

Energy-Delay Estimation Technique for High-Performance Microprocessor
VLSI Adders

Vojin G. Oklobdzija1, Bart R. Zeydel1, Hoang Dao1, Sanu Mathew2, Ram Krishnamurthy2

1ACSEL
University of California

Davis, CA 95616
www.ece.ucdavis.edu/acsel

2Intel Corporation
Circuit Research Labs
Hillsboro, OR 97124

Sanu.k.Mathew@intel.com

Abstract

In this paper, we motivate the concept of comparing
VLSI adders based on their energy-delay trade-offs and
present a technique for estimating the energy-delay space
of various high-performance VLSI adder topologies.
Further, we show that our estimates accurately represent
tradeoffs in the energy-delay space for high-performance
32-bit and 64-bit processor adders in 0.13µm and 0.10µm
CMOS technologies, with an accuracy of 8% in delay
estimates and 20% in energy estimates, compared with
simulated data.

1. Introduction

In the course of VLSI processor design it is very
important to choose the adder topology that would yield
the desired performance. However, the performance of a
chosen topology will be known only after the design is
finished. Therefore a lingering question remains: could
we have achieved a higher performance, or could we have
had a better VLSI adder topology? The answers to those
questions are generally not known. There is no consistent
and realistic speed estimation method employed today by
the computer arithmetic community. Most of the
algorithms are based on out-dated methods of counting
the number of logic gates in the critical path producing
inaccurate and misleading results. The importance of
loading and wire delay is not taken into account by most.
Knowles has shown how different topologies may
influence fan-out and wiring density thus influencing
design decisions and yielding better area/power than
known cases [1]. This work has further emphasized a
disconnect existing between algorithms that are used to
derive VLSI adder topologies and the final result. In
previous work we have shown the importance of
accounting for fan-in and fan-out on the critical path, not
merely the number of logic levels [2]. This has led to the

method of Logical Effort (LE) [3], which has been
popularized by Harris [4]. Recently, we used Logical
Effort to estimate the speed of various VLSI adders and
we compared those results with those obtained using a
more complex circuit simulation tool H-SPICE [5]. This
comparison showed a good match and pointed to the right
direction. However, the process of analysis was now time
consuming and did not provide a comparison for various
circuit sizing that could have been applied. This paper is
organized as follows: the second section discusses speed
estimation using more realistic measures such as logical
effort, the third section introduces the energy effects and
discusses the performance in the energy-delay space, the
fourth section describes the estimation tool that was
developed, the fifth section shows results applied to
several well known adder topologies and compares them
with simulated results in 0.13µm technology.

2. Speed Estimation

The speed of a VLSI adder depends on many factors:
the technology of implementation (and its own internal
rules), circuit family used for the implementation, sizing
of transistors, chosen topology of the VLSI adder, and
many other second order effect parameters. There were no
simple rules that could be applied when estimating VLSI
adder speed. Skilled engineers are capable of fine-tuning
the design by carefully selecting transistor sizes, obtaining
the best performance and energy trade-off. Therefore it is
very difficult, if not impossible, to predict which of the
topologies developed by the computer arithmetic
community is best, even if it is really useful.

2.1 Logical Effort

Logical Effort methodology takes into account the

fact that the speed of a digital circuit block is dependent
on its output load (fan-out) and its topology (fan-in).
Further, LE introduces technology independence by
normalizing the speed to that of a minimal size inverter

This work has been supported by SRC Research Grant
No. 931.001 and California MICRO 01-063

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

which makes the comparisons of different topologies,
implemented in different technologies, possible. For
proper understanding and further reading of this paper the
reader should be familiar with the LE methodology [3,4].
We will briefly describe some of the main features of LE
in this sub-section. The delay expression of a logic block
in LE is given as:

pfd += (1)

where p = parasitic delay, f = effort or stage delay.
Further f = gh where g is defined as logical effort and h
as electrical effort. Thus:

pghd += (2)

This dependency is illustrated in Fig. 1.

Fig. 1. Delay expressed in terms of a minimal size inverter
[3,4]

An important result of LE is that it provides a way of
determining appropriate transistor sizing of the critical
path to minimize delay. LE also provides an estimate of
the critical path delay. Logical Effort results are
summarized in Table 1.

Logical Effort tells us that the delay will be minimal when
each stage bears equal effort given as:

N
ii Fhgf

1

ˆ == (3)

In such a case, delay of the path will be equal to:

PfND += ˆ (4)
In order to calculate optimal transistor sizes to achieve
minimal delay, we start from the output and calculate Cin
for each stage, which determines the sizing of each stage.

2.2. 64-bit Adder Speed Comparison using
Logical Effort

We used several representative topologies and
performed critical path analysis using Logical Effort
technique to compare performance. The adders that were
examined were: (a) Static: Kogge-Stone (KS) radix-2 [6],
Mux-based carry-select [7], and Han-Carlson (HC) radix-
2 [8,9] (b) Dynamic: KS radix-2, Ling Adder [10], HC
radix-2 and CLA adder with 4-bit grouping.

0

2

4

6

8

10

12

14

16

KS MXA HC KS Ling HC CLA

D
el

ay
 (

N
o

. o
f

F
O

4)

Static CMOS Logic
Implementation

Dynamic CMOS Implementation

Logical Effort

HSPICE

Fig. 2. Speed estimation of various VLSI adders using
Logical Effort vs. H-SPICE results

The results obtained using Logical Effort were

compared with the results obtained using H-SPICE
simulation. The comparison results are shown in Fig. 2.
Wire delays were accounted for by estimating the length
of the wire and assigning appropriate delay to it, however,
the portion of the wire delay was not significant (less than
10% of the total delay) due to the proximity of the cells.
The first obvious observation is that there is a huge
difference between Static CMOS and Dynamic CMOS
implementations. This demonstrates the dependency on
logic design style, which obscures any differences
between different VLSI adders. This fact has been known
by practitioners and rarely would we see a Static CMOS
adder in places where high-speed is required. The
prediction error is under 10% in most cases.

Table 1: Logical Effort Equations
Path Logical Effort ∏= igG

Path Electrical
Effort:

in

out
i C

C
pH == ∏

Branching Effort

pathon

pathonpathoff

C

CC
b

−

−− +
=

Path Branching
Effort: ∏= ibB

Path parasitic
delay ∑= ipP

Path Effort: GBHF =

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

We are still in the process of refining the LE calculation in
order to gain better accuracy. However, our objective is to
have a simple “back of the envelope” method for quick
estimation and evaluation of different VLSI adder
topologies without venturing into CAD tool complexity.
Therefore, we compromised by using MS-Excel as a tool
for comparison, because of its simplicity and ability to
perform complex calculations. An example of the Excel
tool used is shown in Table 3 (CM – represents Carry-
Merge cell, Dk1ND2 – represents a “footed” dynamic
NAND). Before the analysis, it is necessary to characterize
the technology used. This step needs to be done only once,
but it improves the accuracy of the LE since the
characteristics of the technology are taken into account.

Table 3: Delay Comparison of Static and Dynamic implementation of Kogge-Stone Prefix-2 Adder

 Prefix -2 Kogge-Stone (Sta tic)

Sta ge s
Bit

Span

Bra nch
Effort

(b i)

LE
(gi)

Parasitic
(pi)

Tota l
Branch

(B)

Tota l LE
(G)

Path
Effort

(F)

Fopt
(f)

Effort
De lay

(p s)

Para sitic
Dela y

(ps)

W ire
Delay

(ps)

Total
De lay

(ps)

Total
De la y
(FO4)

g0 (NAND2) 0 2. 0 1.11 1.84
C0 (OAI) 2 2. 2 1.55 2.26
C2 (A OI) 4 2. 4 1.52 2.76
C6 (OAI) 8 2. 8 1.55 2.26
C14 (AOI) 16 3. 6 1.52 2.76
C30 (OAI) 32 5. 2 1.55 2.26
C62 (AOI) 0 1. 0 1.52 2.76
S63 (TGXORs) 0 1. 0 1.56 2.59
INV (INV) 0 3. 0 1.00 1.00

14 11.01.66E+03 3.76E+04 106 2092.26E+01 3.22 88

Prefix -2 Kogge-Stone (Dynamic)

Sta ge s
Bit

Span

Bra nch
Effort

(b i)

LE
(gi)

Para sitic
(pi)

Total
Branch

(B)

Total LE
(G)

Path
Effort

(F)

Fopt
(f)

Effort
Delay

(ps)

Para sitic
Del ay

(p s)

W ire
De lay

(ps)

Total
De lay

(ps)

Total
Dela y
(FO4)

g0 (Dk1ND2) 0 2.0 1.02 1.34
C0 (OAI) 2 2.2 1.36 1.69
C2 (DAOI) 4 2.4 0.68 1.33
C6 (OAI) 8 2.8 1.36 1.69
C14 (DAOI) 16 3.6 0.68 1.33
C30 (OAI) 32 5.2 1.36 1.69
C62 (DAOI) 0 1.0 0.68 1.33
S63 (TGXORs) 0 1.0 1.56 2.59
INV (INV) 0 3.0 1.00 1.00

14 8.0601.66E+03 2.09E+03 77 1511.26E+00 2.34

Characterization is performed using SPICE simulation of
the gate delay for various output loads driving a copy of
itself, according to the LE rules. This is repeated for each
cell used in the logic library. Characterization of dynamic
gates requires special attention due to the fact that only
one transition is of interest. Obtained results are compared
to that of an inverter and parameters such as parasitic
delay (p) and effort (g) were normalized with respect to
that of an inverter. Select results are shown in Table
2.This step preserves LE features, allowing delay results
to be presented in terms of fan-out of 4 (FO4) delay,
relatively independent of the technology of
implementation. The LE-based delay estimation tool
works on the logic stages in the critical path, assigning
branch effort (bi), logical effort (gi) and parasitic effort
(pi) to each gate (Table 3). In computing the branch effort,

we take into consideration the worst-case interconnect at
each stage. In a 64-bit Kogge-Stone adder, the worst-case
interconnect in stage 6 (CM C30) spans 32 bit-slices. We
make an assumption that the adder bit-pitch is 10um,
which would result in a 320µm wire. To account for the
propagation delay through a wire we incorporate an
Elmore delay model in Table 3, which corresponds to the
critical-path interconnect delay in the adder. A
comparison of representative VLSI adders implemented
in static and dynamic CMOS design style is presented in
Table 4. It is interesting to see that there are indeed very
small speed differences between the three fastest dynamic
adders: KS, HC and Quarternary (QT). The advantage of
KS is achieved by reduced parasitic delays resulting from
fewer stages. It is also very difficult to determine the
fastest VLSI adder from the results presented in Table 4.

Table 2: Normalized LE parameters
0.10µm technology, FO4=19pS

Gate type LE (g)
Parasitics

(p inv)

Inverter 1 1

Dyn. Nand 0.6 1.34

Dyn. CM 0.6 1.62
Dyn. CM-4N 1 3.71

Static CM 1.48 2.53

Mux 1.68 2.93
XOR 1.69 2.97

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

The differences between presented topologies are small
and fall within the margin of error introduced by
inaccuracy of the estimation method. This further
emphasizes difficulties in comparing VLSI adder
topologies and determining the best one.

3. Energy-Delay Tradeoffs

Comparing VLSI adders becomes more difficult
when the notion of power or energy used for computation
is introduced. Suppose that an adder A is compared with
an adder B and that adder A is faster than adder B. Based
on speed only, our inclination would be to use adder A in
our design. However, this is not the complete picture. If
the energy consumed is considered, and if adder B turns
out to be using less energy, we may chose adder B,
depending on the power requirements imposed on our
design. However, power (energy) can be traded for speed
and vice versa. Fig. 3 illustrates the hypothetical energy-
delay dependencies of adders A and B.

Delay

Energy

A

B

Adder A

Adder B

Region 1 Region 2

Fig. 3. Energy-Delay dependency

In this example, adder A would be chosen as a better
adder topology if we were just to compare two design

points A and B with respect to speed and disregard the
energy aspect. As the curves show, adder B has more
room for improvement and with further energy-delay
optimization this adder would move to the point where
better performance is obtained by using the adder
topology B than topology A (Region 1). However, if low-
energy of operation is our objective, we see that adder
topology A is better because it can achieve lower energy
for the same delay (Region 2). Thus, Fig. 3 illustrates the
importance of taking the energy into account, not just
merely the speed of the adder.

3.1. Energy Estimation

Logical Effort method does include an estimation of

energy. It only provides one point on the Energy-Delay
curve corresponding to a sizing optimized for speed.
Where this point lies on the Energy-Delay curve remains
an unknown. In order to generate Energy-Delay estimates
it is first necessary to include some way of estimating
energy into the Logical Effort method. We start by
characterizing each cell in terms of energy. The energy
depends on at least two parameters: output load and cell
size. Energy of a two-input NAND gate as a function of
its size and fan-out load is shown in Fig. 4

0

2

4

6

8

10

8

12
16

20

3 4 5 6 7 8

E
n

er
g

y

S
iz

e

Fanout
Fig. 4. Energy dependency of a 2-input NAND cell

Table 4. Comparison of representative VLSI adders using Logical Effort (wire delay estimate included)

Total Delay
Adders

Stages

Total
Branch

(B)

Total LE

(G)

Path
Effort

(F)

fopt

Effort
Delay
(pS)

Parasitic
Delay
(pS)

Wire
Delay
(pS)

(pS) (FO4)

Static MXA 15 11600 0.369 4280 1.75 96 93 14 203 10.7
Static KS 9 1660 22.6 37600 3.22 106 88 14 209 11
Static HC 10 1660 22.6 37600 2.87 105 92 14 212 11.1
Dynamic KS 9 1660 1.26 2090 2.34 77 60 14 151 8.0
Dynamic HC 10 1660 1.26 2090 2.15 79 64 14 157 8.26
Dynamic QT 10 1540 2.08 3220 2.24 82 68 8 158 8.3
Dynamic LNG 10 1430 0.973 1400 2.06 76 70 15 161 8.47
Dynamic CLA 14 20600 0.627 12900 1.97 101 81 12 195 10.26

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Thus, the energy estimate will depend on the sizing
determined by logical effort as well as the fan-out load on
the output of the cell. Each cell used in the design is
characterized and parameters determining the energy
dependency on the cell size and fan-out load were stored
in the table from which dependency parameters were
determined. The method of logical effort simplifies the
energy calculations as it roughly equalizes the input and
output slopes of each gate. This implies that for a given
output load and gate size, which defines the output slope,
there is only one input slope that is possible. Although it
is true that parasitics and unequal stage effort due to
wiring will result in some variations in the slopes, it
provides enough accuracy for the analysis being
performed.

Optimal sizing for speed is determined for each adder
by using a modified logical effort methodology. From the
information about the size and topology of an adder, the
energy consumption is determined. We report worst-case
energy for the estimates, defined as the energy consumed
when every internal node is switching.

3.2. Sizing

In general, producing various points on the Energy-

Delay curve poses a sizing problem. Assuming that we
start from some given size - e.g. minimal, Logical Effort
should give us an answer to how the circuit blocks should
be sized to achieve minimal delay. From the assigned
sizes, we can calculate the energy that will be consumed
by the adder for a given input activity. However, this is
just one point on the Energy-Delay curve. From this point
we can move in both directions; toward smaller and
toward larger sizes. Such an Energy-Delay curve,
produced for two 64-bit implementations of KS and HC
adders is shown in Fig. 5.

0

1

2

3

4

5

6

7

8

9

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Normalized Delay

N
o

rm
al

iz
ed

 E
n

er
g

y

HC domino

KS domino

KS compound-domino

HC compound-domino

Fig. 5. Estimated Energy-Delay dependency of 64-bit Prefix-2
KS and HC Adders for Domino and Compound-Domino
implementations

In order to stay on the same curve we vary the size of
the inputs by assigning different values to the input
capacitance Cin, or by assigning different values to H
(electrical effort). This results in different sizes (all
optimal in terms of speed) determined by LE
methodology using different energies. The adders were
implemented as regular domino and compound-domino.
The single points obtained when using the same input size
for each adder implementation are shown in Fig. 5. The
difference between regular domino and compound-
domino is in the Carry-Merge stage. Given that dynamic
CMOS Domino logic is used for implementation of
Carry-Merge blocks as in Fig. 6.

VDD

Clk

Gi

Gi-1 Pi

VDD

Clk

Gi-2

Gi-3 Pi-2

VDD

Clk

Pi-1 Pi

VDD

Delayed Clk

Fig. 6. Carry-Merge: Regular Domino Implementation

It has been realized that the inverter, which is
necessary in the CMOS Domino logic block, can be
replaced with a static AND-NOR gate, referred to as
compound-domino. Thus, two domino blocks are merged
into one with the advantage that an additional function is
achieved by replacing the inverter. This is shown in Fig.
7.

VDD

Clk

Gi-2

Gi-3 Pi-2

VDD

Clk

Gi

Gi-1 Pi

VDD

Clk

Pi-1 Pi

Static Gate

Fig. 7. Carry-Merge: Compound-Domino Implementation

When using compound-domino circuits for adders, it
is important to note that the dynamic and the static
outputs are potentially attached to long wires, while in
domino only the inverter outputs are attached to long
wires. Note that “footless domino”, i.e. a circuit where the
bottom transistor is eliminated, is used. A 64-bit critical

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

path contains 6 carry-merge stages; none of which contain
a stack of more than two n or p transistors. A critical path
in the HC adder is shown in Fig. 8 [9]. It contains one
more stage in the critical path, but it eliminates
approximately one half of the blocks in the carry-merge
tree, thus bringing some potential energy advantages over
a KS implementation.

Fig. 8. Critical Path in the 64-bit Han-Carlson adder [9]

The energy-delay chart in Fig. 5 shows domino HC
having an advantage over domino KS in terms of lower
energy, but domino KS can stretch further in terms of
lower delay at the expense of increased energy. When
comparing compound-domino implementations, both HC
and KS result in lower energy than the regular domino
implementations. If one is concerned about energy, HC is
better. However, as the speed becomes increasingly
important the advantage moves in favor of KS. Both
schemes suffer from high gate counts, large transistor
sizes, and excessive wiring, resulting in large layout areas
and high-energy consumption. In an attempt to arrive at a
denser design, a Ladner-Fischer adder described in [1,11]
trades off wiring complexity by exponentially growing
the fan-outs of successive carry-merge gates to 1,2,4,8
and 16 respectively. However, this does not address the
problem of high gate counts and large-transistor sizes.
The idea of reducing energy by breaking the scheme into
4-bit blocks, which are conditionally added, was further
developed by Intel [12,13]. It was realized that pruning
down the main tree to obtain a sparse-tree that propagates
P and G signals for 4-bit sections of the adder and
combining this with a modest increase in hardware
complexity due to the conditional sum technique, might
be a good energy-delay trade-off. A 32-bit Quaternary-
Tree (QT) adder core as described in [12], consists of a
sparse-tree that generates 1 in 4 carries (Fig. 9) and a
parallel side-path of 4-bit conditional sum blocks,
resulting in an 8-stage design (same number of stages as
KS).

2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

2P

2N

Cout

4bit

2:1 Mux

Sum[31:28] Sum[27:24] Sum[23:20] Sum[15:12] Sum[11:8]Sum[19:16] Sum[7:4] Sum[3:0]

2P 2P

2N 2N

2P

2N

2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P

3N

2P

2N

2P

3N 3N

2N2N2N2N2N2N 2N

2P

4bit
2:1 Mux

4bit
2:1 Mux

4bit
2:1 Mux

4bit

2:1 Mux
4bit

2:1 Mux
4bit

2:1 Mux
4bit

2:1 Mux

PG
Gen.

Carry
Merge1

Carry
Merge2

Carry
Merge3

Carry
Merge4

Carry
Merge5

C3#C7#C11#C15#C19#C23#C27#

clk

clk2

clk3

Fig. 9. 32-bit Quaternary-tree Adder Core [12]

Carries generated by the sparse-tree select the final
sum using a 2:1 multiplexer. QT adder achieves energy
reduction due to two factors: (a) reduced fan-outs and
reduced wiring as compared to KS and HC structure
(resulting in smaller transistor sizes) and (b) use of non-
critical ripple-carry conditional sum blocks (with much
smaller transistor sizes than main tree). In contrast to a
Ladner-Fischer design, the QT adder tree has unit fan-
outs on all generate gates, except the 3 highlighted gates
in the Carry-Merge3, Carry-Merge4 and Carry-Merge5
stages. These 3 gates have fan-outs of 2,3 and 4
respectively (In both cases, we ignore the presence of the
buffering inverters at the LSBs). Parallel-prefix logic
removed from the main-tree is performed in the
conditional sum blocks using an energy-efficient ripple-
carry scheme with smaller transistor sizes. The structure
of conditional sum blocks is shown in Fig. 10.

PiPi+1Pi+2 ,Gi+2

Sumi+1Sumi+2Sumi+3Sumi+3

XOR XORXOR XOR

Pi+3,Gi+3

Sumi

S
u

m
i ,1

S
u

m
i ,0

Carry

Gi+1

CMCMCM CMCMCM

Optimized 1stOptimized 1st--levellevel
carrycarry--mergemerge

2:1 2:1 2:1

CMCMCM CMCMCM
XORXORXOR XORXORXOR

2:12:1

Fig. 10. Quaternary-tree Adder: Conditional Sum [12]

A 64-bit QT adder (Fig. 11) has 2 levels of
conditional carry generation with the main tree generating
1 in 16 carries, which select betwwen the 1 in 4
conditional carries generated by the intermediate
generator. The 1 in 4 carries then choose the appropriate
4-bit conditonal sum. Such a design has 10 stages (same
as HC).

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

bbbb57 59 61 63

C15

C31 C47

Int. Carry Genr

C19 C23 C27 C3 C7 C11 C35 C39 C43 C5C55 C59

Int. Carry Genr Int. Carry Genr Int. Carry Genr

Sum[63:60]

4-bit
SumGenr

Sum[47:44]

4-bit
SumGenr

Sum[31:28]

4-bit
SumGenr

Sum[15:12]

4-bit
SumGen

C31 C47

C15

4-bit
SumGenr

Sum[3:0]

Cin

Fig. 11. 64-bit Quaternary-tree Adder Core

4. Estimation Method

The goal of the estimation method is to provide a
simple, yet accurate, method for comparing designs in the
energy-delay space. Logical effort has been shown to
yield reasonably accurate results for the parallel prefix
adders that were tested, thus finding it suitable for delay
estimation and sizing. One of the issues with Logical
Effort is branching, specifically with regards to long
internal wires and different number of stages in the off
path. These effects are difficult to account for and
accurate accounting makes LE complex, thus
simplifications are required to make the analysis linear. A
more detailed account of these issues would result in
greater delay accuracy when applying LE to adders.

4.1 Energy-Delay Curve Estimation

As previously described, the different points on the

energy-delay curve are obtained by varying the size of the
input gate for each adder. This provides a delay estimate
and the sizing of the critical path, which in turn gives an
energy estimate for the gates on the critical path.
However, this estimation does not provide an energy
estimate for the entire adder. The estimated energy for the
critical paths is shown in Fig.12. From these estimates, it
can be seen that the critical path of KS uses less energy
for a given delay then HC. This is explained by the one
extra stage that HC uses. However as mentioned
previously, HC uses approximately half of the gates in the
CM-section than KS. This must be accounted for in the
total energy estimate for the adders. The critical path
energy-delay estimate provides an idea of the minimal
delay that can be achieved, which is shown by the vertical
asymptote of the curves in Fig.12. Since we are interested
in comparing adders not only by delay, but also in the

energy-delay space, we need to determine a method for
estimating the energy of an adder. By determining the
number of gates per stage and assuming the same energy
for those gates as the corresponding energy of the critical
path gate in the same stage, we were able to obtain
reasonably accurate results (within 20%). This provided a
simple method to apply to most parallel prefix designs,
however for a design like QT where the number of gates
on each path is different, more care must be taken in
determining what energy the off-path circuits consume.

0

500

1000

1500

2000

2500

3000

100 120 140 160 180 200 220 240 260 280

Delay [pS]

E
ne

rg
y

[f
J]

HC Static

KS Static

HC Compound-Domino

KS Compound-Domino

Fig. 12. Energy Delay comparison of 64-bit KS and HC
Compound-Domino and Static adders

5. Results

The accuracy of our energy-delay estimation was
tested on 32-bit KS and QT compound-domino adder
implementations, with comparison to simulation results in
0.13µm technology [12]. Each of the energy-delay
simulation points was obtained using a circuit optimizer.
The energy reported was obtained by running the worst-
case energy vector for each topology. Since the simulated
data points were in 0.13µm technology, we needed to
extrapolate the results and normalize them to the same
technology as our estimates (0.10µm). We used a rule of
thumb of 30% performance improvement per generation
as well as a 50% energy improvement. The energy-delay
estimates were obtained by varying the size of the input
gate to the adder, as previously described. The estimated
energy assumes an estimated worst-case switching
activity associated with the topology of the adder and the
logic design style. A more accurate method would require
detailed modeling of the switching activity within each
adder core, which is not possible prior to implementation.
The comparison of the estimated energy-delay versus
simulated is shown in Fig. 13. At iso-delay the
simulations show 55% difference in energy at the knee of
the curves, while estimation shows 35% difference. At
iso-energy, the simulations show 21% delay improvement
at the knee of the curves, while estimation shows 13%.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

0

10

20

30

40

50

60

90 100 110 120 130 140 150 160
Delay [pS]

E
n

er
g

y
[p

J]

KS [9]

QT [9]

KS Estimate

QT Estimate

55%

35%

Fig. 13. Energy-Delay comparison of 32-bit QT and KS
adders: estimated vs. simulation in 0.10µµµµm technology

As the intent of this method is to compare the

energy-delay characteristics of a given design, this
comparison shows the estimation accurately represents
tradeoffs in the energy-delay space for different
architectures. To further explore the energy-delay design
space we analyzed 64-bit KS, HC and QT compound-
domino and static topologies, shown in Fig. 14.

0

0.5

1

1.5

2

2.5

3

0.9 1.1 1.3 1.5 1.7 1.9 2.1

Normalized Delay

N
o

rm
al

iz
ed

 E
n

er
g

y

QT Static

HC Static

KS Static

QT compound-domino

HC compound-domino

KS compound-domino

Fig. 14. Energy-Delay comparison of 64-bit KS, HC and QT
adders

The 64-bit QT implementation used has one extra
stage than the KS, which accounts for the higher
performance that can be achieved by KS for both
compound-domino and static topologies. The difference
in energy for iso-delay is more significant in the 64-bit
design space. This is due to the increased number of
stages over which the delay is evenly distributed,
resulting in increased gate sizes, and increased number of
gates, e.g. a 32-bit KS has 417 gates, while a 64-bit KS
has 1025 gates. Thus in the 64-bit design space, energy
efficient designs display greater savings, which explains
why QT uses substantially less energy than either KS or
HC. The QT compound-domino design achieves an 86%

reduction in energy vs. HC compound-domino at the knee
of the curve.

6. Conclusion

We have shown that an LE based analysis of logical
circuits is an effective tool for a quick exploration of the
energy-delay space for comparing the performance of
high-performance adders. Further, a tool was developed
based on this technique to quickly estimate the energy-
delay space of 32/64-bit Kogge-Stone, Han-Carlson, and
Quaternary-tree adders implemented in 0.13µm and
0.10µm CMOS technologies using static and dynamic
circuit styles, thereby, accurately representing tradeoffs in
the energy-delay space with an accuracy of 8% in delay
estimates and 20% in energy estimates, compared with
simulated data.

References
[1] S. Knowles, “A Family of Adders”, Proceedings of the 14th
Symposium on Computer Arithmetic, Australia. April 1999.
[2] V. G. Oklobdzija and E. R. Barnes, “On Implementing
Addition in VLSI Technology,” IEEE Journal of Parallel and
Distributed Computing, No. 5, 1988 pp. 716-728.
[3] R. F. Sproull, and I. E. Sutherland, “Logical Effort:
Designing for Speed on the Back of an Envelop,” IEEE Adv.
Research in VLSI, C. Sequin (editor), MIT Press, 1991.
[4] D. Harris, R.F. Sproull, and I.E. Sutherland, “Logical Effort
Designing Fast CMOS Circuits,” Morgan Kaufmann Pub., 1999.
[5] H.Q. Dao, V. G. Oklobdzija, “Application of Logical Effort
Techniques for Speed Optimization and Analysis of
Representative Adders,” 35th Annual Asilomar Conference on
Signals, Systems and Computers, 2001.
[6] P.M. Kogge and H.S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations”,
IEEE Trans. on Comp. Vol. C-22, No.8, Aug. 1973, pp.786-793.
[7] A. Farooqui, V. G. Oklobdzija, F. Chehrazi, “Multiplexer
Based Adder for Media Signal Processing”, International Symp
on VLSI Technology, Systems, and Applications, 1999
[8] T. Han, D. A. Carlson, and S. P. Levitan, “VLSI Design of
High-Speed Low-Area Addition Circuitry,” Proceedings of the
IEEE International Conference on Computer Design: VLSI in
Computers and Processors,1987, pp.418-422.
[9] S.K. Mathew et al, “Sub-500-ps 64-b ALUs in 0.18µm
SOI/bulk CMOS: design and scaling trends,” IEEE Journal of
Solid-State Circuits, vol.36, Nov. 2001, pp.1636-46.
[10] H. Ling, “High Speed Binary Adder”, IBM Journal of
Research and Development, Vol. 25, No 3, 1981, p.156-166.
[11] R.E. Laddner and M.J. Fischer, “Parallel prefix
computation”, Journal of ACM, Vol.27, No.4, 1980, pp.831-38.
[12] S.K. Mathew et al, “A 4GHz 130nm Address Generation
Unit with 32-bit Sparse-tree Adder Core,” 2002 Symposium on
VLSI Circuits Digest of Technical Papers, pp.126-127.
[13] J. Sklansky, “Conditional-sum addition logic.” IRE
Transactions on Electronic Computers, vol.9, 1960, pp. 226-231.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

	ARITH 12-16
	Return to Main Menu

