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Abstract 
 

In this paper, we motivate the concept of comparing 
VLSI adders based on their energy-delay trade-offs and 
present a technique for estimating the energy-delay space 
of various high-performance VLSI adder topologies. 
Further, we show that our estimates accurately represent 
tradeoffs in the energy-delay space for high-performance 
32-bit and 64-bit processor adders in 0.13µm and 0.10µm 
CMOS technologies, with an accuracy of 8% in delay 
estimates and 20% in energy estimates, compared with 
simulated data. 

1. Introduction 
 

In the course of VLSI processor design it is very 
important to choose the adder topology that would yield 
the desired performance. However, the performance of a 
chosen topology will be known only after the design is 
finished. Therefore a lingering question remains: could 
we have achieved a higher performance, or could we have 
had a better VLSI adder topology? The answers to those 
questions are generally not known. There is no consistent 
and realistic speed estimation method employed today by 
the computer arithmetic community.  Most of the 
algorithms are based on out-dated methods of counting 
the number of logic gates in the critical path producing 
inaccurate and misleading results. The importance of 
loading and wire delay is not taken into account by most. 
Knowles has shown how different topologies may 
influence fan-out and wiring density thus influencing 
design decisions and yielding better area/power than 
known cases [1]. This work has further emphasized a 
disconnect existing between algorithms that are used to 
derive VLSI adder topologies and the final result. In 
previous work we have shown the importance of 
accounting for fan-in and fan-out on the critical path, not  
merely the number of logic levels [2]. This has led to the  
 

method of Logical Effort (LE) [3], which has been 
popularized by Harris [4]. Recently, we used Logical 
Effort to estimate the speed of various VLSI adders and 
we compared those results with those obtained using a 
more complex circuit simulation tool H-SPICE [5]. This 
comparison showed a good match and pointed to the right 
direction. However, the process of analysis was now time 
consuming and did not provide a comparison for various 
circuit sizing that could have been applied. This paper is 
organized as follows:  the second section discusses speed 
estimation using more realistic measures such as logical 
effort, the third section introduces the energy effects and 
discusses the performance in the energy-delay space, the 
fourth section describes the estimation tool that was 
developed, the fifth section shows results applied to 
several well known adder topologies and compares them 
with simulated results in 0.13µm technology. 

2. Speed Estimation 
 

The speed of a VLSI adder depends on many factors: 
the technology of implementation (and its own internal 
rules), circuit family used for the implementation, sizing 
of transistors, chosen topology of the VLSI adder, and 
many other second order effect parameters. There were no 
simple rules that could be applied when estimating VLSI 
adder speed. Skilled engineers are capable of fine-tuning 
the design by carefully selecting transistor sizes, obtaining 
the best performance and energy trade-off. Therefore it is 
very difficult, if not impossible, to predict which of the 
topologies developed by the computer arithmetic 
community is best, even if it is really useful.  

2.1 Logical Effort 
 
Logical Effort methodology takes into account the 

fact that the speed of a digital circuit block is dependent 
on its output load (fan-out) and its topology (fan-in). 
Further, LE introduces technology independence by 
normalizing the speed to that of a minimal size inverter 
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which makes the comparisons of different topologies, 
implemented in different technologies, possible. For 
proper understanding and further reading of this paper the 
reader should be familiar with the LE methodology [3,4]. 
We will briefly describe some of the main features of LE 
in this sub-section. The delay expression of a logic block 
in LE is given as:   
 

pfd +=    (1) 
 

where p = parasitic delay, f = effort or stage delay. 
Further f = gh where g is defined as logical effort and  h 
as electrical effort. Thus: 
 

pghd +=    (2) 
 
This dependency is illustrated in Fig. 1. 

 
Fig. 1. Delay expressed in terms of a minimal size inverter 
[3,4] 
 
An important result of LE is that it provides a way of 
determining appropriate transistor sizing of the critical 
path to minimize delay. LE also provides an estimate of 
the critical path delay. Logical Effort results are 
summarized in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Logical Effort tells us that the delay will be minimal when 
each stage bears equal effort given as: 

N
ii Fhgf

1

ˆ ==   (3) 

 
In such a case, delay of the path will be equal to: 

PfND += ˆ     (4) 
In order to calculate optimal transistor sizes to achieve 
minimal delay, we start from the output and calculate Cin 
for each stage, which determines the sizing of each stage.  

2.2. 64-bit Adder Speed Comparison using 
Logical Effort 
 

We used several representative topologies and 
performed critical path analysis using Logical Effort 
technique to compare performance. The adders that were 
examined were: (a) Static: Kogge-Stone (KS) radix-2 [6], 
Mux-based carry-select [7], and Han-Carlson (HC) radix-
2 [8,9] (b) Dynamic: KS radix-2, Ling Adder [10], HC 
radix-2 and CLA adder with 4-bit grouping.  
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Fig. 2. Speed estimation of various VLSI adders using 
Logical Effort vs. H-SPICE results 

 
The results obtained using Logical Effort were 

compared with the results obtained using H-SPICE 
simulation. The comparison results are shown in Fig. 2. 
Wire delays were accounted for by estimating the length 
of the wire and assigning appropriate delay to it, however, 
the portion of the wire delay was not significant (less than 
10% of the total delay) due to the proximity of the cells. 
The first obvious observation is that there is a huge 
difference between Static CMOS and Dynamic CMOS 
implementations. This demonstrates the dependency on 
logic design style, which obscures any differences 
between different VLSI adders. This fact has been known 
by practitioners and rarely would we see a Static CMOS 
adder in places where high-speed is required. The 
prediction error is under 10% in most cases. 

Table 1: Logical Effort Equations 
Path Logical Effort  ∏= igG
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We are still in the process of refining the LE calculation in 
order to gain better accuracy. However, our objective is to 
have a simple “back of the envelope” method for quick 
estimation and evaluation of different VLSI adder 
topologies without venturing into CAD tool complexity. 
Therefore, we compromised by using MS-Excel as a tool 
for comparison, because of its simplicity and ability to 
perform complex calculations. An example of the Excel 
tool used is shown in Table 3 (CM – represents Carry-
Merge cell, Dk1ND2 – represents a “footed” dynamic 
NAND). Before the analysis, it is necessary to characterize 
the technology used. This step needs to be done only once, 
but it improves the accuracy of the LE since the 
characteristics of the technology are taken into account. 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
Table 3: Delay Comparison of Static and Dynamic implementation of Kogge-Stone Prefix-2 Adder 

 Prefix -2 Kogge-Stone (Sta tic)

Sta ge s
Bit 

Span

Bra nch 
Effort 

(b i)

LE   
(gi)

Parasitic 
(pi)

Tota l 
Branch 

(B)

Tota l LE 
(G)

Path 
Effort    

(F)

Fopt   
(f)

Effort 
De lay 

(p s)

Para sitic 
Dela y 

(ps)

W ire  
Delay 

(ps)

Total 
De lay 

(ps)

Total 
De la y 
(FO4)

g0 (NAND2) 0 2. 0 1.11 1.84
C0 (OAI) 2 2. 2 1.55 2.26
C2 (A OI) 4 2. 4 1.52 2.76
C6 (OAI) 8 2. 8 1.55 2.26
C14 (AOI) 16 3. 6 1.52 2.76
C30 (OAI) 32 5. 2 1.55 2.26
C62 (AOI) 0 1. 0 1.52 2.76
S63 (TGXORs) 0 1. 0 1.56 2.59
INV  (INV) 0 3. 0 1.00 1.00

14 11.01.66E+03 3.76E+04 106 2092.26E+01 3.22 88

Prefix -2 Kogge-Stone (Dynamic)

Sta ge s
Bit 

Span

Bra nch 
Effort 

(b i)

LE    
(gi)

Para sitic 
(pi)

Total 
Branch   

(B)

Total LE  
(G)

Path 
Effort    

(F)

Fopt   
(f)

Effort 
Delay 

(ps)

Para sitic 
Del ay 

(p s)

W ire  
De lay  

(ps)

Total 
De lay 

(ps)

Total 
Dela y 
(FO4)

g0 (Dk1ND2) 0 2.0 1.02 1.34
C0 (OAI) 2 2.2 1.36 1.69
C2 (DAOI) 4 2.4 0.68 1.33
C6 (OAI) 8 2.8 1.36 1.69
C14 (DAOI) 16 3.6 0.68 1.33
C30 (OAI) 32 5.2 1.36 1.69
C62 (DAOI) 0 1.0 0.68 1.33
S63 (TGXORs) 0 1.0 1.56 2.59
INV  (INV) 0 3.0 1.00 1.00

14 8.0601.66E+03 2.09E+03 77 1511.26E+00 2.34

 
 
Characterization is performed using SPICE simulation of 
the gate delay for various output loads driving a copy of 
itself, according to the LE rules. This is repeated for each 
cell used in the logic library. Characterization of dynamic 
gates requires special attention due to the fact that only 
one transition is of interest. Obtained results are compared 
to that of an inverter and parameters such as parasitic 
delay (p) and effort (g) were normalized with respect to 
that of an inverter. Select results are shown in Table 
2.This step preserves LE features, allowing delay results 
to be presented in terms of fan-out of 4 (FO4) delay, 
relatively independent of the technology of 
implementation. The LE-based delay estimation tool 
works on the logic stages in the critical path, assigning 
branch effort (bi), logical effort (gi) and parasitic effort 
(pi) to each gate (Table 3). In computing the branch effort, 

we take into consideration the worst-case interconnect at 
each stage. In a 64-bit Kogge-Stone adder, the worst-case 
interconnect in stage 6 (CM C30) spans 32 bit-slices. We 
make an assumption that the adder bit-pitch is 10um, 
which would result in a 320µm wire. To account for the 
propagation delay through a wire we incorporate an 
Elmore delay model in Table 3, which corresponds to the 
critical-path interconnect delay in the adder. A 
comparison of representative VLSI adders implemented 
in static and dynamic CMOS design style is presented in 
Table 4.  It is interesting to see that there are indeed very 
small speed differences between the three fastest dynamic 
adders: KS, HC and Quarternary (QT). The advantage of 
KS is achieved by reduced parasitic delays resulting from 
fewer stages. It is also very difficult to determine the 
fastest VLSI adder from the results presented in Table 4.  

Table 2: Normalized LE parameters 
0.10µm technology, FO4=19pS 

Gate type LE (g) 
Parasitics 

(p inv) 

Inverter 1 1 

Dyn. Nand 0.6 1.34 

Dyn. CM 0.6 1.62 
Dyn. CM-4N 1 3.71 

Static CM 1.48 2.53 

Mux 1.68 2.93 
XOR 1.69 2.97 

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE



 

 

 
The differences between presented topologies are small 
and fall within the margin of error introduced by 
inaccuracy of the estimation method. This further 
emphasizes difficulties in comparing VLSI adder 
topologies and determining the best one. 

3. Energy-Delay Tradeoffs 
 

Comparing VLSI adders becomes more difficult 
when the notion of power or energy used for computation 
is introduced. Suppose that an adder A is compared with 
an adder B and that adder A is faster than adder B. Based 
on speed only, our inclination would be to use adder A in 
our design. However, this is not the complete picture. If 
the energy consumed is considered, and if adder B turns 
out to be using less energy, we may chose adder B, 
depending on the power requirements imposed on our 
design. However, power (energy) can be traded for speed 
and vice versa. Fig. 3 illustrates the hypothetical energy-
delay dependencies of adders A and B.  
 

Delay

Energy

A

B

Adder A

Adder B

Region 1 Region 2

 
Fig. 3. Energy-Delay dependency 
 

In this example, adder A would be chosen as a better 
adder topology if we were just to compare two design 

points A and B with respect to speed and disregard the 
energy aspect. As the curves show, adder B has more 
room for improvement and with further energy-delay 
optimization this adder would move to the point where 
better performance is obtained by using the adder 
topology B than topology A (Region 1). However, if low-
energy of operation is our objective, we see that adder 
topology A is better because it can achieve lower energy 
for the same delay (Region 2). Thus, Fig. 3 illustrates the 
importance of taking the energy into account, not just 
merely the speed of the adder. 

3.1. Energy Estimation 

 
Logical Effort method does include an estimation of 

energy. It only provides one point on the Energy-Delay 
curve corresponding to a sizing optimized for speed. 
Where this point lies on the Energy-Delay curve remains 
an unknown. In order to generate Energy-Delay estimates 
it is first necessary to include some way of estimating 
energy into the Logical Effort method. We start by 
characterizing each cell in terms of energy. The energy 
depends on at least two parameters: output load and cell 
size. Energy of a two-input NAND gate as a function of 
its size and fan-out load is shown in Fig. 4 
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Table 4. Comparison of representative VLSI adders using Logical Effort (wire delay estimate included) 

Total Delay  
Adders 

 
Stages 

Total 
Branch 

(B) 

 
Total LE  

(G) 

Path 
Effort 

(F) 

 
fopt 

Effort 
Delay 
(pS) 

Parasitic 
Delay 
(pS) 

Wire 
Delay 
(pS) 

(pS) (FO4) 

Static MXA 15 11600 0.369 4280 1.75 96 93 14 203 10.7 
Static KS 9 1660 22.6 37600 3.22 106 88 14 209 11 
Static HC 10 1660 22.6 37600 2.87 105 92 14 212 11.1 
Dynamic KS 9 1660 1.26 2090 2.34 77 60 14 151 8.0 
Dynamic HC 10 1660 1.26 2090 2.15 79 64 14 157 8.26 
Dynamic QT 10 1540 2.08 3220 2.24 82 68 8 158 8.3 
Dynamic LNG 10 1430 0.973 1400 2.06 76 70 15 161 8.47 
Dynamic CLA 14 20600 0.627 12900 1.97 101 81 12 195 10.26 
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Thus, the energy estimate will depend on the sizing 
determined by logical effort as well as the fan-out load on 
the output of the cell. Each cell used in the design is 
characterized and parameters determining the energy 
dependency on the cell size and fan-out load were stored 
in the table from which dependency parameters were 
determined. The method of logical effort simplifies the 
energy calculations as it roughly equalizes the input and 
output slopes of each gate. This implies that for a given 
output load and gate size, which defines the output slope, 
there is only one input slope that is possible. Although it 
is true that parasitics and unequal stage effort due to 
wiring will result in some variations in the slopes, it 
provides enough accuracy for the analysis being 
performed.  

Optimal sizing for speed is determined for each adder 
by using a modified logical effort methodology. From the 
information about the size and topology of an adder, the 
energy consumption is determined. We report worst-case 
energy for the estimates, defined as the energy consumed 
when every internal node is switching. 

3.2. Sizing 

 
In general, producing various points on the Energy-

Delay curve poses a sizing problem. Assuming that we 
start from some given size - e.g. minimal, Logical Effort 
should give us an answer to how the circuit blocks should 
be sized to achieve minimal delay. From the assigned 
sizes, we can calculate the energy that will be consumed 
by the adder for a given input activity. However, this is 
just one point on the Energy-Delay curve. From this point 
we can move in both directions; toward smaller and 
toward larger sizes. Such an Energy-Delay curve, 
produced for two 64-bit implementations of KS and HC 
adders is shown in Fig. 5.  
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Fig. 5. Estimated Energy-Delay dependency of 64-bit Prefix-2 
KS and HC Adders for Domino and Compound-Domino 
implementations 

In order to stay on the same curve we vary the size of 
the inputs by assigning different values to the input 
capacitance Cin, or by assigning different values to H 
(electrical effort). This results in different sizes (all 
optimal in terms of speed) determined by LE 
methodology using different energies. The adders were 
implemented as regular domino and compound-domino. 
The single points obtained when using the same input size 
for each adder implementation are shown in Fig. 5. The 
difference between regular domino and compound-
domino is in the Carry-Merge stage. Given that dynamic 
CMOS Domino logic is used for implementation of 
Carry-Merge blocks as in Fig. 6.  
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Fig. 6. Carry-Merge: Regular Domino Implementation 
 

It has been realized that the inverter, which is 
necessary in the CMOS Domino logic block, can be 
replaced with a static AND-NOR gate, referred to as 
compound-domino. Thus, two domino blocks are merged 
into one with the advantage that an additional function is 
achieved by replacing the inverter. This is shown in Fig. 
7.  
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Fig. 7. Carry-Merge: Compound-Domino Implementation 

When using compound-domino circuits for adders, it 
is important to note that the dynamic and the static 
outputs are potentially attached to long wires, while in 
domino only the inverter outputs are attached to long 
wires. Note that “footless domino”, i.e. a circuit where the 
bottom transistor is eliminated, is used. A 64-bit critical 
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path contains 6 carry-merge stages; none of which contain 
a stack of more than two n or p transistors. A critical path 
in the HC adder is shown in Fig. 8 [9]. It contains one 
more stage in the critical path, but it eliminates 
approximately one half of the blocks in the carry-merge 
tree, thus bringing some potential energy advantages over 
a KS implementation. 

 
Fig. 8. Critical Path in the 64-bit Han-Carlson adder [9] 
 

The energy-delay chart in Fig. 5 shows domino HC 
having an advantage over domino KS in terms of lower 
energy, but domino KS can stretch further in terms of 
lower delay at the expense of increased energy. When 
comparing compound-domino implementations, both HC 
and KS result in lower energy than the regular domino 
implementations. If one is concerned about energy, HC is 
better. However, as the speed becomes increasingly 
important the advantage moves in favor of KS. Both 
schemes suffer from high gate counts, large transistor 
sizes, and excessive wiring, resulting in large layout areas 
and high-energy consumption. In an attempt to arrive at a 
denser design, a Ladner-Fischer adder described in [1,11] 
trades off wiring complexity by exponentially growing 
the fan-outs of successive carry-merge gates to 1,2,4,8 
and 16 respectively. However, this does not address the 
problem of high gate counts and large-transistor sizes. 
The idea of reducing energy by breaking the scheme into 
4-bit blocks, which are conditionally added, was further 
developed by Intel [12,13]. It was realized that pruning 
down the main tree to obtain a sparse-tree that propagates 
P and G signals for 4-bit sections of the adder and 
combining this with a modest increase in hardware 
complexity due to the conditional sum technique, might 
be a good energy-delay trade-off. A 32-bit Quaternary-
Tree (QT) adder core as described in [12], consists of a 
sparse-tree that generates 1 in 4 carries (Fig. 9) and a 
parallel side-path of 4-bit conditional sum blocks, 
resulting in an 8-stage design (same number of stages as 
KS). 
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Fig. 9. 32-bit Quaternary-tree Adder Core [12] 

Carries generated by the sparse-tree select the final 
sum using a 2:1 multiplexer. QT adder achieves energy 
reduction due to two factors: (a) reduced fan-outs and 
reduced wiring as compared to KS and HC structure 
(resulting in smaller transistor sizes) and (b) use of non-
critical ripple-carry conditional sum blocks (with much 
smaller transistor sizes than main tree). In contrast to a 
Ladner-Fischer design, the QT adder tree has unit fan-
outs on all generate gates, except the 3 highlighted gates 
in the Carry-Merge3, Carry-Merge4 and Carry-Merge5 
stages. These 3 gates have fan-outs of 2,3 and 4 
respectively (In both cases, we ignore the presence of the 
buffering inverters at the LSBs). Parallel-prefix logic 
removed from the main-tree is performed in the 
conditional sum blocks using an energy-efficient ripple-
carry scheme with smaller transistor sizes. The structure 
of conditional sum blocks is shown in Fig. 10. 
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Fig. 10. Quaternary-tree Adder: Conditional Sum [12] 
 

A 64-bit QT adder (Fig. 11) has 2 levels of 
conditional carry generation with the main tree generating  
1 in 16 carries, which select betwwen the 1 in 4 
conditional carries generated by the intermediate 
generator. The 1 in 4 carries then choose the appropriate 
4-bit conditonal sum. Such a design has 10 stages (same 
as HC). 
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Fig. 11. 64-bit Quaternary-tree Adder Core 

4. Estimation Method 
 

The goal of the estimation method is to provide a 
simple, yet accurate, method for comparing designs in the 
energy-delay space. Logical effort has been shown to 
yield reasonably accurate results for the parallel prefix 
adders that were tested, thus finding it suitable for delay 
estimation and sizing. One of the issues with Logical 
Effort is branching, specifically with regards to long 
internal wires and different number of stages in the off 
path. These effects are difficult to account for and 
accurate accounting makes LE complex, thus 
simplifications are required to make the analysis linear. A 
more detailed account of these issues would result in 
greater delay accuracy when applying LE to adders.  

4.1 Energy-Delay Curve Estimation 

 
As previously described, the different points on the 

energy-delay curve are obtained by varying the size of the 
input gate for each adder. This provides a delay estimate 
and the sizing of the critical path, which in turn gives an 
energy estimate for the gates on the critical path. 
However, this estimation does not provide an energy 
estimate for the entire adder. The estimated energy for the 
critical paths is shown in Fig.12. From these estimates, it 
can be seen that the critical path of KS uses less energy 
for a given delay then HC. This is explained by the one 
extra stage that HC uses. However as mentioned 
previously, HC uses approximately half of the gates in the 
CM-section than KS. This must be accounted for in the 
total energy estimate for the adders. The critical path 
energy-delay estimate provides an idea of the minimal 
delay that can be achieved, which is shown by the vertical 
asymptote of the curves in Fig.12. Since we are interested 
in comparing adders not only by delay, but also in the 

energy-delay space, we need to determine a method for 
estimating the energy of an adder. By determining the 
number of gates per stage and assuming the same energy 
for those gates as the corresponding energy of the critical 
path gate in the same stage, we were able to obtain 
reasonably accurate results (within 20%). This provided a 
simple method to apply to most parallel prefix designs, 
however for a design like QT where the number of gates 
on each path is different, more care must be taken in 
determining what energy the off-path circuits consume.   
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Fig. 12. Energy Delay comparison of 64-bit KS and HC 
Compound-Domino and Static adders  

5. Results 
 

The accuracy of our energy-delay estimation was 
tested on 32-bit KS and QT compound-domino adder 
implementations, with comparison to simulation results in 
0.13µm technology [12]. Each of the energy-delay 
simulation points was obtained using a circuit optimizer. 
The energy reported was obtained by running the worst-
case energy vector for each topology. Since the simulated 
data points were in 0.13µm technology, we needed to 
extrapolate the results and normalize them to the same 
technology as our estimates (0.10µm). We used a rule of 
thumb of 30% performance improvement per generation 
as well as a 50% energy improvement. The energy-delay 
estimates were obtained by varying the size of the input 
gate to the adder, as previously described. The estimated 
energy assumes an estimated worst-case switching 
activity associated with the topology of the adder and the 
logic design style. A more accurate method would require 
detailed modeling of the switching activity within each 
adder core, which is not possible prior to implementation. 
The comparison of the estimated energy-delay versus 
simulated is shown in Fig. 13. At iso-delay the 
simulations show 55% difference in energy at the knee of 
the curves, while estimation shows 35% difference. At 
iso-energy, the simulations show 21% delay improvement 
at the knee of the curves, while estimation shows 13%. 
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Fig. 13. Energy-Delay comparison of 32-bit QT and KS 
adders: estimated vs. simulation in 0.10µµµµm technology 

 
As the intent of this method is to compare the 

energy-delay characteristics of a given design, this 
comparison shows the estimation accurately represents 
tradeoffs in the energy-delay space for different 
architectures. To further explore the energy-delay design 
space we analyzed 64-bit KS, HC and QT compound-
domino and static topologies, shown in Fig. 14. 
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Fig. 14. Energy-Delay comparison of 64-bit KS, HC and QT 
adders 
 

The 64-bit QT implementation used has one extra 
stage than the KS, which accounts for the higher 
performance that can be achieved by KS for both 
compound-domino and static topologies. The difference 
in energy for iso-delay is more significant in the 64-bit 
design space. This is due to the increased number of 
stages over which the delay is evenly distributed, 
resulting in increased gate sizes, and increased number of 
gates, e.g. a 32-bit KS has 417 gates, while a 64-bit KS 
has 1025 gates. Thus in the 64-bit design space, energy 
efficient designs display greater savings, which explains 
why QT uses substantially less energy than either KS or 
HC. The QT compound-domino design achieves an 86% 

reduction in energy vs. HC compound-domino at the knee 
of the curve.  

6. Conclusion 
 

We have shown that an LE based analysis of logical 
circuits is an effective tool for a quick exploration of the 
energy-delay space for comparing the performance of 
high-performance adders. Further, a tool was developed 
based on this technique to quickly estimate the energy-
delay space of 32/64-bit Kogge-Stone, Han-Carlson, and 
Quaternary-tree adders implemented in 0.13µm and 
0.10µm CMOS technologies using static and dynamic 
circuit styles, thereby, accurately representing tradeoffs in 
the energy-delay space with an accuracy of 8% in delay 
estimates and 20% in energy estimates, compared with 
simulated data. 
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