Lean Integration:
Achieving a Quantum Leap in Performance and Cost of Logic LSIs

Kazuo Yano, Yasuhiko Sasaki, Kunihito Rikino* and Koichi Seki

ULSI Research Center, Hitachi Central Research Laboratory, Kokubunji, Tokyo 185, Japan
*Hitachi Device Engineering, Kokubunji, Tokyo 185, Japan

ABSTRACT

Lean integration aims at a fundamental change in top-
down design by following the path from CISC to RISC. The
central idea is a lean cell, which has a tree-shaped nMOS
network with input ports placed at the end of an every branch of
the tree. A lean cell has flexibility of transistor-level circuit
design and full compatibility with conventional cell-based
design. An extremely simple lean-cell library with only 7 cells
and a synthesis tool called "Circuit Inventor,” which uses the
lean cells, are developed and they are compared with the
conventional "complex” CMOS library that has over 60 cells.
The results show that the area, the delay, and the power
dissipation are improved by lean integration and performance-
cost ratio is improved by a factor of three.

INTRODUCTION

Due to recent progress in top-down LSI design using logic
synthesis and HDL, the cell-library design is becoming a key
factor in achieving high performance ASICs and MPUs. This
is quite natural if we recall that the cell library corresponds to
the "instruction sets” if we compare the LSI design to the CPU
design. Recently even the evaluation method of cell-library
quality has been seriously considered [1]. A conventional
CMOS cell library usually has over 60 cells even if we limit
the cells to the combinational logic. We postulate that this
complex library is, compared to a "CISC," causing unnecessary
silicon and engineering costs, and a much leaner LSI design
method just like RISC should be conceived. In fact, creating
and maintaining the library is becoming such a serious burden
in LSI design that it is creating opportunities for companies to
provide library-design services.

In this work, we propose lean integration, a completely
new cell-library architecture which achieves a quantum leap in
performance and cost for logic LSIs. We investigate the impact
of this method by comparing overall figures with those of
CMOS.

LEAN CELL

The proposed lean-cell library is compared with a
conventional CMOS library in Table 1 and Fig. 1. The lean-
cell library has only 7 cells, which is far smaller than a
conventional library. The number of essential logic cells is
also less and it is only 3, Y1, Y2, Y3 (Fig. 1). The other 4
cells are simple inverters.

Another feature of lean cells is that they are defined by the
transistor network topology, a binary tree-shaped nMOS

26.5.1

IEEE 1994 CUSTOM INTEGRATED CIRCUITS CONFERENCE

network, rather than the Boolean function. The name "lean"
came from the fact that the situation is just like transistors are
directly connected to the cell ports of the cell. Although the cell
works as a multiplexer, the essential advantage of the lean cell
is that transistor-level circuit engineering is possible by using
this cell. In fact the transistors act as pass-transistors, or
source-grounded configuration, or source-follower configuration
depending on the input configuration. By contrast, the
conventional cell is defined by its Boolean function, which is
often chosen based on previous case studies, and the inner
circuit configuration is simply the means to meet the function
requirement.

The advantage of a lean cell is that it changes the function
by changing the configuration of the cell input ports (Fig. 3).
The drain port, the end of a branch of the tree, has the freedom
to be connected with the output of another cell, or a power
supply line, or a ground line. Different input configurations
correspond to different Boolean functions. Note that a very
complex logic function is achieved by a single cell. This
functionality came from that the transistor-level circuit
engineering already described.

Despite this transistor-level flexibility of the lean cell, it
is fully compatible with the framework of cell-based design.
As a result the delay of the cell can be defined as a function of
the load capacitance. This is made possible by the output
inverter, which separates the inputs from the output. The
feedback inverter and the pull-up pMOS, both consisting of
minimum-size MOSFETs, are added to avoid DC leakage
current in the CMOS inverter.

Because preparing and updating the lean-cell library
requires only small engineering cost, it is much easier to adopt
the state-of-the-art process technology even in a tight schedule
constraint. Therefore, the lean cell encourages concurrent
interaction between logic designers and process engineers. By
contrast, major revision of the conventional library, which
includes celi-layout data, logic-synthesizer data, and automatic
place and router data for more than 60 cells, requires much more
engineering effort and is sometimes unrealistic.

The area of a logic block is reduced by using lean cells.
The logic area is given by the following equation.

Logic area = Net count x —1

Nets per cell

where net count is mainly determined by the logic synthesis
algorithm, nets per cell (NPC) is mainly determined by the cell
architecture, and cell area is mainly determined by the

603

0-7803-1886-2/94 $3.00 © 1994 IEEE

technology level. This relation corresponds to the well-known
relation used in CPU design:

CPU time =

Instruction count x 1
Instructions per cycle

x Cycle time 10))

In Eq.(1) a logic function is considered to be a box which
reduces the number of nets, or nodes. The lean cell, which has
a large NPC without increasing the cell area, has a high
capability of reducing nets. Therefore the number of cells
required to build a logic block is smaller than that of the
CMOS, resulting in smaller block area. A similar argument
holds for power consumption, which leads to lower power
consumption.

The delay of the logic block is also reduced by the lean
cells. Very complex logic functions, which are not included in
conventional CMOS libraries, can be achieved by using only a
single lean cell. Therefore, the number of critical-path cells is
reduced. In addition, complex CMOS gates with large
parasitic capacitance are slow and have low current drive
capability. By contrast, parasitic capacitance of lean cells is
small and high current drive capability is possible due to the
output inverter.

The transition from a CMOS library to the lean-cell
library is just like the transition from CISC to RISC (Table.
2). A lean-cell library corresponds to the small instruction set
of RISCs. The instructions of the RISC were not convenient
for designers who were accustomed to the conventional
orthogonal instructions of CISCs. However, this has been
overcome by using an optimized compiler. A lean cell has a
similar characteristic. Because it is somewhat like directly
controlling the transistor behavior from outside of the cell,
logic designers, who are not familiar with the details of
individual circuit may become reluctant to deal with them.
However, logic synthesis based on lean cells solves this
problem. The high performance of RISCs is explained by the
large number of instructions per cycle. The high performance-
cost ratio of lean integration is explained by its larger nets per
cell. The simple instruction set of RISCs and the especially
good expectation of a relation between the performance and the
instruction sequence help the compiler to provide highly
efficient instructions. The lean cells also help the synthesizer
to provide area- and delay-effective net lists.

We also developed a logic synthesis tool called "Circuit
Inventor”, which fully utilizes the lean cell characteristics.
Circuit Inventor accepts an HDL description, creates net lists
based on lean cells and gives those data to the layout tool. It
expresses the required logic function in a compact form by
using a reduced BDD (Binary Decision Diagram) [2] and
conducts various optimizations. BDD has the same network
topology as lean cells and efficient mapping to cells is
possible. Automatic insertion of optimized inverters into
heavily-loaded nodes is possible. The details of the internal
algorithm of Circuit Inventor will be described elsewhere.

EXPERIMENTS AND DISCUSSION

The performance of lean cells is compared with that of
CMOS cells. Two types of benchmark logic are chosen. One
is a 4-b adder/subtracter, which represents arithmetic logic, and
the other is 7-input 4-output random logic, which is created by
assigning random numbers to the output of the truth table.
CMOS logic is synthesized by using a popular commercial
logic synthesis tool. 0.5-um process with 3-level metal is
assumed and poly-cell-type layout style is used. Metal 1 is
assigned to the intra-cell wiring, metal 2 is assigned to Y-
direction inter-cell wiring, and metal 3 is assigned to X-
direction inter-cell wiring. The cell input/output ports are
formed as through-holes between metal 1 and metal 2. The
critical path and the wiring load was extracted from the layout
data (Fig. 4) and the delay was obtained by using circuit
simulation. The power consumption was determined by using
circuit simulation of the total circuit.

The results are dramatic (Table. 3). The lean cells show
higher figures in all respects including area, delay, and power
consumption for either benchmark. If we define the
performance-cost ratio of a cell architecture by using the
product of the area, delay, and power, the lean cells has 34
times learger ratio.

The average NPC is actually boosted in the lean
integration from 2.8 to 4.7 (Table 4), which is the major
contributor of the area reduction. The delay per cell is smaller
in the lean cells, which contributes the delay reduction.

The dependence of the delay on supply-voltage is another
important aspect of the technology choice. The lean cells
become slower than CMOS cells at supply voltages below the
critical value, because of the influence of threshold voltage of
the nMOS. However, under practical conditions, where the
extrapolated threshold voltage is smaller than V¢¢/2.7, the
lean cells are always faster than the CMOS cells as shown in
Fig. §S.

CONCLUSIONS

Lean integration, which provides a quantum leap in
performance and cost of ASICs and MPUs is proposed. This
new design method goes far beyond marginal improvements and
reaches 3-4 times improvement in performance-cost ratio and
gives much higher competitiveness in "lean LSIs" and in
systems that use LSI chips.

ACKNOWLEDGEMENTS
The authors would like to thank E. Takeda, K. Uchiyama,
S. Narita, T. Noguchi, N. Kageyama, M. Tonomura of Hitachi
Central Research Laboratory for their valuable discussions.

(1] H. Harvey-Hom, "User-defined benchmarks help evaluate IC
physical libraries," Electronics Design, Oct., 80 (1993)

2] R. E. Bryant, "Graph-based algorithm for Boolean function
manipulation,” IEEE Computers, Vol-C35 (8), 677(1986)

26.5.2

604

Table 1 Cell lists of coventional and proposed lean-cell library

Conventional CMOS Library Lean-Cell Library Y1 Y2 Y3
{61 cells) (7 cells)
Y vl 1 L1 11
INVERTER | 4AND | 20R2AND Y1 —) N
INVERTER _P2: 4AND_P2 | 20R2AND_P2 Y2 4 L
INVERTER _P4! 20R ! 30R2AND Y3 HE IH
INVERTER P8} 20R_P2 { 30R2AND P2 INVERTER +H 1 S —+
2NAND ! 30R 1 2ANDx2720R INVERTER_P2
3NAND i 30R_P2 i 2ANDX2/20R_P2| INVERTER_P4
2NOR | 4OR ! 3ANDx2/20R INVERTER_P8 }
2NOR_P2 ! 40R_P2 ! 3ANDx2/20R_P2 out " e
3NOR i 2AND2NOR | 2AND»3/30R oul oul
3NOR_P2 i 2ANDx2/2NOR : 2ANDx3/30R_P2,
4NOR i 3AND/3NOR :ZANDxmgﬁ -
4NOR_P2 | 20R2NAND | 2ANDx2/30R |
OR™ 1 20RANAND | 20Rx2/2AND 15 9
2XOR P2 ¢ 30R2NAND ! 20Rx22AND_P2
2XNOR { 2AND20R _ + 2ANDx4/40R = 12
2XNOR P2 i 2AND/20R P2 | 2ANDx4/40R_P2
3AND20R™ ! :NAND »
2AND_P2 ' 3AND/20R P2 ! 8NAND]
JAND™ H zmmog” 1 8AND
3AND_P2 | 2ANDAOR_P2 | 8AND_P2 |
(_P2,_P4, P8 %2, x4, x8 powered cells) Fig. 1 Circuit diagram of lean cells and the output inverters
GND CN veg EN ¢ 3 D GND CDE
B :ETI B | C »——-IEI B l[‘1T
Input |BA 1' BN { CN { BN {
config- AN
N Ad A AG
uration | A 4 AM ANH AN(H
F F F
B DB
ABC ABC AB
Logic A
; L8, " diagram
Fig. 2 Convcntwml “fat” CMOS mtegrahon F
vs. lean integration F F

Fig. 3 Various logic fuctions of the lean cell "Y2"

Table 2 Transition from CMOS "fat" library to lean-cell library is compared to "CISC->RISC" transition

cisc : RISC “fat" CMOS lean
No. instructions | many instructions —-b fewer instructions No. cells many cells —> fewer cells
. . orthogonal Load/Store Cell self-contained
fstruction fuctior} - self-contained — architecture logic function | logic@NAND,NOR) ~— Select/Amplify
instructions
Instructions/cycle low(~1/3) —#= high(~1) Nets/cell low(~2.8) high(~4.7)
programming assemnbler ——-> high-level languag design schematic ——> HDL
Cin I Cout
CMOS L 40 L I ¥
I I 33.9MF 44567 .
SO9UF 29 m eogsE 20T s 0.7 4626F 930F
Cin Ib- 7
T
Lean Cells 0.35(F
J 15.946F
¥ T Py
21L.72F2334F 18.07F T 13.81fF
17.79fF

Fig. 4 synthesized critical path circuit of the 4-b adder/subtractor

26.5.3

605

Table 3 Summary of bencmark design

CMOS | Lean
4-bit ADD-SUB
Layout
- 1a
1t
: i il @
AREA 84288.6m2(1.0) 48589.2um?(0.55)
Delay Time 3.620ns (1.0) 2.691ns (0.74)
Tr.Count 828 (1.0) 545 (0.66)
Gate Width 7583um (1.0) 3091um (0.41)
Net Count 386 (1.0) 400 (1.04)
Power 6.08mW/MHz (1.0) 3.84mW/MHz (0.63)
Cell Count 133 (1.0) 85 (0.64)
Critical Path 12(1.0) 10 (0.83)
Layout
AREA 86786.04um*(1.0) 60819.44j1m*(0.70)
Delay Time 2.284ns (1.0) 1.590ns (0.70)
Tr.Count 800 (1.0) 644 (0.81)
Gate Width 7530um (1.0) 3741um (0.50)
Net Count 385 (1.0) 473 (1.23)
Power 5.87mW/MHz (1.0) 3.58mW/MHz (0.61)
Cell Count 136 (1.0) 98 (0.72)
Critical Path 10 (1.0) 10 (1.0)

Table 4 Comparison of figures per cell

4-bit ADD-SUB 7-in Random Logic _
CMOS Lean CMOS Lean z
Tr. Count /Cell 6.22 6.41 5.88 6.57 go
Gate Width / Cell 57um 36um 55um 38.2um S
Net Count / Cell 29 4.7 238 438 B
Area/ Cell 633um? | 57lum? | 638um? | 620um?2 g
Delay Time /Cell | 0.302ns 0.269ns 0.286ns 0.197ns o}
Average wire length)] (351pm) (133um) (334um) (206.5pm)
Power /Cell [45.7uW/MHz(45 24 W/MHz [43.2uW/MHz 36 5 W/MHz
606

26.5.4

&

~

—

7
1
1

-
¥
1

&
T
1

0 L L L 1

0 02 04 0.6 0.8
Threshold Voltage (Vo) (V)

Fig. 5 Crossover supply voltage of delay

between CMOS and lean cells

