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A Fanout Optimization Algorithm Based showed that there still exists an optimal solution in this search space
on the Effort Delay Model under a gain-based delay model. Fanout-free trees are trees in which a
buffer can drive at most one other buffer.
Peyman Rezvani and Massoud Pedram In this paper, an algorithm is presented that finds the fanout tree

topology and sizes of the buffers on the tree by decomposing the whole
problem into subproblems and solving each subproblem separately for

for ARea and Delay (LEOPARD), which relies on the availability of a (near) tehach Sllr;k Tthetlf()lu?]OTS to tt?le Sutc))protlj)le.mst.are tf}fen me;ged t(z_ form
continuous size buffer library. Based on the concept of logical effortin very € solution to the whole problem. Lur derivaton refies on the nouons

large scale integrated circuits, the proposed algorithm attempts to minimize  Of logical and electrical effort first proposed in [4].

the total buffer area under the required time and input capacitance con- Sutherland and Sproull [4] minimized the delay along any single path
straints by constructing the fanout tree topology and assigning the buffer py assigning equal delay budgets to each stage on that path. While this
sizes. More precisely, the proposed algorithm produces the optimum fanout 55rach was proven to minimize the delay, it did not necessarily result

tree solution if the fanout tree topology is restricted to a chain of buffers. . . L
For the case where a discrete size library of buffers is available, this paper in an optimal solution in terms of the total buffer area. Kung [3], on the

also presents a postprocessing (buffer merging) step that transforms the Other hand, solved the fanout-optimization problem to minimize the
continuous buffer-sizing solution to a discrete one while minimizing the inputcapacitance seen atthe source gate subject to timing constraints for
round-off error. Experimental results show that compared with previous  the sinks and without any consideration of the buffer area. In contrast,
approaches, both for continuous and discrete buffer libraries, LEOPARD 1o anproach presented in this paper minimizes the total buffer area
achieves a significant reduction in the total buffer area subject to the re- . . . . . .
quired time constraints. sgb!ect_ to capacnange constraint for the driver. This is an !mportant
distinction because it allows one to tradeoff the propagation delay
through the source driver and through the rest of the buffer tree to reduce
the total buffer area withouttoo high of anincrease in the overall delay.
The remainder of this paper is organized as follows. In Section II,
. INTRODUCTION the effort delay model that is used throughout this paper is explained.

ite often i | lei d SI) desi . _Section Il explains the details of the algorithm. In Section IV, experi-
Quite often Ina very large scale integrate (VLS €slgn, a slaNglanta| results are shown, and in Section V, we conclude the paper.
needs to be distributed to several destinations under a required timing

constraint at each destination. Furthermore, in practice, there may also
be a limitation on the load that can be driven by the source signal. Il. DELAY MODEL

Fanout optimization is the problem of finding a buffer-tree topology The delay model used in this paper is based on the concept of logical
and sizing the buffers in this topology so as to satisfy the constrainig,q electrical efforts presented in [4]. The effort-based model is basi-
Since these buffers must be picked from the sizes that are ava”aé&ﬂyareformulation of the conventiorRCmodel of CMOS gate delay.

in a given cell library, the more realistic problem is to find the op- Using the same terminology as in [4], the delay of a gate is defined
timum sizes for the buffers from the set of sizes available in the IibrartyJ be

This problem has been proved to be NP-complete [1]. While several

approaches exist for tackling the fanout optimization problem using

simplified delay models [9], [10], new techniques [12] have also been

proposed which use more accurate delay models or even taking inter- . . . . .
connect delay into account [11]. More recently, however, research ere is a tl_me unit that characterizes the semiconductor process
[3] have started to use continuous, as opposed to discrete, size libra &9 used. Itis only used to convert the unitless pafpof gh) to a

in the sense that the optimum fanout tree is calculated with the

Abstract—This paper presents a Logical Effort-based fanout OPtimizer

Index Terms—Buffer insertion, fanout optimization, gate sizing, logic de-
sign, logical effort.

d=1(p+gh) Q)

élg]é unit. For simplicity;r is not considered from now on. Parameter

sumption that buffers are available in all sizes. This greatly simplifid& (€ parasitic delay of the gate. The major contribution to the parasitic

the problem and allows the application of more powerful optimizatio?jlelay is the capacitance of the source/drain regions of the transistors

technigues. At the same time, the number of discrete sizes for invertd}at drive the output. Throughout this paper, is used as the parasitic

in a typical application-specified integrated circuit (ASIC) library ha§€lay for an inverter. Parametgis called theogical effortof the gate
increased to the extent that a “near-continuous inverter sizing” mod#ld depends only on the topology of the gate and the ability to produce
has become a valid and fairly accurate model. output current. The logical effort for an inverter is assumed to be 1

In [2], the authors simplified the fanout optimization problem b@nd, for other gates, calculated based on their internal topologies. The
restricting the search space to a subset of trees and showed thaf@gligal effort of a logic gate tells how much worse it is at producing
results still compare very favorably with the algorithms that consid®t/tput current than is an inverter, given that each of its inputs may have
a larger set of topologies. The authors used a dynamic programmfgly the same input capacitance as the inverter. Paraméspecified
approach to implicitly enumerate the set of so-called LT-trees and fiff €ach input pin of the gate) is called tekectrical effort(also called
the optimal LT-tree topology and sizing. An LT-tree is either a 2-levéain) of the gate and is defined to be the ratio of the capacitive load
buffer type or a chain of buffers with intermediate fanouts to sinks thelfiven by the gate to the input capacitance at the corresponding input
ends up to sinksor to a 2-level tree. Reference [3] also restricted #ig. The electrical effort describes how the electrical environment of
search space to a certain class of trees, called fanout-free trees, thedogic gate affects performance and how the size of the transistors in

the gate determines its load-driving capability.
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electrical Proof: Accordingto (3), areais a monotonically decreasing func-
h;  hy h, 4/@70’1 tion of all ;s (i = 1.....n). In other words, increasing arky will
—o—{>o—---- always resultin a buffer chain with smaller area. The delay, on the other
C; C /' C, $ G hand, is an increasing function of &lls according to (2). This means
. that by increasing any arbitrafy, area can be decreased and delay can
input cap be increased up to the point that delay becomes no larger than the given

constraintl r; therefore, the optimum buffer chain has detay/». m
Lemma 1: In the 1FO problem, for a fixed number of bufferan
the chain, the optimum buffer chain ha3h; equal to a constarTtz —
nPinv -
. A LGORITHM Proof: According to Theorem 1 and (2)

Fig. 1. Buffer chain.

7

In this section, the fanout optimization problem is stated as two sep-
arate problems, and each one is solved separately. MPinv + Z hi = Tk
One-sink fanout optimization (1FO) problem: Given the source =t
of a signal@ with maximum driving capability;,, and a sinkS with  The first term on the left hand sidep;... is constant for a givem.
capacitive load”r , required polarityP, and required arrival tim&r, Therefore,> " h; for the optimum buffer chain with buffers is also
find the optimum number of buffers for a buffer chain and the appre@onstant and equal to
priate sizing for them to minimize the total buffer area such that the N
F:Ielay fromQ toSisless th.a.n or eqqal Or, thg required polarity? Zh"? = TR — NPime. (4)
is achieved, and the capacitive load imposed)da no more thait;,, . o
Multiple-sink fanout optimization (mFQO) problem : Given the o
source of a signal) with maximum driving capability;, along with ~Hence, the claim is proved. . . u
a set ofm sinksS; each of which is assigned a triplet(,, Tr,, P) _1° find the optimum number of buffersthe maximum input capac-
whereC',, is the capacitive loadx, is the required arrival time, and itance constrain€’, < Ciy is used, wher€'s is the input capacitance
P, is the required polarity for the sinf;, find a fanout tree of buffers Of the firstbuffer in the chain being driven by the source signal@ad
and the appropriate sizing for them to minimize the total buffer aré®the given constraint on the input capacitance.
such that the timing constraint and the polarity required at each sink isT N input capacitance for the first buffer is computed as follows:
satisfied and the capacitive load imposed:pis no more thar;,, . ol
Note that the only difference between the two problems is the G = h: (5)
number of sinks to be driven. Area, the objective function in both of
these problems, is considered to be the summation of input capagit the electrical effort of the chain be defined as the product of elec-
tances of all the buffers, which is reasonable with the assumptionttital efforts of all the buffers, and let it be shown . Using the
continuous sizing for the gates. above equation, the input capacitance constraint can be restated as fol-
The rest of this section is organized as follows. The 1FO problel@ws:
is solved in Section IlI-A, and in Section IlI-B, the mFO problem is

. . C C
solved based on the solution derived for the 1FO problem. H= Hhi = FL > CL . (6)
1 /in
A. Buffer Chain Theorem 2: In the 1FO problem, for a fixed number of buffersn

For the 1FO problem, the solution is a chain of buffers between tfiee chain, the electrical effort of the buffer chdihachieves its max-
source and the sink (Fig. 1). The variables of the problem are definiggm value when alk;s are equal. _ _
to be the number of buffers and the electrical efforts of these buffers ~ Proof: According to Lemma 1, the summation of alls is con-

hi,hoy..oyhn. stant for any given number of buffers. Since the product of some vari-
Since the logical effort for an inverter is 1, the delay through th@bles with a constant summation is maximum when all those variables
buffer chain can be expressed in terms:and/; s as follows: are equal, alk;s have to be equal to maximize. ]
. The electrical effort of each buffer for the buffer chain that maxi-
delay= npiny + Z hi. @) mizesH , according to Theorem 2 and (4), would then be
= - -~ Tr — npiny .
The overall area, which is calculated as the summation of the input hi=h= n Visl...n. )

capacitances of all buffers on the buffer chain, may subsequently

e . — .
go, the maximum off , namedH as a function of: would be
expressed as

7 TR — NPinv "
. "o T <f) : ®)
area ;C, ; i (3) B
H is drawn in Fig. 2 fofTr = 14 andpiny = 0.6.
The goal would be to find: and allk;s to minimize area while both  According to Theorem 2, there is a maximum value thatcan
timing and input capacitance constraints are satisfied. That is achieve for any given buffer count. Therefore, the only buffer counts

Min area that are feasible are those for which the maximum value fiat
st:  delay< Tr achieves is not less than the ram/_Cin (6)_ and tho_se_correspond

C, < an_ to the buffer counts between the points of intersectio#/odnd line

C1/Cin (Fig. 2). As an example, for Case | in Fig. 2, there is no
Theorem 1: In the 1FO problem, delay through the optimum buffefeasible solution because there are no intersection pointdfalies
chainis exactly equaltothe specifiedrequiredtifiagi.e.,delay= Tr. below Cr /Ci, for all buffer counts. For Case lll, on the other hand,
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Fig. 4. Split/merge transformations.

0k : 5 and 6, the optimum sizing for the buffers on the chain is found by
0 5 10 solving a convex optimization problem as follows:
. — Min  Gh+ b o e
Fig. 2. Plot ofH = Max([] h;) versusn. st: hid...+hy < Tr—npiny (11)

algorithm OptN {Cy,, C, Tg, p)
1. begin

To—np; "
2. (npny) = solve((RTp'"vj =

ny=[n,] or [, ]+1 depending on polarity p;

4. n,=min (]_FzQJ, LTR/pva:'i
5  forn=n;,.., n;step?2

Cry.
Cin))

B by > SE

in

This is a minimization of a posynomial function with posynomial in-
equality constraints that can be easily solved in polynomial time [6].
Finally, among all of the solutions, the one with the minimum area is
selected as the optimum solution.

It is interesting to note that by taking the derivativefbfand setting
it equal to zero, its maximum value is found to be at

n = TR X )\(pinv) (12)

where

Min  area, \ Lambert( 2inx )
A(pinv) = Ac . (13)
6. {h} = st delay, <Tp Ppinv (Lambert(2isx) 4+ 1)
€ =Cy The function Lambeftv) is the solution to the nonlinear equation

7. return (best n, best{h});
8. end

re® = w. For further information about Lambert function, refer to
[5]. As pinv tends toward zero

p_linl A(pinv) = % (14)
and this corresponds to allocating the well-known electrical effoet of
there are two points of intersection and7io; therefore, the only to each buffer with the assumption gf.. = 0.
feasible buffer counts are betwegn andn.. Theorem 3: Algorithm Opt N finds the optimum solution for the

With these observations, algorithfipt V in Fig. 3 is proposed for 1FO problem.
finding the optimum number of buffers and their sizes. Proof: Since all of the feasible solutions are explicitly consid-
To find the optimum number of buffers, the lidg, /Ci, is inter- ~ered, the algorithm is guaranteed to find the optimum solution. m
sected with the grapH (line 2 of Fig. 3 and Case Ill in Fig. 2) which
results inny andnz. Note that

Fig. 3. AlgorithmOptN.

B. Buffer Tree

.= In this section, the more general case of the fanout-optimization
lim H = 1. (9) . . . S
n—0 problem is considered, where the source signal is driving more than

Therefore, there always exists an unless the lin€', /Ci, is passing  ©ON€ Sink. _ _
below unity, which means thét;, is less than or equal 6., in which Reference [3] introduced two transformations that can be performed

case, no buffers need to be used at all. On the other hand, there @2 fanout tree, namelyergingand splitting (Fig. 4). It is shown

ists an upper bound on the number of buffers because of the intrin@®'® that these transformations maintain the same area, delay, and
buffer delay. According to (4), for the electrical efforts of buffers tgapacitance. . . .

have a meaningful physical interpretatif — npiny has to be posi-  1heorem 4: The splimerge transformations applied to a fanout tree
tive, which means (line 4 of Fig. 3) preserve the input capacitance (thus, area) and the delay.

Proof: The proof for split transformation is as follows. Suppose
the electrical effort of the original buffer before splittingiisThus, the
delay through the buffer for both of the branche i$ pin, and the
input capacitance i&”; + C.)/h, which is also the area of the buffer.
Tr/pinv ON the other side. Therefore, the optimum buffer counlies  After splitting the original buffer to two buffers with equal electrical
between.; andn: (lines 3 and 4 of Fig. 3). efforts of i, the delay for both branches would still be+ pi,. and

There is a possibility that the lin€;, /C}, could intersect the graph the input capacitance would lig /h + C> + h, thus, the same input
where there is no integerbetween the points of intersection to satisfycapacitance and, hence, the same area. For merge transformation, one
the polarity constraint. This only happens when the line crosseH thecan easily verify the same provided that the electrical efforts of the
curve very close to the peak of the graph (Case Il in Fig. 2). In lindmiffers to be merged are equal. [ |

n< IR (10)

= Pinv

In short, the buffer count is limited b¥; on one side and by, and
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""" —[>0—_l_ Now that there exists a range for input capacitance for each buffer
C; l Gy count, it can be proven that area is a decreasing function of input ca-
pacitance in this range.
Cin Theorem 5: For a fixed number of buffers in a buffer chain, the area
""" —[>°——_|_ G cost is a decreasing function of input capacitancedfpK Ci, < C;.

Proof: Increasing input capacitanag,, for a branch will de-
crease the ratid'z /Ci, in the capacitive constraint of the optimiza-

tion problem in (11). Therefore, there either exists a better solution
LDO—DO— ----- —Do—_]_ with smaller area or, if not, the same solution with the same area is still
Cim ‘Iv‘ Cim achievable. Hence, increasing input capacitance will not increase area
and, therefore, area is a decreasing function of input capacitance and
claim is proven. [ ]
Fig. 5. Input capacitance allocation for a fanout-free buffer tree. Area versus input capacitance for some buffer count will, therefore,

look something like the graph shown in Fig. 6(a). As shown in Fig. 6(a),

Therefore, ifT"” is the optimal fanout tree with the proper sizing ofo feasible solution exists for input capacitances smaller €haand
buffers, it can be split to fanout-free treeconsisting of a set of buffer the area stays the same for input capacitances large€thdbifferent
chainsT, which has the same area &S, according to Theorem 4, buffer counts in the range [17r, /pinv] result in the graphs shown in
and also satisfies the timing and input capacitance constraints (Fig.[&y. 6(b). The minimum area over all buffer counts will, therefore, look
First, T will be found by using the optimal algorithm presented in Sedike the graph shown in Fig. 6(c). This piecewise nature of area versus
tion 1lI-A. The method used to transforff into 7 will be discussed input capacitance, which is due to different buffer counts, causes the
later. ICA problem to be NP-complete.

The 1FO problem was stated such that the maximum input capaciTheorem 6: ICA problem is NP-complete.
tance allowed was given. Therefore, before the mFO problem can be Proof: To perform the proof, the 0-1 Knapsack problem will be
broken down into 1FO problems, different portions(4f need to be reduced to the ICA problem. In the conventional version of the Knap-
allocated to each branch (Fig. 5). sack problem, each item has a size and a value and the objective is to

Input capacitance allocation (ICA) problem: Given a number of maximize the total value. In the ICA problem, however, the objective
sinks, each with a required time, capacitive load, and required polariyto minimize area. Therefore, we will consider the negative of area,
and a total budget on input capacitari¢g, allocate portions of’;,  rather than the area itself, so as to make the problem a maximization
to each branch, such that the total area is minimized while the givproblem rather than a minimization one [Fig. 7(a)].

constraints for all sinks are satisfied. _ The value versus size curve for some item of 0-1 Knapsack problem
In this section, itis first proven that the ICA problem is NP-completg shown in Fig. 7(b). The point about this graph is that it is not a con-
and then a heuristic is proposed for solving this problem. tinuous one. For sizes below, the value is zero, and for sizes greater

Intuitively speaking, the input capacitance allocation problem ifans;, the value is;. Assumings to be the accuracy of the machine,
similar to Knapsack problem, where objects of the Knapsack problafe graph can be modified to the one shown in Fig. 7(c) to make it a
correspond to the capacitance budgets of each branch and the igdatinuous one. Note that the graph may have any arbitrary behavior in
capacitance is limited by the input capacitance const@int which  the range between ands; + 6. This new graph is a special case of the
corresponds to the Knapsack volume. graph shown in Fig. 7(a), in which the curve has become linear. Since

Before it can be formally proven that this problem is NP-completghe 0-1 knapsack problem is NP-complete, the ICA problem is NP-hard
the behavior of area must be studied as a function of input capacitagegyell, otherwise one could formulate the 0-1 Knapsack problem as an
for each branch. The valid range for the buffer count on bransifil, |CA problem and solve it in polynomial time. Note that the NP-hard-
| Tk, /pinv]], according to (10). For each buffer countin this range, ness of ICA is because of the piecewise nature of the area versus input
there exists a maximum electrical effort for the buffer chain, accordirgpacitance curve and, that, in turn, is because area is represented by
to (8). Therefore, because of the capacitance constraint in (6), th@ierent functions for different buffer counts. Now that it has been

exists a minimum required input capacitance as follows: proven that ICA is NP-hard, it must be shown that the decision version
C, = Cu, (15) of ICA can be tested in polynomial time. This is obviously true be-
- (TR;’)" cause one can easily add up the input capacitances of each branch and

) ) ) ) compare it with the input capacitance bud@gt. This can be done in
where the denominator is the maximum value that can be achievedibar time meaning ICA is in NP, and since it was proven that ICA is

I1 %, according to (8). On the other hand, there exists a maximum PRIP_hard. therefore. the ICA problem is NP-complete. -

eficial input capacitance’;, for each buffer count which means that After proving that ICA is an NP-complete problem, this section pro-

allocating an mput capacitance larger than \.N'” not improve area  -oeds by proposing a heuristic method for allocating input capacitances

any further. This value can be calculated using the same optlmlzat%cg)neach branch
roblem as in (11) but with dropping the capacitance constraint. That '

P (1) PPINg P Letm denote the number of sinks and, thus, the number of branches.

is >
] Consider thekth branch(1l < & < m) and H, the maximum of
(0t = { Min area electrical effort of thekth branch, has its minimal value of 1iat = 0
st: delay, <Tr (lim. H whenn tends toward 0). On the other hadd,. cannot be any

larger thary(Tr, , pinv), the value ofHf ;(n,) whenn, is calculated

and then calculating’; as follows: from (12). According to (5), the maximum value B, corresponds to

C, = Cr, . the minimum value of”;... Therefore, the minimum acceptable input
[1% capacitance would be
Obviously, any input capacitance larger th@nwill not improve area
any further because allocatiii@; already results in the same solution Crk

as when the capacitance constraint is dropped. Cp = 1 (Th,  pine)” (16)
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Allocating any capacitance less thar, to any branch will make  The proposed heuristic is shown in Fig. 9. Line 4 finds such that
that branch infeasible. Hencep new positive variables:, for the desired ratio between them, as discussed above, is fulfilled.
k =1,...,m are introduced such that The slope for each branch is estimated as follows:

C‘ik = Qk’ + . (17) 1 Ymax), — Yminy, " (TRk:\pinv) -1
. .. . . . slope, = = .
This way, one can be sure that the minimum required capacitance is PC% Tmaxj, — Tminy, Tr, A(pinv) — 0

aIchate_d t(.) each bra_mch. The heurls_tl_c IS to find in such away that After finding the allocated input capacitancesjnstances of the 1FO
their ratio is proportional to the positive slope Bf graph in Fig. 2.

The motivation behind this heuristic is the fact that for two differerRrOblem Wi!l be ge_nerated thatcan be optimally solved by the algorithm
branches to have the same change in buffer count, the branch Vﬁ{ﬁsented in Section lll-A.

smaller slope would need a smaller chang€'iry Ci,,. When a branch ) )

is given a wider range of buffer counts to explore, a better solution wii- Merging Buffer Chains

likely be found. For an example, refer to Fig. 8. Branch 1 has a largerSo far, a continuous-sized buffer library has been assumed. In reality
slope compared to branch 2; therefore, a larger changg jtCi. for the ASIC library has a finite (and hopefully large) number of inverter
branch 1 is required to have the same buffer count range as branchi2es. So the solution needs to be mapped to one consistent with the
SinceC. is given and fixed for each branch, changifig/Cin corre- library. The main problem when rounding the inverter sizes is that it
sponds to changing th&;, allocated to that branch. may result in significant errors. To alleviate this problem, the merging

(18)
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N algorithm Merge (source)
‘,f’i \ 1. begin
J ) 2. B = all buffers driven by source;
C 'I-_‘I \'» 3. cluster buffers in B based on their electrical efforts;
> ‘,"Z :\(‘@‘ 4. foreach cluster:
@) / ‘\‘g; 5 repeat
% ! ?% 6 pick two buffers;
s ."' \? 7. merge if it improves the rounding error;
.'4" b < !‘\ a8 add merged buffer to the cluster;
f:.ff . ,.;ACL/Cm %, 9 until no more merging is possible;
L - e " 10. foreach buffer in every cluster:
M ~Brancy, » . M. Merge (buffer);
‘ 12. end

Fig. 8. Different slopes corresponding to different branches.

Fig. 10. Algorithmmerge

agorithm InCapilloc C;,, {C L {TpD

. TABLE |
1. begin

COMPARISONWITH SUTHERLAND

2. fork=1,.., m
C LEOPARD
3. Cp= —2 Circuit Sutherland -} L EOPARD | with 5% slack
= WTg, Py AREA
Delay Area Delay Area
4. {x}=s0olve:
1 6.97 233 232 732 183
" 2 6.86 19 19 7.20 15
> (Gt xp) = Cyy 3 15.05 458 455 1580 | 277
k=1 4 12.85 183 182 13.49 123
Vk =2,..,m 5 8.13 2 2 8.53 17
X, [u(TR,’pinv) - 1] X[TR,(}"(pinv)] 6 11.32 143 142 11';)9 2(7)
== 6.86 38 38 7.
X u(TR,g pinv) -1 TRlx(pinv) !
8 12.20 198 197 12.81 134
5 fork=1,.., m 9 13.79 245 245 14.48 149
6. Ci=Cptxy; 10 8.50 70 69 8.93 54
7. rewm {C;});
8 end

very first stage) is the same. As noted in the proof of Theorem 4, for the
merging transformation to produce the exact same area and delay, the
electrical efforts of the buffers to be merged must be equal. However,
because each branch of the fanout tree is optimized separately with re-
. . . . .. . spectto the corresponding sink, the electrical efforts of the buffers may
transformation, which is the opposite of the split transformation intrq; . necessarily be equal. Thus, a constaistdefined and two buffers
duced in Fig. 4, |s_used. . are merged if the difference between their electrical efforts is less than
To show how this works, recall Theorem 4. If the electrical efforts; ¢y ,a1 to- percent. In addition, two buffers are merged ifthe rounding
of the buffers on two branches are equal, one can merge them andyies, after merging the two is smaller than the summation of rounding
place them with a single buffer with the same electrical effort. Noig o5 of each buffer before the merge operation. Obviously, the effi-
that simply because the electrical eff_orts of the buffers are the SaBfncy of this approach is dependent on the order in which the buffers
one cannot conclude that the buffer sizes are also the same. AS shgyNse|ected to be merged. The approach presented here is to cluster the
in Fig. 4, the sizes of each of the buffers before merging@reh b ffers into groups of nearly equal electrical efforts and check for the
and C> /1, respectively, and the size of the buffer after merging ig,erging possibilities inside each group. Merging is performed starting
(C1 + C2)/h. Therefore, the size of the buffer after merging is equals yhe source of the signal, and proceeding toward the sinks, while at
to the summation of buffer sizes before merging. This fact can be USGd same time preserving the area so as not to increase the capacitive

to reduce the rounding error. As an example, consider a buffer size 0f § jmposed on the previous stage. The pseudocode for a recursive
0.35 that has to be mapped to a buffer size of 1 in the ASIC I'bra%erging algorithm is shown in Fig. 10.
Now, if two buffers of size 0.35 could be merged to a single buffer, the
size would be 0.7, and rounding to a buffer size of 1 would result in

smaller error.

Clearly, one has to be concerned about satisfying the required timélhree different sets of experiments were performed. In the first set,
and input capacitance constraints when performing this transformatitile LEOPARD algorithm of Section Il was compared with an im-
The merging should be performed in such a way that all timing coptementation of the Sutherland algorithm [4], which minimizes delay
straints are satisfied and the area (as well as the input capacitance offtheugh a path. The results are reported in Table I.

Fig. 9. AlgorithmInCapAlloc

IV. EXPERIMENTAL RESULTS
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TABLE 1 TABLE 1l
COMPARISONWITH KUNG COMPARISONWITH SIS
LEOPARD LEOPARD LEOPARD
K LEOPARD
Circuit | Sinks e +5% InCap cont. sizing discrete sizing SIS
InC A A InC Area
it i b s i Circuit | Sinks Zcap Zcap Area Area
1 5 53.28 916 906 55.94 739
2 68.34 1104 1093 71.76 907 1 12 0.093 0.093 3920 5281
3 6 ] 3418 | 462 457 3588 | 381 2 6 0032 0039 | 3902 | 4676
4 10 23641 1463 1451 24505 1231 088 . 0952
5 15345 1296 1284 161.12 1079 3 21 0065 0.08 %0
6 7 15640 1635 1619 164.22 1347 4 14 0.093 0.093 3920 5281
7 15 158.62 5358 5295 166.55 4210 5 21 0060 0.089 7220 11952
8 12 29.24 4342 4290 30.70 3376
9 9 | 2125 | 3868 3820 | 2231 | 295 6 12 0045 0.062 | 4814 | 7857
10 11 21.28 5808 5735 22.34 4461 7 16 0.087 0.110 6327 12315

Sutherland delay model. A very good match between the SIS delay and
For all of the experiments, the minimization problems within thgygica| effort delay model values was enforced.

LEOPARD algorithm were solved using the Matlab Optimization The fanout optimization programs of SIS were first used to perform
Toolbox v. 2.0. Furthermore;,,, was assumed to be 0.6. For each Cirfanout optimization. The results are reported in column 6 of Table IIl.
cuit, the capacitive load of the sink and the maximum capacitance th§fen, the delay and input capacitance resulting from SIS were used
the source can drive were given. First, the path delay was minimizgd constraints for LEOPARD. The results, assuming a continuous-size
using Sutherland’s method. Delay and area of minimum-delay buffgyitter library, are reported in column 3. Then, merging and mapping to
chain are reported in columns 2 and 3. Next, the resulting delay aj real buffers in the ASIC library were performed, and the results are
polarity were used as the constraints for the area minimization probl@@hwn in columns 4 and 5. As shown in the table, in case of continuous
in LEOPARD. In the 4th column, the minimum area generated ying the area is expressed in terms of the capacitances but for the dis-
LEOPARD, subject to the given constraints, is shown. As expectegete-sized buffers, itis the actual buffer area extracted from the library.

the area is almost the same because delay has been minimized gadyits show an average of 38% area improvement for LEOPARD.
hence, the timing constraint is so tight there will not be much room for

reducing area. However, when LEOPARD was given a 5% additional
slack, it can reduce area by an average of 29% as shown in columns 6 V. CONCLUSION

and 7. This shows how delay can be traded off for area to significantly_l_his paper presented an optimal algorithm for buffer chains to min-

reduce area using LEOPARD if a slight increase in delay can Pnelize area with the assumption of continuous sizing for the buffers.

afforded. the that merging or rounding 1S not applied d_urlng t.hLFhe algorithm finds the optimum number of buffers and the optimum
set of experiments and the area reported is the summation of |ngut : - S .
capacitances of all inverters 1zing for them by solving a posynomial minimization problem subject
Ip h ¢ o h Its LEOPARD to posynomial inequality constraints which can be easily and quickly
n(tj e_nr:exrt] seto lexp?rlm(_entsl, the resu s rfo:(n 's alqori sre %O'E'élved by a convex program solver. Based on this algorithm, a heuristic
pared with t g re§u ts ofanimp en.1entat|_0n 0 ung s algorithm [ _]'method was presented for the general case of buffer trees. Considering
For each circuit, a number of sinks with capacitive load, requirgfle fact that the number of discrete sizes for buffers in typical libraries

time, and required polarity are given. The number of sinks for each cjfas highly increased, the assumption of near-continuous buffer library
cuitis shown in column 2. Kung's algorithm was first used to minimizg, fairly accurate.

capacitive load on the source. The resulting capacitance and area are
reported in columns 3 and 4. The capacitance calculated by Kung's al-
gorithm was then used as the capacitive constraint for area optimization REFERENCES
in LE'OPAR‘I)D. _The resultlhg area is reported in column_5. l_:lnally, an [1] C.L. Berman, J. L. Carter, and K. F. Day, “The fanout problem: from
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1678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 12, DECEMBER 2003

[7] C.Mead and L. Conwayntroduction to VLSI Systems Reading, MA: these methods have been incorporated into commercial computer-aided
Addison Wesley, 1980. design (CAD) tools and used by industry.

[8] P. Rezvani, A. Ajami, M. Pedram, and H. Savoj, "LEOPARD: Alogical - 5e major obstacle is that these methods are based on constrained
effort-based fanout optimizer for area and delay,Piroc. Int. Conf.

Computer-Aided DesigmNov. 1999, pp. 516-519. nonlinear programming, a process known to be computationally inten-
[9] M. C. Golumbic, “Combinational merging/EEE Trans. Computvol. ~ sive (NP-hard) [12]. These methods are applicable only to small size
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the fanout problem,” ifProc. 27th Design Automation Copdune 1990, . . . . L
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struction and fanout optimization algorithm,” Rroc. Int. Conf. Com- ingly important, since more and more portions of the chip area are
puter-Aided DesignNov. 1998, pp. 625-630. ] dedicated to P/G routings, and the problemdRtrop and electro-
[12] P. Cocchini, M. Pedram, G. Piccinini, and M. Zamboni, “Fanout opti- . : :
it ! : migration deteriorate.
mization under a submicron transistor-level delay mod&EE Trans.

Computer-Aided Desigwvol. 9, pp. 339-349, Mar. 1990. In this paper, we present a new method capable of solving the P/G
[13] Y.Yu Nesterov and A. Nemirovskynterior point polynomial methods optimization problem orders of magnitude faster than the best known
in convex programming Philadelphia, PA: SIAM, 1994. method. Our method is inspired by a key observation made by Chowd-
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ry that if currents in wir ments are fix nd vol r
sertation, Univ. California, Berkeley, 1990, ury thatif currents e segments are fixed, and voltages are used as

variables, then the resulting optimization problem is convex [8]. How-
ever, instead of using the conjugate gradient method as in [8], we show
that the problem can be solved elegantly by a sequence of linear pro-
grams. We prove that there always exists a sequence of linear programs
that converge to the optimal solution of the original convex optimiza-
tion problem. Experimental results have demonstrated that usually a
few linear programs are required to reach the optimal solution. The
complexity of the proposed method is proportional to the complexity
of linear programming (which can be solved in polynomial time [5],
[12]). Therefore, our method is scalable, i.e., the CPU time increases
approximately polynomially with the size of a network. In practice,
we have observed that the new method is orders of magnitude faster
Abstract—This paper presents a new method of sizing the widths of than the conjugate gradient method with constantly better optimization
the power and ground routes in integrated circuits so that the chip area results.
required by the routes is minimized subject to electromigration andIR This paper is organized as follows. Section Il reviews some previous
voltage drop constraints. The basic idea is to transform the underlying o Section 11l describes the formulation of the P/G network opti-
constrained nonlinear programming problem into a sequence of linear o . . .
programs. Theoretically, we show that the sequence of linear programs m'zat_'on probl_em. T_he new metho_d Is Present?d In Secnor_‘ IV. Some
always converges to the optimum solution of the relaxed convex opti- Practical considerations are described in Section V. Experimental re-

mization problem. Experimental results demonstrate that the proposed sults from some large P/G networks are summarized in Section VI.
sequence-of-linear-program method is orders of magnitude faster than the gection VIl concludes the paper.

best-known method based on conjugate gradients with constantly better

solution qualities.

Reliability-Constrained Area Optimization of VLSI
Power/Ground Networks Via Sequence
of Linear Programmings

Sheldon X.-D. Tan, C.-J. Richard Shi, and Jyh-Chwen Lee

Index Terms—Circuit modeling, linear programming, power distribu- Il. PREVIOUS WORK
tion network, simulation and optimization.

It is generally assumed that the average current drawn by each
module is known and is modeled as an independent current source
. INTRODUCTION (we do not consider the temporal correlations of current sources). The
Power/ground (P/G) networks connect the P/G supplies in the circGRhstraints from reliability and design rules include: IR) voltage
modules to the P/G pads on a chip. An important problem in P/G néop constraints; 2) metal-migration constraints; 3) minimum width
work design is to use the minimum amount of chip area for wiring P/@Pnstraints; and 4) equal width constraints. The problem of deter-
networks, while avoiding potential reliability failures due to electromitining the widths of wire segments of a P/G network to minimize the
gration and excessiuR drops. Specifically, we are concerned with thaotal P/G routing area subject to all these constraints is a constrained
problem of P/G-network optimization where the topologies of P/G netonlinear optimization problem [6], [7].
works are assumed to be fixed, and only the widths of wire segmentdn the method of Chowdhury and Breuer [6], resistance values and
are to be determined. Several methods have been developed to sBf@gch currents are selected as independent variables. Both the objec-
this problem [6]-[9]. However, to the best of our knowledge, none dive function and théR voltage drop constraints become nonlinear. The
augmented Lagrangian method combined with the steepest descent al-
gorithm [1] is used to solve the resulting problem.

Manuscript received August 17, 2002; revised February 3, 2003. Some pre _ ; .
liminary results of this paper were presented at the ACM/IEEE 38th Desi Dutta and Marek-Sadowska [3] used only resistance values as vari

| . . .
Automation Conference, New Orleans, LA, June 1999. This paper was rec%rb-les' All of the constraints expressed in terms of nodal (terminal)
mended by Associate Editor M. Sarrafzadeh. voltages and branch currents, which have to be obtained by explicitly
S. X.-D. Tan is with the Department of Electrical Engineering, University ofolving an electrical network, become nonlinear. The feasible direction

California, Riverside, CA 92521 USA (e-mail: stan@ee.ucredu).  method [4] is employed to solve the nonlinear optimization problem.
C.-J. R. Shi is with the Department of Electrical Engineering, University o

Washington, Seattle, WA 98195 USA. t each iteration step, extra effort is required to solve the eIe_ctrlcaI _net-
J.-C. Lee is with Synopsys Inc., Mountain View, CA 94043 USA. work for nodal voltages and branch currents, as well as their gradients
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