level have equal loading. Therefore, the branching factor at each node can be easily computed as:

$$
\mathrm{b}=\left(\mathrm{g}_{\mathrm{AOIOAAI}}+\mathrm{g}_{\mathrm{INV}}\right) / \mathrm{g}_{\text {AOIIOAI }}
$$

The detail spreadsheet is attached below. The computation of G, B, H and gate sizes are straight-forward. The computation of f_opt will lead to circular recurrence. To avoid that, f_{-}est is used for sizing. The solution is reached when f_{-}est $=f$ _opt. It is indicated by Error cell.

(b) Using the netlist (included in the end), SPICE simulation data is obtained. Note that Cin is set to $1 \mu \mathrm{~m}$.

```
$DATA1 SOURCE='HSPICE' VERSION='U-2003.03-SP1
.TITLE '* takehome exam5'
\begin{tabular}{lllll} 
tdf & tdr & tda & q & \(e\) \\
\(3.505 e-10\) & \(3.535 e-10\) & \(3.520 e-10\) & \(-8.204 e-13\) & \(8.204 e-13\)
\end{tabular}
```

The worst-case delay goes through the bottom AOI of stage 5 . The resulting delay is 353.5 ps. It agrees very well to the estimation (358.4 ps).

