Future Trend of Microprocessor Design: Challenges and Realities

Robert Yung, Ph.D.

Chief technology officer, Enterprise Processors (yung@intel.com)

Stefan Rusu

Senior Principal Engineer (stefan.rusu@intel.com)

Kenneth Shoemaker

Senior Principal Engineer (kenneth.d.shoemaker@intel.com)

Intel Corporation ESSCIRC / ESSDERC 2002 Sept 25, 2002

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

Microprocessor Evolution

- 4004
 - **1971**
 - 2300 transistors
 - 10um process
 - 2", 50mm wafer
 - 12mm²
 - 108 kHz

- Pentium[®] 4 processor
 - 2002 (31 yrs)
 - 55M (24K X)
 - 0.13um (1/77 X)
 - 12", 300mm (6X)
 - 142mm² (12 X)
 - 2.8 GHz (26K X)

- Itanium[®] 2 processor
 - 2002 (31 yrs)
 - 220M (96K X)
 - 0.18um (1/55 X)
 - 12", 300mm (6X)
 - 421mm² (35 X)
 - 1 GHz (9K X)

- Transistors per IC doubles every two years
- In less than 30 years
 - 1,000X decrease in size
 - 10,000X increase in performance
 - 10,000,000X reduction in cost
- Heading toward 1 billion transistors before end of this decade

In the Last 25 Years Life was Easy

- Die sizes increase, allowed by
 - Increasing wafer size
 - Process technology moving from "black art" to "manufacturing science"
- Doubling of transistors every 18 months
- And, only constrained by cost & mfg. limits

What Are The Future Challenges?

Feature, Die Size Trend

- 30% feature size reduction every 3 and now 2 yrs
- Before mid 1990's, 7% die size increase/yr; lithography limited
- After that, die size growth will be limited by power dissipation

Robert Yung ©2002 Intel Corp. Page 6

Processor Frequency Trend

- Gates per clock reduces by 25% each generation; leveling out
- Frequency doubles each generation enabled by advanced circuit and architectural techniques
 Robert Yung
 ©2002 Intel Corp.

Processor Power Trend

- Lead processor power increases every generation power constrained
 - Vcc will scale by only 0.8 (not 0.7)
 - Active power will scale by ~0.9 (not 0.5)
 - Active power density will increase by ~30-80% (not constant)
 - Leakage power will make it worse as process shrinks
- Process scaling provides higher performance at lower power

Some Implications

- Moore's Law will continue beyond this decade
 - 2X transistors growth per technology generation
- Die size increase will level out
 - Constraint is power not manufacturability
- Frequency will continue to increase
 - Faster process, advanced micro-architecture
 - Reduction of gates per clock will slow down
- What is the future look like?
 - Process technology trend
 - Microprocessor and platform architectural trend

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

Transistor Physical Gate Length

New Process Generation Every 2 Years

Source: Robert Chau, 12/2001 ©2002 Intel Corp.

Process Technology Trends

Intel: To the Terahertz Transistor

Transistor Leadership Continues

0.13µm process

Source: Intel

65nm process

45nm process

32nm process

Raised Source / • Drain

www.intel.com/labs

High-k Gate Dielectric

Fully Depleted Channel

Intel Labs

Robert Yung ©2002 Intel Corp. Page 12

SRAM Cell Size Scaling

- SRAM cell size will continue to scale ~0.5x per generation
- Larger caches can be incorporated on die

Robert Yung ©2002 Intel Corp. Page 13

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

On-chip Interconnect Trend

- Local interconnects scale with gate delay
- Intermediate interconnects benefit from low k material
- Global interconnects do not scale because of RC!

More metal layers may not help

Robert Yung ©2002 Intel Corp. Page 15

Pipe Length vs. Frequency Trend

- As feature size reduces, longer pipeline enables higher frequency
- Performance benefits from higher frequency, advanced microarchitectural techniques, larger caches

Robert Yung ©2002 Intel Corp. Page 16

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

Power Density: Cache vs. Logic

Past: Thermal Uniformity

Present: Logic vs. Cache

- As die temperature increases, CMOS logic slows down
- With low power density (past), can assume uniformity
- With increasing power density and on-die caches, need to consider simplistic non-uniformity

Power Density: The Future

- With high power density, cannot assume uniformity
 - As die temperature increases, CMOS logic slows down
 - At high die temp., long-term reliability can be compromised

Power Management Max F

Max Performance

- Intel Speedstep® Technology (Geyserville)
 - Voltage-freq scaling with active thermal feedback
 - Multi-operating states from high perf. to deep sleep
- Throttling to reduce instruction rate
- Power management reduces average and peak power dissipation
 Transl. Static legis alsolation and it never planes active power.
 - Trend: Static logic, clock gating, split power planes, active power mgmt.

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

Microprocessor Packaging

- 1971 4004 Processor
 - -16-pin ceramic package
 - wire bond attach
 - 750Khz I/O

- 2002 Pentium[®] 4 Processor
 - 478-pin organic package
 - flip-chip attach
 - -133Mhz, quad-pumped I/O

Page 22

Robert Yung

©2002 Intel Corp.

FCPGA vs. BBUL

- Package built around die
 ⇒ shorter profile
 ⇒ smaller form factor
- Results in lower inductance, higher frequency

- Process Driven Trends
 - Moore's Law
 - Transistors: Frequency, Power, Gate Length
 - Interconnection: Wires
 - Power Dissipation
 - Packaging
- Architecture Driven Trends
 - Increased Parallelism
 - Cache And Memory
 - Input/Output
- Conclusion

CPU, Memory Sensitivity of Apps

Apps Show Different Sensitivity To Bandwidth And CPU Frequency

Processor-DRAM Gap (latency)

Processor-DRAM Gap Grows >40% Year

Bus Bandwidth Trend

Memory And I/O Bandwidth Are Crucial For High Performance

Cache Memory Trend

- Hierarchy of caches reduce widening CPU-memory gap
 - Reduce average miss rates
 - Reduce average memory access latency

Itanium[®] 2 Processor

Transistors: 221M

Caches, I/O: 3.3MB or ~170M (75%)

Core: ~51M (25%)

Die size: 19.5 x 21.6mm = 421 mm²

Caches, I/O: L3C ~50%; others ~16%

– Core: 142mm² (34%)

Caches becoming an increasing portion of the die because of its performance impact and low power density

Conclusion

- Moore's Law will continue beyond this decade
 - 2X transistors growth per technology generation
 - 30nm and smaller transistors realized
- Die size increase will level out
 - Constraint is power not manufacturability
 - Increasing cache sizes and multi-cores on die enable performance increase within power constraint
- Towards 10Ghz microprocessor in this decade
 - Faster process
 - Advanced architectural and circuit techniques
- Processor-Memory gap continues to grow
 - Larger caches help reduce impact
 - Innovative processor-cache memory design crucial to continual performance scaling

Page 31