CLOCK SYSTEM

KENNETH D. WAGNER
IBM Corp.

A well-designed clock system is a fun-
damental requirement in high-speed
computers. In this tutorial, the author
provides a framework for under-
standing system timing and then de-
scribes how the clock system executes
the timing specifications. The tutorial
examines clock generation and the
construction of clock-distribution net-
works, which are integral to any clock
system. Examples from contemporary
high-speed systems highlight several
common methods of clock generation,
distribution, and tuning. Tight control
of system clock skew is essential to an
effective clock system.

OCTOBER 1988

DESIGN

he careful design of clock systems is often neglected. Part

of the reason is that older, slower computers had higher

tolerances to variations in the clock signal and had less

exacting timing requirements. Today, however, as the
demand for high-speed computers grows, the design of their clock
systems should become a major concern not only in achieving
high performance, but also in reducing assembly and mainte-
nance costs.

A well-planned and well-built clock system is a prerequisite to
reliable long-term computer operation. Conversely, a badly de-
signed clock system can plague a computer throughout its life-
time, affecting its operation at any speed. To make such systems
function, components often have to be tuned individually at sev-
eral stages of manufacturing.

Despite these costs and performance penalties, timing design
is still overlooked in many systems. Although significant deci-
sions that must be made early in computer design include such
issues as clocking scheme and type of memory element, design-
ers seldom participate. Instead, system architects may simply re-
peat a previously successful set of choices, despite significant
changes in design specifications, technology, and environment.
Of course, these systems will eventually be functional, but they
will require much more maintenance and tuning—costs not al-
ways reflected back to the developers.

These attitudes prevail in part because timing design problems
are rarely reported in the literature. Also, design teams tend to
be secretive about their clock systems, either because they believe
they are doing something new or because they are doing nothing
new and are afraid to be associated with an older technique.
Either way, the result is a scarcity of information on how to avoid
timing problems through proper design of the clock system.

THE CLOCK SYSTEM

System timing specifications are executed using a clock system.
The clock system has two main functions, clock generation and
clock distribution. We use clock-generation circuitry to form
highly accurate timing signals, which we then use to synchronize

0740-7475/88/1000-09%1.00©1988 IEEE 9

10

Two types of
clocked bistable
elements are important
in contemporary
high-speed computers:
the latch and the

edge-triggered flip-flop.

CLOCK SYSTEM DESIGN

changes in the system state. These pulsed, synchronizing signals
are known as clocks. We use clock distribution to deliver the
clocks to their destinations at precisely specified instants. A net-
work, called the clock-distribution network, propagates clocks
formed by clock generation to clocked memory elements.

Most logic design texts, such as that by McCluskey (see “Addi-
tional Reading” at the end of this article), describe bistable ele-
synchronized by the clock signals. A system oscillator is the
source for these periodic signals. We generate and manipulate the
clock signals and precisely place clock pulses to meet the system
timing requirements. We may also tune the clocks to compensate
for inaccuracies in the clock pulsewidth or pulse position.

BISTABLE ELEMENTS

The focus of this article is on the timing design of systems that
use static bistable elements. The techniques described can also
be used in the timing design for other types of clocked memory
elements, such as arrays and dynamic latches, or for precharg-
ing circuitry.

Most logic design texts, such as that by McCluskey (see "Addi-
tional Reading" at the end of this article), describe bistable ele-
ments and their characteristics in great detail. Two types of
clocked bistable elements are important in contemporary high-
speed computers: the latch and the edge-triggered flip-flop. The
latch is transparent while its clock (control) input is active. By
transparent, we mean that its outputs reflect any of its data in-
puts. Edge-triggered elements, such as the D flip-flop, respond to
their data inputs only at either the rising or falling transition of
their clock input. They do not have the transparency property of
the latch.

We can describe the time-dependent behavior of a bistable ele-
ment using the following parameters:

¢ setup time, the minimum time that the data input of the bistable
element must be held stable before the active edge or latching
level of the clock pulse occurs

¢ hold time, the minimum time that the data input of the bistable
element must be held stable after the active edge or latching
level of the clock pulse disappears

¢ propagation delay, the time between a change on the clock or
data input of the bistable element and the corresponding
change on its output

For system operation to be correct, the setup time, hold time,
and minimum clock pulsewidth must be satisfied for each
bistable element. Signals whose propagation delay is so long that
it violates the setup time are called long-path signals. Signals
whose propagation delay is so short that it violates the hold time
are called short-path signals. Both conditions result in incorrect
data being stored.

IEEE DESIGN & TEST OF COMPUTERS

SYSTEM CLOCKING SCHEMES

System clocking is either single-phase, multiphase (usually
two-phase), or edge-triggered. Figure 1 illustrates. The dark rec-
tangles in the figure represent the interval during which a bistable
element samples its data input. Each scheme requires a min-
imum clock pulsewidth.

The most widely used scheme is multiphase clocking. The mul-
tiphase clocking scheme in Figure 1b is two-phase, nonoverlap-
ping. In this scheme, two distinct clock phases are distributed
within the system, and each bistable element receives one of these
two clocks. Systems that have adopted two-phase clocking in-
clude microprocessors such as the Intel 80x86 series and Mo-
torola MC68000 family, micro-mainframes such as the HP-9000,
and mainframes such as the IBM 3090 and the Univac 1100/90.

Figure 2 shows a finite-state machine, a machine that realizes
sequential logic functions, with each clocking scheme. (For more
on finite-state machines, see McCluskey’s text.) For simplicity,
primary I/O is not shown. The Amdahl 580 mainframe and Cray-
1 vector processor are single-phase latch machines, such as that
shown in Figure 2a. Modern high-speed microprocessors like the
Bellmac-32A are two-phase latch machines with a single-latch
design using nonoverlapping clock phases, such as that shown
in Figure 2b. Figure 2c shows a two-phase latch machine with a
double-latch design. This type of machine supports scan-path
testing, since it can use LSSD latch pairs, which are hazard-free
master-slave latches with a scan input port. Most contemporary
IBM products, including IBM 3090 mainframes, incorporate de-
sign for testability using this structure. Systems built with cata-
log parts are usually flip-flop machines, such as that shown in
Figure 2d, because clocked bistable elements commonly offered
in bipolar and CMOS MSI chips are edge-triggered.

THE CLOCK CYCLE

System designers characterize a computer’'s functionality in
terms of its clock cycle, also called its machine cycle. The aver-
age number of clock cycles required per machine instruction is a
measure of computer performance. Table 1 gives clock rates for
some well-known systems. The designer focuses on the clock
cycle because it determines the standard work interval for inter-
nal machine functions. The system state is the set of values in
system memory elements at the end of a clock cycle.

A clock cycle has the following properties:

—

. It consists of a sequence of one or more clock pulses.

2. The sequence of clocks generated in each cycle is identical to
every other cycle.

3. No partial clock sequences can occur: clocks can only stop and
start at cycle boundaries.

4. Each bistable element can be updated at most once per cycle.

These properties ensure that the transition to the next state of
the system is predictable and correct. This deterministic system

OCTOBER 1988

M el
(a)
Phasa 1 T -

L e
N

W,
()
Frr o rtr o FL

@

Figure 1. System clocking waveforms;
single-phase (a), two-phase (b}, and
edge-triggered (c). Wi=pulsewidth of
phase j and gy= interphase gap from
phase ito phasej; if gij > 0 = two-phase,
nonoverlapping, if gij < 0 = two-phase

overlapping.
()
logic
10
Clock —C1
(@)

(=)

Clock phase 1 Clock phase 2
(b)
()
logic
1]
[— 4] I—“ [l
Clock phase 1 Clock phasa 2
(c)
()
logic
10
(@ Clock 4]

Figure 2. General finite-state machine
structures: one-phase latch machine (a),
two-phase latch machine with single-
latch (b) and double latch (c), and flip-flop
machine {d).

11

In a conventional
computer system, one
source generates the
system clock signal.
Multiple processors
operating synchronously
may also share one signal.

Table 1. System clock rates.

CLOCK SYSTEM DESIGN

behavior will hold whether clock cycles occur at the system oper-
ating rate or one at a time. We can reproduce system behavior at
the operating rate by issuing single clock cycles or bursts of clock
cycles, which makes system debugging much simpler.

TIMING ANALYSIS

Programs for timing analysis are used routinely to verify system
timing. They can identify long or short paths, and the designer
can interact with them to get estimates of signal-path delays in
parts of the system. Designers can also run them after layout to

get more accurate results. The delay models used for system ele-
ments are validated by circuit simulation.

Single-phase systems and multiphase overlapping systems re-
quire more extensive timing analysis than multiphase nonover-
lapping and edge-triggered systems. The timing constraints of
single-phase and multiphase overlapping systems are two-sided,
bounded by both short paths and long paths. Figure 3 illustrates
these constraints in a simplified example, where setup time and
hold time are set to 0. The advantage of these systems is that they
operate more quickly than their nonoverlapping counterparts.

CLOCK SIGNALS

In a conventional computer system, one source generates the
system clock signal. Multiple processors operating synchronously
may also share one signal. We can manipulate this clock signal
in many ways before it reaches its destinations. We can divide it.
delay it, shape it, buffer it, and gate it. Clocked bistable elements,
either latches or flip-flops, use the signal that results from such
manipulations.

Technology

7 Nominal Clock

N;r;mal V(Erlockr 7

System Intro Date Class Period (ns) Frequency (MHz)
Cray-X-MP 1982 MSI ECL Vector processor 9.5 105.3
Cray-1S,-1M 1980 MSI ECL Vector processor 12.5 80.0
CDC Cyber 180/990 1985 ECL Mainframe 16.0 62.5
IBM 3090 1986 ECL Mainframe 18.5 54.1
Amdahl 58 1982 LSI ECL Mainframe 23.0 43.5
IBM 308X 1981 LSITTL Mainframe 24.5,26.0 40.8.38.5
Univac 1100/90 1984 LSI ECL Mainframe 30.0 33.3
MIPS-X 1987 VLSI CMOS Microprocessor 50.0 20.0
HP-900 1982 VLSI NMOS Micro-mainframe 55.6 18.0
Motorola 68020 1985 VLSI CMOS Microprocessor 60.0 16.7
Bellmac-32A 1982 VLSI CMOS Microprocessor 125.0 8.0

12

IEEE DESIGN & TEST OF COMPUTERS

Clock 1 ‘{@ Clock 2 —!@

—1in I:umlllingn'nnal m -
18 e w

Source Destination
latch X latch
Cycle 1 : Gy —

\lz L L
1. L8 data avaiable at 1

2.18 data must areive at LD after 1, (o be latched up in Cycte 1 —> short path).
3.18 data arrives at LD by t, (or reduces the path length availabie in Cycle2).

(a) 4.18 data must arrive at LD hefore t, (or be lalched up n Cycle 3 = long path).
Clock1 Clock2 Clock3
L{cl chl [

—{1m 10 Combinational 110

L8 LS logic 0 L

Source Source Dest Dest

Master Stave Master Slave

4 Cycle 1 - Cycle2 —

Clock 1 f

N@
Clock 2
L 3
Clock 3 J ~ \I—L

1.1,8 data availabile at t

2.1,8 data must arrive 1 L,D after t , (or be latched up in Cycle 1 = short path).

3. L,8 data must aprive at L, by, (or violate system cycle time requirement).
() 4.1,8 data must arpive at 1,0 hefore t (o be latched up in Cycie 3 —> long path).

Figure 3. Path requirements in a single-phase machine (a) and in a two-
phase overlapping latch machine with a double latch (b).

SIGNAL CHARACTERISTICS

Clocked sequential logic responds to several characteristics of
the clock signal: the clock period, the pulsewidth, and the lead-
ing-edge or trailing-edge position of the clock pulse. The clock pe-
riod is the interval before the signal pattern repeats. The ideal
clock signal for a bistable element is a sequence of regularly re-
peating pulses. Ideal pulses are rectangular with sufficient dura-
tion and amplitude to ensure the reliable operation of the bistable
element. The duration of the pulse, or pulsewidth (W), can be any
fraction of the clock period, but is usually less than or equal to
half of it. An accurate model of a real clock pulse includes actual
voltage levels and the shapes of the pulse edges.

OCTOBER 1988

For all systems, we must

correctly place the

leading- or trailing-edge

positions of the

distributed clock pulses to

ensure that bistable
elements switch at the
correct times.

13

14

Pulsewidth-
manipulation
elements have

three functions:
chop, shrink,
and stretch.

CLOCK SYSTEM DESIGN

For all systems, we must correctly place the leading- or trailing-
edge positions of the distributed clock pulses to ensure that
bistable elements switch at the correct times. Also. distributed
clock pulses must be wide enough or they will either be filtered
out in transmission or be unable to switch a bistable element be-
cause they lack the energy. Clock-manipulation elements reposi-
tion clock pulses and change their pulsewidths. They consist of
delay elements and elements that manipulate the pulsewidth.
Delay elements either delay a pulse, or. in a timing chain, pro-
duce a sequence of delayed pulses in response to a single pulse
input. Pulsewidth-manipulation elements require both delay ele-
ments and logic gates.

Delay elements are available as both analog and digital circuits
and are chosen according to the accuracy, flexibility, and range
of signal delay required. Analog delay elements vary from simple
printed or discrete wire interconnections to delay lines. Delay
lines, packaged in hybrid chips. consist of lumped LC elements
or distributed printed wire, which provides more accurate con-
trol. Digital delay elements include logic gates and counters. Logic
gates are relatively inaccurate because of their wide delay ranges.
while the time resolution of counters depends on their operating
frequency.

Some delay elements are programmable, providing a range of
delays. To select a particular delay, we can either connect to a
particular chip output pin or tap. or control the configuration
electronically by a multiplexer. A typical integrated delay line pro-
vides delays from 1 to 10 ns in 1-ns increments with a +0.5-ns
tolerance.

Pulsewidth-manipulation elements have three functions: chop.
shrink, and stretch. Figure 4b shows the effect of a chopper,
shrinker, and stretcher on a positive pulse. The effect of each
manipulation element differs for positive and negative clock
pulses. Thus, for each pulse polarity, only three of the four ele-
ments are useful. The other element has only a delay effect. Table
2 shows the values for the signal characteristics after chopping,
shrinking, and stretching. AND gates have delay da. OR gates
have delay do, inverters have delay di, delay elements have delay
D, and interconnections have no delay. The signal input is a pulse
of width Wwhose leading edge occurs at time t=0. For an element
to have an effect during the pulse, the sum of di and D must be
less than W.

Table 2. Effect of elements that manipulate the clock pulsewidth.

o ~ Positive Pulse ~ Negative Pulse
Element Leading Pulse- : Leading Pulse- g, ¢g
Edge. width TURCHO" Tpage widen | UneHO”

da D+di Chopper — — —

— — — do D+di Chopper
D+da W-D Shrinker da W+D Stretcher

da W+D Stretcher D+da W-D Shrinker

o ow»

IEEE DESIGN & TEST OF COMPUTERS

CLOCK GENERATION

We can derive all clock signals in a synchronous machine from
the system clock signal. The system clock is often a rectangular
pulse train with a 50% duty cycle, called a square wave. The cir-
cuit that generates the system clock is at the base of the clock-
distribution network. Its input is from either a voltage-controlled
oscillator (VCO), a crystal oscillator (XO), or a voltage-controlled
crystal oscillator (VCXO). All three sources produce a sinusoidal
(single-frequency) output, which is then clamped or divided to
generate the rectangular system clock. Excluding the quartz crys-
tal, the oscillator circuit is usually packaged on a single hybrid
IC.

A simple oscillator consists of an LC circuit, which we tune by
carefully selecting component values that allow the circuit to res-
onate at the desired frequency. When we need extreme frequency
stability over a wide temperature range, we use an XO. An XO
consists of a tuned circuit with an embedded quartz crystal in the
feedback loop. The crystal stabilizes the resonant frequency of the
oscillator circuit.

When we need a larger range of selectable frequencies, we use
either a VCO or a VCXO, because the XO has a very limited
tunable range. A DC voltage input controls both the VCO and
VCXO. The VCO could be an emitter-coupled multivibrator that
produces a square wave that we can tune over a 10:1 frequency
range up to 20 MHz. It could also be a capacitance-controlled
oscillator that produces a sine wave tunable over a 2:1 frequency
range up to microwave frequencies. If we modify the resonant
frequency of an XO. we get a tuning accuracy of a few hundred
parts per million in the VCXO. Thus, the XO has the most
frequency stability but the least tuning flexibility, the VCXO is in
the middle on both, and the VCO has the least frequency stabil-
ity and the most tuning flexibility. Frequency instability in the
oscillator can cause clock jitter, requiring us to assign a tolerance
to the clock-edge placement in timing analysis.

From the system clock we derive the full set of clocks and clock
phases that the system requires. We can generate multiphase
clocks (rom a square-wave input in many different ways. These
methods include one shots, clock choppers or shrinkers, shift-
register latches, and frequency dividers, depending on the preci-
sion and flexibility required. To prevent the overlap of adjacent
clock phases in a nonoverlapping clocking scheme, we use out-
put feedback or clock choppers. If there is uneven loading on each
clock phase, the relative pulse-edge positions may change, which
might cause some of the clock phases to overlap. Another cause
of overlap is the asymmetric rising and falling delays of contem-
porary devices.

Figure 5 shows two simplified circuits that create two-phase
clocks. The techniques are applicable to general multiphase clock
generation. The first circuit is used in the Univac 1100/90 for
four-phase clock generation. It requires a fast-running square-
wave clock input and a ring counter. Each stage of the ring
counter enables one clock phase, and the single clock chopper

OCTOBER 1988

From the system
clock we derive the
full set of clocks
and clock phases
that the system

requires.
Clock in
& | Clock out
1 P
fenentA delay=0 delay=d, delay=d,
e — LU
;m“[: & (—Clock out

st Hockou

(@)

Posttive puise

ptcock [|

o 0 W me

op .

(Eement A) ! 0+d

Shrink ! .
W

(ement C) i, ‘

Chop

(Bement b) —_!'mt:t_
(b) '

Figure 4. Elements that manipulate the
clock pulsewidth (a) and their effect on a
positive pulse (b).

15

For developing,
diagnosing, and
producing high-

speed systems, we ideally

16

want a wide-bandwidth
oscillator source that
is highly accurate.

CLOCK SYSTEM DESIGN

(1 MHI square wave)

Clock chopper
Clock n s | Pasel
(t/n MHz)
— Phase 2
T (M)
TR L2 I ey Phase B
i | (1l i)

Ring counter
()

Primary clock G1 —[—_—l_’_‘J_——'

Primary clock G2 __I ——L————r—

L {1 P— Phase 2 I

LLr +D—-__,_Iaa;—‘| : - —I

)

Figure 5. Creating a two-phase clock: selecting the pulses of a fast-run-
ning clock (a) and decoding the primary clocks ().

determines pulsewidth. The second circuit is used in the Bellmac-
32A. It generates two-phase clocks by decoding primary clock sig-
nals. We can use a gray-code counter to produce these primary
clocks, or we can use clock shaping. Clock shaping allows us to
generate clock phases from a system clock with fixed gaps be-
tween phases (forcing pulsewidths to vary with frequency).

CLOCK SEQUENCES

The three schemes for system clocking we have looked at—
single-phase, multiphase, and edge-triggered—determine the
basic data flow in latch and flip-flop machines during each clock
cycle. Complicating these requirements, though, are special
timing considerations. For example, subsystems may require
dfferent clock-arrival times so that they can communicate with
each other across interfaces with large delays. Also, paths within
subsystems may be too long for normal system timing. We can
accommodate irregular interfaces and paths without affecting the
clock cycle, although system timing becomes more complex. To
handle these cases, we generate a sequence of clocks during each
clock cycle and do not use normal data-path timing.

There are two timing design styles for handling the clock
sequences generated during a clock cycle: multiphase design and
multiclock design. Figure 6 illustrates. The dashed vertical lines
represent the boundaries of the clock cycle. The solid vertical lines
represent active clock edges. Time proceeds left to right across
each diagram and only paths originating from the earliest (left-
most) cycle are shown. In a normal multiphase (k-phase) design

IEEE DESIGN & TEST OF COMPUTERS

(Figure 6a), latches clocked by phase 1 feed latches clocked by
phase 2, and so on. Only the latch clocked on the last phase feeds
the phase-1 latch of the succeeding cycle. All data movement
proceeds phase ito phase i+1 modulo k.

In contrast, the multiclock design (Figure 6c¢) ensures that
bistable elements clocked at any time T;during one cycle feed only
bistable elements clocked in the succeeding cycle. For instance,
the three cycle n- 1 clocks are early, normal and late, which corre-
spond to the times To, T1 and Tz. Each can feed any of the To, T1
or Tz bistable elements in cycle n.

In the Amdahl 580, early clocks prevent long paths between the
remote channel frame and I/0 processor. If we clock the source
latch earlier or destination latch later than normal on a signal
path, the signal has a longer interval to propagate. Of course,
other signal paths between latches using normal clocks as
sources and early clocks as destinations will have a shorter than
normal time to propagate. Similarly, paths with latches using late
clocks as sources and normal clocks as destinations will also be
shorter.

Multiphase design and multiclock design can be mixed, as
shown in Figure 6d. The two-phase, double-latch configuration
has master latches, which feed their associated slaves in the same
cycle. Each master latch is clocked at one of three timings: To, T1
or Tz. The slave latch of each pair communicates with any of the
master latches in the next cycle. The IBM 3033, 308X, and 3090
mainframes use similar techniques.

Figures 6b, 6e, and 6f show examples of more complex paths.
Figure 6b shows the possibility of paths that skip adjacent phases
in a three-phase system. The Univac 1100/90 is an example of a
design with nonadjacent phase paths. Note that any phase-i-to-
phase-i path in the succeeding cycle would require identical an-
alysis to a single-phase system. Figures 6e and 6f show fractional
cycle and multicycle paths. Such paths are typical of a perfor-
mance-oriented design that uses two-phase latch machines.

Systems can also generate clocks that operate at several dis-
tinct cycle times, usually integer multiples of a base cycle time.
We can use clocks with lower rates for parts of the system that
do not need faster clocks. All clocking between subsystems must
be synchronous, or else we must use techniques to reduce
metastable behavior at subsystem interfaces.

THE SYSTEM CLOCK SOURCE

For developing, diagnosing, and producing high-speed systems,
we ideally want a wide-bandwidth, highly accurate oscillator
source. Most systems have both a crystal-oscillator source input
for production systems and a tunable source input for prototype

. Cycien-1 Cyclen

NERENEND

- B 0 0 0 0 G

. Gyclen1 . Cyclen

.
] 1 1
k
‘f—’:+:>_1_.l"
. ,
.

(b) ¢1 q)l ¢; ¢| ‘1)! (Dl

Cyclen-1 cynlen--

%FE—J»

© T, TTT

Cycle n-1 Cyclen
¢| o, ¢.

| erw ih

(@ T, LT

Cycle n-1 Cyclen

el HHTf

(e) LT LT

Cyclen-1,. Cyclen

e

(f) Tl TI T! Tl Il Il I

development and AC diagnosis. During development of a multi-
phase system, we may need to vary the pulsewidth of any clock
phase as well as to vary the relative pulse positions.

To detect marginal path-delay problems, the Amdahl 580
selects any one of three crystal oscillators as the clock source in
production machines, lengthening or shortening its clock cycle.

Figure 6. Placing clock pulses; three-
phase, adjacent paths (a); three-phase,
nonadjacent paths (b); multiclock (three
clocks) (c); multiclock, two-phase (d); mul-
ticlock, two-phase with fractional cycle
paths (e); and mudlticlock, two-phase with
multicycle paths (f).

OCTOBER 1988 17

The goal of clock
distribution is to
organize clocks so that

the delays from the source

18

of each clock or clock
phase to its bistable
elements are
identical.

CLOCK SYSTEM DESIGN

Operating modes are called normal, fast margin, and slow mar-
gin. These correspond to nominal clock frequency, 5% faster than
nominal, and 5% slower than nominal. An external oscillator
input is also available, bypassing the internal oscillators during
diagnosis and development.

To detect marginal timing problems in the IBM 3090, a two-
phase double-latch machine, designers made it possible to
lengthen the delay between the leading edge of the slave clock and
the trailing edge of the master latch clock for a selected system
region (see Figure 3b). In addition, lengthening the clock cycle al-
lows us to verify the slave-latch-to-slave-latch path delay.

We can choose between distributed or centralized clock sources
to control multiprocessors synchronously. In distributed control,
we let each processor or processor group in the complex use its
own local oscillator, with some form of enforced synchronization
between oscillators, like a phase-locked loop. Alternatively, in
centralized control, we designate one oscillator as the master
oscillator and have each system select this master through a
local /remote switch. The second method is simpler and is com-
mon in mainframe multiprocessor models such as the Amdahl
580, IBM 3033, and IBM 370/168. Although the IBM multi-
processors use a master oscillator, other standby oscillators are
phase-locked to the master oscillator and can be selected if it fails.

CLOCK DISTRIBUTION

The goal of clock distribution is to organize clocks so that the
delays from the source of each clock or clock phase to its bistable
elements (its destinations) are identical. In reality, however, no
matter how each clock path is constructed, any two clock paths
in the same machine or any two corresponding paths in different
machines will always have a delay difference. Every computer
operates in a different temperature, power supply, and radiation
environment, and duplicate components will differ in subtle ways
between computers. We must build in tolerance to these varia-
tions in any system timing design.

The most common approaches to ensure correct and reliable
machine timing are worst-case analysis and statistical analysis.
In worst-case analysis, we assume that all component parame-
ters lie within some range, and the cumulative worst-case effect
is still within the timing tolerance of the machine. In statistical
analysis, the intent is that most machines have tolerable timing
characteristics, and so we can rely on the cumulative statistical
variations of component parameters to remain within the timing
tolerance.

CLOCK SKEW

We specify system timing such that every system memory ele-
ment has an expected arrival time for the active edge of its clock
signal. Clock-edge inaccuracy is the difference between the ac-
tual and expected arrival time of this clock edge. For every pair
of system memory elements that communicate, we define path

IEEE DESIGN & TEST OF COMPUTERS

clock skew as the sum of the clock-edge inaccuracies of the pair’s
source and destination. System clock skew is the largest path
clock skew in the system. It is the value of the worst-case timing
inaccuracy among all paths. We can break it into interboard skew,
on-board interchip skew, and so on to the smallest timed compo-
nent.

The challenge to designers of clock-distribution networks is how
to control system clock skew so that it becomes an acceptably
small fraction of the system clock period. As a rule, most systems
cannot tolerate a clock skew of more than 10% of the system clock
period. If system clock skew goes beyond the design limit, system
behavior can be affected. Setup and hold times are missed, which
results in long and short paths. No scheme is immune from these
problems—even flip-flop machines can malfunction when clock
skew is present.

Clock-powering trees, such as the one in Figure 7, are a source
of clock skew. These trees are used to produce multiple copies of
the clock signal for distribution. Each gate of the tree has some
uncertainty associated with its delay, which is the difference be-
tween its best-case and worst-case delays. This difference is
called gate skew. Using a worst-case timing analysis, the clock
skew caused by a powering tree equals the arithmetic sum of the
gate (and interconnection) skews on the path from the tree root
to an output. In other words, clock skew has a cumulative effect
by tree level. We can minimize this clock skew by placing all gates
at a given tree level, or even the entire tree, on the same chip. In
addition, we can realize elements at each tree level by using elec-
trically matched devices and careful wiring.

DISTRIBUTION TECHNIQUES

We must efficiently distribute the rectangular clock pulses pro-
duced through the interaction of the oscillator and clock-gener-
ation circuitry. Critical to efficient distribution is the clock-net-
work layout—the physical placement of the network. It must
conform to design rules that ensure the integrity of the clock sig-
nal by minimizing electrical coupling, switching currents, and im-
pedance discontinuities. Other rules must prevent excessive
clock skew by equalizing path delays and maintaining the quali-
ty of the signal edge. Symmetry and balanced loading at many
levels of packaging. such as on the chip or on the board, are char-
acteristic of effective clock-network layouts. To achieve these
qualities, we can prearrange positions of the clock pins and make
clock paths as short as possible.

[t is sometimes difficult to coordinate the relative lengths of two
paths that originate from a common source. To match any two
paths or path segments in the clock system, we may need iden-
tical lengths of cable, wire, and interconnections; balanced load-
ing: and equal numbers of buffer gates. A technique called time-
domain reflectometry helps in this process by accurately
measuring the line delays of long cables. In this process, line sig-

OCTOBER 1988

Critical to efficient
distribution is the
clock-network
layout—the physical
placement of the
network.

Figure 7. Clock-powering tree.

Clock B1
Clock B2
Clock B3
Clock B4

19

=1

CLOCK SYSTEM DESIGN

In practice, large
systems distribute
a small number of

clock signals to each
board or module.

- —

Istand 3

Shape and buffer
\;' S

Subisiand A Fnhlslamln Subisland G

Figure 8. Logic islands.

20

nals are generated, and the signal reflections from line termina-
tions are detected in real time. Once we measure the delays. we
can equalize them by adjusting the lengths of the cables.

Duplicating the composition of two paths is not the only meth-
od of ensuring that two paths have equal delay. Another tech-
nique for matching different paths is called padding. In padding,
we add delay elements to one or both paths. The Cray-1 uses extra
interconnections and spare IC packages as padding. for example.

System designs often use a mixture of strategies. Designers
might use duplication in subsections of the clock-distribution
network with intermediate padding. Component screening also
ensures that the performance of each system component is ac-
ceptable. Despite these techniques, some system clock skew is
inevitable. However, as long as the timing analysis includes the
effect of clock skew and determines that the system will function
correctly, no other precautions are needed. If we detect that some
system paths are failing because of excessive clock skew, then
the clocks have to be tuned, or some part of the network has to
be redesigned.

High-speed systems use a hierarchical structure to distribute
clocks efficiently. A model for such a structure consists of logic
islands. A logic island is a partition in the system., like a printed
circuit board. Each island has a single point for clock entry. and
all islands have the same line delay from their clock source. out-
side the island, to their clock entry point. {Tunable delay lines
may precede the clock entry points.) We apply the same technique
recursively to the islands themselves and to the subislands. such
as chips, until we reach the individual clocked elements. Figure
8 is a diagram of the resulting structure, which resembles a star
with the clock source in the center and the islands on the periph-
ery. This model is remarkably similar to the physical organiza-
tion of the Cray-1. In systems that need multiphase clocks, clock
phases are generated at some convenient level in the hierarchy,
and clock entry points at subsequent levels have one input for
each clock phase.

In practice, large systems distribute a small number of clock
signals to each board or module. Either the leading- or trailing-
edge position of these clocks is very tightly controlled. When these
signals reach board or module distribution, phase-generation cir-
cuits and clock choppers produce the final, well-controlled
pulses. With this strategy, we can simplify clock distribution and
reduce clock skew because only one clock edge has to follow a
predetermined relationship to a reference clock. Using a single
edge also minimizes clock skew by exploiting common-mode ac-
tion, in which changes in power and temperature have similar ef-
fects across clock circuitry.

Clock choppers should be close to the bistable elements that
are the signal's final destination. Otherwise, asymmetric rising
and falling delays in the buffer gates downstream of the clock
chopper may shrink or stretch the pulse excessively. For instance,
in the IBM 3090's two-phase double-latch design, the leading
edge of the slave clock and trailing edge of the master clock are
formed from a common input clock edge. These edges control the

IEEE DESIGN & TEST OF COMPUTERS

critical system path. so they must have minimal skew. Exploit-
ing common-mode action in this way is also known as edge-track-
ing.

There are a number of simple guidelines for on-chip clock dis-
tribution to minimize asymmetries in clock-path delays and keep
clock edges sharp. We balance and limit on-chip clock loading,
using clock-powering trees, special buffers, symmetric layouts,
and careful buffer placement. In very high speed ICs, we can
select H-trees, which are symmetric, controlled-impedance clock-
distribution trees composed entirely of metal. We can also reduce
process-dependent clock skew in CMOS chips by adjusting clock-
buffer FET parameters appropriately.

DESIGN DECISIONS

One of the first decisions in the design of the clock-distribution
nctwork is where to put square-wave production—the function
that will produce the system clock—and where to put the func-
tion that will generate additional clocks. If a system requires
many different clocks, we should distribute only a small number
of clocks globally. and then generate the necessary clocks for each
system section locally by manipulating (including decoding) these
primary clocks.

In systems constructed from gate arrays or other semicustom
chips, we cannot manipulate device characteristics individually.
Most mainframes use gate arrays because the designers need to
trade off chip turnaround time with the large number of different
chips required. Both MOS and bipolar gate arrays have limited
fanout of clock driver circuits. Whole chips or portions of chips
are dedicated to controlling clock signals and buffering clock sig-
nals through powering trees (see Figure 7). The designers' intent
is to produce as many copies of the clock signal as necessary to
satisfy the loading requirements of the system. The more system
bistable elements and associated chips and the smaller the
amount of fanout allowed for each clock copy, the larger the num-
ber of required tree levels.

Figure 9 shows a simplified example of the clock-distribution
network in the Amdahl 580. In this mainframe, which is based
on bipolar gate arrays, the circuitry that produces the system
clock is on the same card as the oscillator. Special chips on the
console board then receive the system clock. These chips do clock
gating and powering to provide the primary clock input for all
boards. On the boards, tunable clock-distribution chips receive
the primary clock and do clock chopping; derive the early, nor-
mal. and late clocks; and power these clocks sufficiently to satisfy
loading requirements. The Amdahl 580 uses two ECL LSI clock-
distribution chips to drive about 118 ECL LSI logic chips and
static RAMs on each of its boards.

Custom systems and those constructed from catalog parts also
use separate clock buffer chips when clock signals must drive
large capacitive loads. Dedicated chips produce the clock copies
that the system needs. Buffers on these chips must supply large

OCTOBER 1988

Most mainframes use
gate arrays because
designers need to
trade off chip
turnaround time
with the large
number of different
chips required.

21

22

To reduce clock loading
and allow for local
clock gating, we can
provide groups of
bistable elements

with their own

small, local buffers.

CLOCK SYSTEM DESIGN

Chip 1 Clock in —
Clock-distribution _lm:cnm
Board1| ChiD
Clockin| | Shaping and

" RAM 1 Write

e[e gy

)

T— Clocks

+— Normal
—— clocks

Late

(c)

Figure 9. Clock-distribution network with system clock gating: system-
wide clock distribution {a), board-clock distribution (b). and clock-distribu-
tion chip (c).

currents, and accordingly, each buffer occupies a large area of
each buffer chip. Buffer chips in the HP-9000 also generate clock
phases.

In MOS custom chips or chip sets like the MC68000, we can
produce clock phases on the chip and then buffer them immedi-
ately to provide adequate fanout. Most MOS single-chip systems
use a single or cascaded clock buffer as a source for each dis-
tributed clock phase. Each buffer drives a very wide metal line
(large load). The line composition and dimensions minimize the
clock signal’s power loss and voltage drop, while maximizing the
speed of signal propagation. The wide metal line branches into
groups of narrower metal lines which themselves may branch off,
and so on. Nonmetal segments with a higher resistance, like pol-
ysilicon, should be avoided in clock-distribution lines. The dis-
tortion of the clock signal increases when it is propagated across
such impedance mismatches. In these regions, clock phases may
overlap and violate system timing constraints.

IEEE DESIGN & TEST OF COMPUTERS

In single-level metal processes, power distribution has priority
on the single metal layer available. Clock lines forced to cross the
power lines cannot be run in metal. In the CMOS Bellmac-32A,
for example, designers ran clock lines that crossed the power bus
in a low-resistance silicide, and they kept the number of cross-
overs to a minimum. To reach any clock load, they perform the
same number of crossovers, which equalizes all the resulting path
delays. In addition, they provided buffers at the crossovers to min-
imize these delays. In spite of the Bellmac 32-A’s success, how-
ever, multilevel metal processes are a prerequisite to very high
speed systems with low clock skew.

CLOCK GATING

Selectively deactivating the clock signal is called clock gating.
Designers can use one of two types of clock gating, depending on
the application. Local clock gating is a convenient way to imple-
ment many sequential circuits by locally deactivating the clock
to a set of bistable elements, such as a register. To reduce clock
loading and allow for local clock gating, we can provide groups of
bistable elements with their own small, local buffers. The drive
capabilities and numbers of on-chip clock buffers can be matched
to the loading on their outputs. In system clock gating, the clock
to an entire subsystem is deactivated. Figure 9a illustrates. In the
Amdahl 580 and HP-3000, system-clock gating is done at the
board level, while the Amdahl 470 does clock gating on the oscil-
lator card. Gating signals must be valid through the entire active
clock interval to prevent glitches on the gated clock line that could
be sensed as valid clock pulses.

System clock gating is a tool for analyzing errors and recover-
ing from them. It allows us to test the machine in a determinis-
tic fashion by ensuring that a predetermined minimum number
of clock cycles occurs after some machine stop condition. This
type of testing makes it easier to isolate faults. For example, in
the IBM 308X, the operator console deactivates the channel sub-
system and logs out its contents through scan-out. It then scans
in to reset the failed section. Amdahl 580 mainframes have sep-
arate console clocks, instruction and execution unit clocks, and
1/0 processor clocks, all of which are separately gated versions
of a common, ungated system clock (also called a free-running
clock).

CLOCK TUNING

High-speed computer systems with multiple boards and many
chips on each board often require clock tuning after assembly.
Clock tuning is calibrating the signals of the clock-distribution
network. Some designers manage to avoid clock tuning by care-
fully designing and routing the clock network. Clock tuning dur-
ing assembly and in the field is an expensive process, both in time
and in the cost of the technical expertise. Because of this, design-
ers must minimize the number of clock-tuning operations.

OCTOBER 1988

Some designers manage
to avoid clock tuning
by carefully designing
and routing the

clock network.

23

Tuning proceeds down
the clock-distribution
tree from clock source

towards the clock
destination.

(O Glock thivider/utfer— Observation peint 0
O Delay element
Tuning defay-

Delay in clock-waveform
O manipulation + cable delay o
on-hoard imut
On-board clock-control chip
Toning delay-

Tune-point fevel 2
Clock-control chip
O clock gating + clack-chopping
telay

Clock-tistribution chip
Tuning defay-
{Tume-point level 3

() Glock-distribution chip
Clock-powering delay

Bistabie-element
clock-input delay

Figure 10. Tune points.

24

CLOCK SYSTEM DESIGN

We can determine how much clock tuning is needed by com-
paring clock signals probed at specified observation points. Mod-
ification of delays in the clock-distribution path then compen-
sates for any significant inaccuracy in the clock-edge position or
pulsewidth. Tuning can be manual, automatic, adaptively auto-
matic, or a combination.

REFERENCE CLOCKS

To specify the placement of clock edges in a system, we desig-
nate one or more of the system’s clocks as reference clocks. We
use transitions of these timing references, or reference-clock
edges, for comparison with other clock edges. We can specify the
arrival time of a clock signal at any particular point in the clock-
distribution network relative to these reference clocks.

TUNE POINTS

Tuning proceeds down the clock-distribution tree from clock
source towards the clock destination. By tuning in this direction,
we have the fewest number of tuning operations to calibrate the
system because there is no backtracking. We can tune large com-
ponents, such as printed circuit boards, separately to reduce the
tuning requirements of the fully assembled system.

Tune points are the observation points in the clock-distribution
tree where we can change the delay. Tuning methods to reposi-
tion clock edges include modifying wire lengths, selecting differ-
ent taps in delay lines, or selecting one delay element from a set
by controlling a multiplexer. We can tune clock choppers by ad-
justing their internal delay elements to control pulsewidth as well.

A tune-point hierarchy is embedded within the clock-distribu-
tion network. Figure 10 shows how we can use a tree structure
to model this hierarchy. The level of the tune point in the tree is
referred to as the depth in the tune-point hierarchy—the deeper
the tune point, the farther away it is from the system oscillator.
Chip or module primary I/0 are usually the deepest accessible
tune points.

Designing accessible and effective tune points may be difficult
and their tuning resolution and range may be limited. One ap-

Table 3. Sample clock-specification plan; all clock times are in nanosec-
onds.

Obsefvartri;aanoint

Observation Tune- Tune- Tune- Tune-

Parameters Point Point Point Point Point
Level O Levell Level2 Level3 Level4

Local reference
clock edge 0 +3.0 +7.0 +13.0 +20.0
Local
tolerance — +0.5 +0.5 +0.5 +0.5
Effective clock
arrival time (0]

3.0£0.5 +7.0£1.0 +13.0£1.5 +20.0£2.0

IEEE DESIGN & TEST OF COMPUTERS

proach to the problem is to determine the worst-case delay in a
clock path and pad other clock paths to match this delay. For in-
stance, in subsections of the clock-distribution network, one path
may be significantly longer than all others and not have any tune
points. By adding delay elements at tune points, we can pad all
other comparable paths, either to have the same or shorter delay,
which is fixed by design. A sophisticated physical design system
can automatically design in this type of tuning by adding wire
and capacitive elements as needed.

System timing is based on a clock-specification plan. The plan
details the allowable ranges for clocks at each tune point, rela-
tive to a reference clock. We need to place tune points in such a
way that the sum of the clock skew at the deepest tune point plus
the additional skew for the signal to reach bistable elements be-
yond that tune point does not exceed the acceptable limit on sys-
tem clock skew. Table 3 shows a sample clock-specification plan
for Figure 10. The uncertainty is 0.5 ns for each of 13 required
tuning operations. In this plan, system clock skew equals 3.0 ns
plus the maximum of the clock skews on the paths between the
12 tune points at Level 3 and the bistable elements that their
clocks control.

TUNING SCHEMES

Tuning schemes vary in sophistication. Manual tuning by a
trained technician using an oscilloscope is common. The techni-
cian calibrates the tune points sequentially, starting from the one
closest to the system clock source. We can provide extra obser-
vation points for clock tuning by distributing supplementary
clock signals for use as precise reference clocks. No powering
trees or other skew-increasing elements are allowed in the signal
paths of these clocks, so they have little or no need for tuning
themselves. We can thus use them safely and tune all other clock
signals relative to the these references. This strategy increases
tuning accuracy and decreases the number of tune points in the
system.

Knowing the clock signal internal to the chip is often helpful in
tuning. For MOS systems with multiple chips, on-chip clock
buffering creates uncertain delays, so we must observe a repre-
sentative internal clock signal. We can use this internal reference
clock, which is output at a chip pin, as both a functional clock
signal (for small loads), and as a reference to be compared with
the corresponding references of other chips. We can then use the
relative edge positions of the internal reference clocks to guide
tuning,.

In the clock-tuning schemes of the ETA 10 supercomputer and
IBM 4341, designers provided two separate tuning resolutions,
or tuning levels: rough tuning and fine tuning. Fine tuning is re-
quired for minute adjustments deep in the clock tree, while rough
tuning provides the coarse adjustment earlier in the distribution
and (in the ETA machine) before the system is immersed in
coolant.

OCTOBER 1988

We can provide extra
observation points
for clock tuning

by distributing
supplementary clock
signals for use as
precise reference
clocks.

25

Untuned systems
—designed with
attention to component
variations and to
equalizing wire lengths
and clock loading
—eventually proved less
expensive and

entirely adequate.

26

CLOCK SYSTEM DESIGN

A typical automatic tuning technique, devised for the discon-
tinued STC CMOS mainframe, uses clock-distribution chips with
many degrees of time-shifted clocks available through a large
crossbar switch. In this case, a logic chip has four internal refer-
ence clocks. Each internal reference clock is a representative in-
ternal clock produced after chopping and powering one of four
chip clock inputs. These representative clocks are compared with
a precise reference clock. The correct skew-minimizing clock for
each chip clock’s primary input is then selected automatically
from the crossbar switch. Registers on the clock-distribution
chips are loaded to properly configure each crosspoint of the
switch.

Automatic tuning often consists of closing a special feedback
connection in a clock network that has an odd number of inver-
sions in the signal path. When this connection is closed, we get
oscillations with a period proportional to the total delay of the
path. If necessary, we can adjust one or more tune points auto-
matically through control signals determined by diagnostic code.
Feedback tuning techniques seem attractive, and numerous
patents exist for them, but their sensitivity to the clock duty cycle
and the signal transition time make them complex and usually
impractical.

Thus, more sophisticated tuning schemes are not necessarily
better ones. Proposals for system clocking of the IBM 308X and
3090 mainframes required complex automatic tuning tech-
niques. Eventually, untuned systems—designed with careful at-
tention to component variations and to equalizing wire lengths
and clock loading—proved less expensive and entirely adequate.

he clock system is an integral part of synchronous com-

puters, yet it is not a widely studied aspect of their de-

sign. Early attention to system timing issues can provide

benefits in system performance as well as product devel-
opment time. The goal of the clock system designer is to control
system clock skew at the system operating frequency as well as
to minimize electrical hazards that may add undesirable compo-
nents to the clock signals. Familiarity with clock-generation and
clock-distribution techniques suitable for high-speed systems is
essential as cycle times decrease. @i

ACKNOWLEDGMENTS

This tutorial was supported in part by the National Sciences and
Engineering Research Council of the Government of Canada under its
postgraduate scholarship program, in part by the National Science

IEEE DESIGN & TEST OF COMPUTERS

Foundation under grant DCR-8200129, and in part by IBM Corp. The
work was performed at Stanford University's Center for Reliable Com-
puting and IBM.

I thank Edward McCluskey and Mark Horowitz of Stanford Univer-
sity, as well as Glen Langdon, Jr., and John DeFazio of IBM Corp., and
Ron Kreuzenstein of Amdahl Corp. for their many helpful comments and
suggestions.

ADDITIONAL READING

Bakoglu, H.B., J.T. Walker, and J.D. Meindl, “A Symmetric Clock Dis-
tribution Tree and Optimized High-Speed Interconnections for Re-
duced Clock Skew in ULSI and WSI Circuits,” Proc. IEEE Int’l Conf.
on Computer Design, 1986.

Domenik, S., “On-Chip Clock Buffers,” Lambda. 1st gtr., 1981.

Friedman, E., and S. Powell, “Design and Analysis of a Hierarchical
Clock Distribution System for Synchronous Standard Cell/Macro-
cell VLSI, IEEE J. Solid-State Circuits, Vol. SC-21, No. 2, 1986.

Glasser, L., and D. Dobberpuhl, The Design and Analysis of VLSI Cir-
cuits, chapt. 6, Addison-Wesley, Reading, Mass., 1985.

Hitchcock, R., Sr., “Timing Verification and the Timing Analysis Pro-
gram,” Proc. Design Automation Conf., 1982.

IBM 3033 Processor Complex TO/DM, IBM Corp., Mechanicsburg, Pa.,
1981.

Kogge, P., “Hardware Design and Stage Cascading,” The Architecture of
Pipelined Computers. chapt. 2, McGraw-Hill, New York, 1981.

Langdon, G., Jr., Computer Design, appendices C and D, Computeach
Press, 1982.

Lob, C.. and A. Elkins, "HP-9000: 18-Mhz Clock Distribution System,”
HP J., Aug. 1983.

Maini, J., J. McDonald, and L. Spangler, “A Clock Distribution Circuit
with a 100-ps Skew Window," Proc. Bipolar Circuits and Technology
Meeting, 1987.

McCluskey, E.J., Logic Design Principles: With Emphasis on Testable
Semicustom Circuits, chapts. 7-8, Prentice-Hall, Englewood Cliffs,
N.J., 1986.

Seitz, C., "System Timing,” Introduction to VLSI Systems, chapt. 7, C.
Mead and L. Conway, eds., Addison-Wesley, Reading, Mass., 1980.

Shoji, M., “Electrical Design of the BELLMAC-32A Microprocessor,” Proc.
Circuits and Computers Conf., 1982.

Shoji, M., “Elimination of Process-Dependent Clock Skew in CMOS
VLSIL,” IEEE J. Solid-State Circuits, Vol. SC-21, No. 5, 1986.

Unger, S., and C.J. Tan, “Clocking Schemes for High-Speed Digital Sys-
tems,” IEEE Trans. Computers, Vol. C-35, No. 10, 1986.

Wagner, K.D., A Survey of Clock Distribution Techniques in High-Speed
Computer Systems, tech. rpt. 86-309, CSL Stanford Electronics
Lab., CRC 86-20, Stanford Univ., Stanford, Calif., 1986.

OCTOBER 1988

Kenneth D. Wagner is an advisory engi-
neer with the EDS VLSI Design Rules
Control Department of IBM, where his
research interests are the timing and
testing of high-speed systems, including
clock generation and distribution, ran-
dom testing, and design for testability.
Previously, he worked for Stanford Uni-
versity's Center for Reliable Computing
and for Amdahl Corp. as a systems de-
sign engineer.

Wagner received a BEng (Honors) in
electrical engineering from McGill Uni-
versity in Montreal and an MSEE and a
PhD from Stanford. He also received a
four-year NSERC postgraduate scholar-
ship from the Government of Canada.
He is a member of the IEEE Computer
Society and Sigma Xi.

Wagner’s address is IBM Corp., EDS
VLSI Design Rules Control Dept.,
B56/901-3, PO 950, Poughkeepsie, NY
12602.

27

