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“Despite the simple outward appearance of the clocking system, it is often a source of 
considerable trouble in actual systems” – Unger and Tan, 1986. 

 
“A well planned clock system is a prerequisite to reliable long-term computer operation. 
Conversely, a badly designed clock system can plague a computer throught it’s lifetime 

- Kenet Wagner, IBM  

Introduction 

Clocking of a digital system is one of the single most important decisions. 
Unfortunately much too often it has been taken lightly at the beginning of a design 
and proven to be very costly afterwards. This very well summarized in the words 
of Kenet Wagner of IBM. Thus, it is not pretentious to dedicate an entire book to 
this subject. However, we are limiting this book to even narrower issue of clocked 
storage elements, widely known as Flip-Flops and Latches. The issues dealing 
with clock generation, frequency stability and control, and clock distribution are 
too numerous to be treated in depth in this book, thus they will be mentioned and 
covered only briefly. We hope there will be another book in this series dealing 
with those issues only as we will find it to be very useful and necessary for the 
complete coverage of the subject. 

 
The importance of clocking is becoming even more emphasized as the clock 

speed has been rising rapidly doubling every three years. 
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Fig. 1. Clock frequency versus year for various representative machines 

 



At these frequencies ability to absorb tens of pico-seconds of clock skew or to 
make the clocked storage element faster for the same amount could result in 10% 
or more performance improvement since the performance is directly proportional 
to the clock frequency of a given system. Such performance improvements are 
very difficult to obtain through traditional techniques used on the architecture or 
micro-architecture level. Thus, setting the clock right and taking every available 
pico-second out of the critical path is becoming increasingly important. However, 
as the clock frequency reaches 5-10GHz range it our opinion that traditional 
clocking techniques will be reaching their limit. New, ideas and new ways of de-
signing digital systems will be required. We do not pretend to know the answers, 
but some hints will be given throughout of this book to what we feel may be a 
good path to follow in the future designs. 
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*from IEEE Design & Test of Computers 

Fig. 2. Clock frequency of some known historic computers and super-computers such as 
Cray and Cyber. 

Historically computers were large in size filling up several electronic cabinets, 
which were laid out occupying an entire floor of a large air-conditioned room. 
They were built from discrete components using few of the LSI chips in the later 
models. Those systems were clocked at frequencies of about a MHz or few tens of 
MHz. Given the low scale of integration it was possible to “tune” the clock i.e. to 
either adjust the length of wires distributing clock signals or “tune” the various de-
lay elements on the cabinets or the circuit boards so that the arrival of the clock 
signal to every circuit board can be adjusted to approximately the same point in 
time. With advent of VLSI technology the ability to “tune” the clock has virtually 
disappeared. The clock signals are generated and distributed internally in the VLSI 
chip. Therefore much burden has fallen onto the clocked timing element to absorb 
clock signal variations at various points of the VLSI chip, also known as the 
“clock skew”.  

 
 



Clocking in Synchronous Systems 

The notion of clock and clocking is essential for the concept of synchronous 
design of digital systems. The synchronous system assumes a presence of the stor-
age elements and combinational logic, which together comprise a Finite-State Ma-
chine (FSM). The changes in the FSM are in general result of two events: input 
signal changes and clock as illustrated in Fig.3.  
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Fig. 3.  The concept of Finite-State-Machine 

The next state Sn+1 is a function of the present state and the logic value of the 
input signals: Sn+1 =  Sn+1(Sn,  Xn). Therefore the remaining question is when in time 
will the next state of the storage Sn+1 , elements be assumed ? This depends on the 
nature of the clocked storage elements used and the clock signal, which is intro-
duced for that purpose. Therefore the presence of the clock signal introduces the 
reference point in time when the FSM changes from the present Sn to the next state 
Sn+1. This process is illustrated in Fig.4. 
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Fig. 4. State changes in the Finite-State-Machine 

In Fig.4. we have implicitly assumed that the moment when the state changes 
from Sn to Sn+1 is determined by the change of the clock signal from logic “0” to 
logic “1”. However, this is in fact determined by the nature of the clocked storage 
elements used and will be discussed in details further in this book. For the purpose 
of this discussion let us just observe that without the presence of the clock signal 
this change from Sn to Sn+1 will not be precisely determined. There are digital sys-
tems where this change is not caused by the presence, and more precisely, by the 
change of the clock signal but by the change of the data signal, for example. Such 
systems are known as “asynchronous systems” because they do not require the 
presence of the clock signal in order to cause an orderly transition from Sn to Sn+1. 
Much research has been done in the last several decades in defining a workable 
“asynchronous system”. However, a practical design is yet to be produced. Re-
cently one of the microprocessors was design to operate in the asynchronous man-
ner and it has been claimed that some small advantages in power consumption 
were obtained [ARM processor]. In spite of that, the practicality as well as advan-
tage of “asynchronous design” is yet to be proven. 

 
Throughout of this book however, we will be staying with the discussion of the 

synchronous systems. 
 
If we choose to unroll in time the state diagram of the FSM we can obtain the 

illustration of the pipelined design. In many cases when dealing with the synchro-
nous design the delay thought the logic block is excessive and the signal change 
can not propagate to the inputs of the clocked storage elements in time to affect 
the change to the next state . In such a case, the machine has not met the “critical 
path requirement”, i.e. it will fail in its functionality because the changes initiated 
by the input signals will have no effect. This is the case because the time allowed 
until the change to the next state Sn+1 is to be achieved is too short and the change 



on the input signals simply did not have sufficient time to propagate. In technical 
jargon this is known as the “critical path violation”. In such cases, an additional 
state (or states) is inserted to assure that every transition proceeds orderly and in 
time. A diagram of a pipelined system is shown in Fig. 5. 
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Fig. 5. Diagram of a pipelined system. 

Several clock cycles may be needed in order to move through various stages of 
a computer system in time. In general, execution of an instruction may require 
several “machine cycles”. This is especially true if micro-code is used to control 
the machine. In the past micro-coding was a popular concept and it was exten-
sively used in Complex Instruction Set Machines (CISC). In those cases a process 
of executing an instruction required several machine cycles. During each machine 
cycle a micro-instruction was executed. It normally took several micro-
instructions to execute an instruction. Each machine cycle required one or several 
register transfers or pass through several pipeline stages. That in turn required one 
or more clock cycles, or multiple phases of the clock. Thus, clocking was quite 
complex and encompassed several levels of hierarchy. This is illustrated in Fig. 6. 
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Fig. 6. Machine execution phases with respect to the clock cycles 

Obviously, in micro-coded machines there existed a large disparity between the 
speed of the clock and the speed of logic. It could take several clock cycles or 
even several tens or hundreds of clock cycles in order to execute one instruction. 
The more complex instruction required many more clock cycles. A number of 
“logic levels” in the “critical path” (the number of gates in the longest path 
through the logic) was in order of several tens and 40-50 logic levels were not un-
common.  Thus, the time associated with the clock and clocking was not as critical 
as it is today. 

 
As the level of integration increased, followed by a speed increase of today ma-

chines, the number of logic levels in the critical path diminished rapidly .  In to-
day’s high-speed processors that are either characterized by the Reduced Instruc-
tion Set Computer (RISC) architecture, or are using ROPs (RISC operations) in 
their micro-architecture, the concept of micro-coding has almost disappeared and 
so did the concept of machine cycle. The instructions are executed in one-cycle, 
which is driven by a single-phase clock. In other words one instruction is executed 
at every clock cycle. The levels of hierarchy that existed between the clock cycle 



and instruction execution have disappeared. In addition the pipeline depth keep 
decreasing in order to accommodate the trend in ever-rising speed. Today 10 lev-
els of logic in the critical path are more common and this number is still decreas-
ing as illustrated in Fig. 7. Thus any overhead associated with the clock system 
and clocking mechanism in directly and adversely affecting the machine perform-
ance and is therefore critically important. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Increase in the clock frequency and decrease in the number of logic levels in the 
pipeline (courtesy of Intel Corp.) 

 
With this introduction we should be able to understand the function of the clock 

signal before we proceed with some of the definitions. The function of the clock 
signal can be compared to the function of the metronome in music. Similarly, in 
digital system the clock designates the exact moment when the state is changing as 
well as when the next state is to be captured. Also, all the logic operations have to 
finish before the tick of the clock because their final values are being captured at 
the tick of the clock. Therefore, the clock provides the time reference point, which 
determines the movement of data in the digital system. 
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Clock generation and synchronization 

In this section, a short overview will be presented on how the system clock is 
generated, brought on-chip and synchronized with the on-chip clock. In addition, 
two typical clock aligner topologies are discussed, and main noise sources out-
lined leading to some well-known design tradeoffs. 

System clock 

Clock generation begins on a system board, where the global system clock ref-
erence is generated from a "crystal" oscillator. This is a circuit that uses a piezo-
electric quartz crystal or some ceramic materials, as a mechanical representation 
of an electrical LRC series resonant circuit. Piezoelectric effect in a material oc-
curs with the exchange in energy between the mechanical compression and ap-
plied electric field. In quartz crystal, the physical dimensions of the lattice can 
very precisely determine the oscillation frequency. Very good property of such 
resonators is ext remely high Q-factor, typically 1000-10000. By attaching a non-
linear element (such as NFET) to the resonator, the series resistance of the resona-
tor is cancelled by the negative resistance of the non-linear element and "loss-less" 
oscillations are maintained. Due to the high quality Q factor, the variation of the 
resonant frequency of the oscillator is only a few parts-per-million (ppm).  

System clock is set to directly correspond with the speed of data busses on the 
system board, i.e. from 66MHz, 100MHz, 133MHz in PC boards, to a few hun-
dred MHz in specialized systems. However, the on-chip clocks operate at frequen-
cies that are in GHz range. Even if the on-board clock signal of the same fre-
quency as on-chip clock, could be generated, it would be very hard to bring it on-
chip, because of large parasitic capacitances and inductances in the package and 
bondwires/balls that connect to the die. From these reasons, the low frequency 
system clock is first brought on-chip and then frequency multiplication is per-
formed to achieve desired on-chip clock rate. 
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Fig. 8. On-chip clock skew 

 
With the increase in on-chip clock frequency, it became necessary to eliminate 

the delay between external and internal clock (clock skew) caused by the on-chip 



clock driver delay, as shown in Fig. 1 with inverter chain representing the equiva-
lent of the clock driver tree, and flip-flops/latches, the total clock load. Several nF 
of clock load are routinely encountered in modern microprocessor designs, [1]. 
This requires 5 or more FO4 delays through the clock driver, easily attributing to 
over 50% of the processor cycle time and causing large setup/hold times for the 
input/output signals. Moreover, due to process and environmental variations, the 
delay of the clock driver may vary, causing unknown phase relationship of the ex-
ternal and internal clock. This problem can be solved using the phase-locked-loop 
(PLL). The main task of the PLL is to align the external reference clock with the 
on-chip internal clock at the end of the clock driver, thus effectively removing the 
driver delay (skew).  

On-chip clock generators/aligners 

There are two main types of PLLs. In first type, the PLL has its own voltage 
controlled oscillator (VCO) that generates the internal clock which is then aligned 
to the external reference clock by the virtue of negative feedback, as shown in Fig. 
2. The phase difference between the external reference clock and the internal dis-
tributed clock is detected with the phase detector, PD, and low-pass filtered, LP, to 
create the control voltage for the VCO, steering the oscillation frequency in such 
direction as to align the external and internal clocks achieving ideally a zero phase 
difference, at which a so called lock is achieved, [2]. This type of PLL was intro-
duced first and hence, historically kept the name PLL.  
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Fig. 9. The phase-locked loop block diagram and operation 

The other type of the PLL is delay-line based or delay-locked loop (DLL). As 
shown in Fig. 3, the VCO in the PLL is replaced by the voltage controlled delay -
line (VCDL) which delays the external clock, feeding the clock driver, until the 
internal clock becomes aligned with the external clock, at which point the control 
voltage of the VCDL will become unchanged and the loop will stay in lock. The 
key point to realize is that in both PLL and DLL, the alignment is possible because 
both external and internal clocks are periodic, hence delaying them by an int eger 
number of cycles with respect to each other results in delay cancellation. Other-



wise, it would not be physically possible to subtract the delay (skew). It is only 
possible to add some more delay until the total delay becomes integer number of 
clock cycles. 
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Fig. 10. The delay-locked loop block diagram and operation 

In addition to clock alignment, PLLs can perform frequency multiplication, 
which is very useful in microprocessor systems, as explained above. Fig. 3 shows 
general block diagram where the VCO operates at fvco=fext×B×C/A, and the fre-
quency of the internal clock is fint= fvco/B. Typically, the value of B is two, to 
guarantee 50% duty cycle of the internal clock, the value of A is one, while the 
value of C is set to the ratio between the desired internal clock frequency and the 
external (system) clock frequency [1], always conveniently set to be an integer 
value, preferably base two. There are, however, cases where multiple values of A, 
B and C are used in the power-up sequence to avoid excessive supply noise on 
large chips, like Alpha 21264, [3]. 
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Fig. 11. PLL frequency multiplication 

VCO is built either as a ring oscillator topology or LC tank oscillator, with later 
becoming possible with the use of on-chip spiral inductors. VCDL can be built of 
the same delay elements as the ring oscillator VCO. Most often used delay ele-
ments are differential pairs which provide good power supply rejection, and re-
cently popular, inverters, with power supply regulator that performs power supply 



filtering and effectively shields the inverters of any power supply noise, [3], [6]. 
For details on other building blocks of the PLL and DLL we refer the reader to 
[2], [4], [5] for further exploration. The following section briefly describes some 
of the most important noise sources and tradeoffs involved in PLL and DLL de-
sign as well as comparative analysis of PLL vs. DLL performance. 

Main noise sources and optimal loop bandwidth 

For the purposes of high-level analysis, we divide the noise sources into three 
main categories: 1) noise of the reference clock, 2) noise induced in the VCO 
(VCDL) and 3) noise induced on the clock during distribution from the PLL 
(DLL) to the latch/flip-flop, here defined as clock driver noise. Since these noise 
sources are introduced into the loop at different locations, the transfer functions to 
the output are different for each of them. For example, input reference noise is low 
pass filtered at the output of the PLL, with filter bandwidth set by the bandwidth 
of the PLL. On the other hand, input reference noise passes directly to the output 
of the DLL, through the VCDL, without any filtering. Noise induced in the VCO 
is fed-back to the VCO input (in ring-oscillator implementation) and "accumu-
lated", [4]. Any noise induced in VCO or VCDL is tracked and rejected by the 
loop, up to the loop bandwidth. Therefore, the transfer function of noise from 
VCO (VCDL) to the output is high-pass, contrary to the one from the input refer-
ence to the output. This immediately points to the possible tradeoff between the 
amount of input reference noise and VCO noise, at the output of the PLL. Indeed, 
optimal bandwidth exists at which these two noise sources are balanced and 
minimum total noise is achieved, [7]. In summary, DLLs have better performance 
in cases where reference clock is clean and most dominant noise occurs from the 
noise induced in the VCDL line. PLLs are, however, better in cases where the in-
put reference noise is dominant, and typically worse in cases of dominant noise 
induced in the VCO, due to the noise "accumulation" effect, given that compared 
VCOs and VCDLs are implemented using the same type of delay element. 

The analysis above is somewhat blurred in modern systems, due to the noise 
induced in the clock driver. While VCOs and VCDLs are typically implemented 
using 3-6 delay stages, due to the increasing amount of clock load, clock driver 
depth increases from generation to generation, and is over 5 stages in modern 
processors. Given that sensitivity of the delay elements in VCO or VCDL is typi-
cally order of magnitude better than that of the inverter, which has 1% delay varia-
tion for 1% power supply variation, it can be easily seen that the overall noise of 
the distributed on-chip clock is usually dominated by the noise induced in clock 
driver tree. 

Regarding the design of the PLLs and DLLs, PLLs are typically harder to de-
sign, due to the stability issues (PLL is a second order system due to the integrat-
ing function of the VCO), but offer more flexibility than DLLs, i.e. wider locking 
range, frequency multiplication, etc. DLLs are simpler to design, given that they 
are first-order systems (unconditionally stable), but offer limited lock range. How-



ever, it is true that more complicated DLLs that offer similar flexibility to PLLs 
are also very complex systems, [8]. 

PLLs are mostly used in modern processors to multiply the frequency of the ex-
ternal system clock and reject any existing high frequency reference clock noise. 
DLLs have recently found application as de-skewing elements in high-
performance processors, synchronizing different clock domains on a die to the 
global clock reference from the PLL, [9], [10]. It should be noted, however, that 
these approaches only deal with the DC portion of the noise on the clock (skew), 
while AC portion of the noise (jitter) is not eliminated as discussed above. The jit-
ter induced in the clock driver by power supply variations still presents dominant 
source of noise in the on-chip clock distribution and needs to be budgeted for in 
any clocking methodology. 

 

Clock System Design 

 
Clock system is usually divided into two distinct categories: Clock Generation 

and Clock Distribution. However, this classification should be extended by adding 
Clocked Storage Elements  as an additional category because the nature of clocked 
storage elements is intimately connected to the clock system generation and distri-
bution and it is the nature of clocked storage elements that dictates requirements 
imposed on the clock system. This relationship is the best illustrated by the choice 
of the clocking scheme as show in Fig. 8. The clock system could consist of a sin-
gle-phase clock, two-phase, or multiple phase clocks. 
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Fig. 12. System Clocking Schemes: (a.) single-phase, (b.) two -phase, (c.) multiple-phase 
clock 

 
In the older system it was more common to see multiple-phase clocks. As the 

frequency of operation keep increases it became increasingly difficult to control 
various phases of the clock and their relationship to each other.  

 
The two-phase clock is a robust scheme and is compatible with the design for 

testability, a desired feature of a complex computer system. Such a scheme, which 
incorporates a test mode, has been used in generations of IBM mainframe com-
puters as a part of Level Sensitive Scan Design (LSSD) design methodology. The 
two non-overlapping phases of the clock assure a robust clocking system, tolerant 
to the manufacturing and process parameter changes. 

 
However, as the quest for more speed continued, combined with the increased 

level of integration even the relation between two phases of the clock became dif-
ficult to control on the chip. That lead to the wide spread adoption of a single-
phase clock today. The two-phase clocking is still used in some of the systems, 
however, it is a single-phase clock that is distributed thought the system and the 
two necessary phases are generated locally. This technique achieves two goals: 
(a.) necessary amplification of the clock signals and ability to drive a large row of 
storage elements (register for example), (b.) generation of two clock phases and 
compatibility with scan test methodology. A scheme used for local two phase-



clock generation from a single-phase clock distributed on the chip is shown in Fig. 
9. Such a scheme is also capable of supporting the TEST (SCANN) mode. 
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Fig. 13.  Local generation of two -phase clocks as used in IBM PowerPC. 

 

Clock Generation and Clock Distribution 

Usually clock signal is generated using quartz crystal controlled oscillator to 
provide accurate and stable frequency. Given the size limitation of the quartz crys-
tal, the frequency of such generated clock signal cannot be very high and frequen-
cies in excess of 30-50 MHz are rarely generated using quartz crystal. The clock 
signal is conditioned and amplified to reach desirable driving strength before it is 
being applied to the outside pins of a VLSI chip from which it is driving an inter-
nal PLL or DLL. Before reaching the boundaries of the VLSI chip adjustments to 
its shape and form are possible. In older computer systems that consisted of sev-
eral electronic cabinets distributed over the “computer floor”, and containing 
number of printed circuit boards, adjustment to the clock signal were made at each 
level. Thus, the clock signals were distributed over longer distances and over sev-
eral levels including the cabinet, printed circuit boards and modules internal to 
them. Those separate entities entered by the clock signal were referred as “logic 
islands”, the term introduced by Amdahl. The concept of “logic islands” is illus-
trated in Fig. 10. 
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Fig. 14.  The concept of Logic Islands [D&T of Computer; Wagner] 

At the point of the clock entry to the board or cabinet (referred to as an “is-
land”), further tuning and delay adjusting of the clock signal is possible, as shown 
in Fig. 11. Those elements are usually referred to as “tuning points”. The position-
ing of “tuning points” in a system is illustrated in Fig.11. Various clock shaping, 
forming and tunable delay elements are employed, some of them are illustrated in 
Fig. 12. They make it possible to control the timing of the “leading” as well as 
“trailing edge” of the clock signal and to produce and “early” as well as “late” 
clock signal with reference to the nominal clock.  

By adjusting the clock delay and subsequently shaping the edges of the clock 
signal it is possible to create “early”, “nominal” and “late” clocks as shown in Fig. 
13 c. Those clocks can be routed to various points on the board accordingly. It is 
obvious that older systems had much greater control of the clock signal than what 
is possible today because once the clock reaches the boundary of the LSI chip, 
tuning and shaping of the clock is not possible. This is because it is much more 
difficult to perform tuning on the chip due to the lack of external control and 
greater parameter variations on the chip. It is also difficult to build tuning ele-
ments such as inductors on the chip and to make adjustments from outside. 
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Fig. 15.  Clock Tuning Points [Wagner, D&T] 

 
With the advent of integration the systems have shrunk dramatically in size. 

Today a processor including several levels of cache memory contained entirely on 
a VLSI chip is quite common. The capacity of a VLSI chip for hundreds of mil-
lions of transistors makes it possible to int egrate not only one processor but also a 
multi-processor system onto a single chip. The inability to introduce tuning ele-
ments on the chip further aggravates the problem of distributing the clock signals 
precisely in time since it is not possible to make further adjustment to the clock 
signal once it has crossed the boundaries of the VLSI chip. Therefore a careful 



planning and design of the on-chip clock distribution network is one of the most 
critical tasks in a high performance processor design. 
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Fig. 16.  Various clock shaping elements and obtained clock signals [Wagner] 
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Fig. 17. Clock distribution network within a system (a), on the board (b) tuning of the clock 
(c) [Wagner D&T] 

Typically on a complex processor chip the clock signal has to be distributed to 
several hundreds of thousands of the clocked timing elements (known as flip-flops 
and latches). Therefore, the clock signal has the largest fan-out of any node in the 
design, which requires several levels of amplification (buffering). As a conse-
quence of such a load imposed to the clock signal, the clock system by itself can 
use up to 40-50% of the power of the entire VLSI chip  [Alpha Gronowsky-98].  
However, it is not only the power that represents the problem associated with the 
distribution of the clock signals. Since we are dealing with synchronous systems 



we must assure that every clocked storage element receives the clock signal pre-
cisely at the same moment in time. Tracing the path of the clock signal from its 
origin, entry point to the VLSI chip to different clocked storage elements receiv-
ing it, the clock signal traverses different paths on the VLSI chip. Those paths may 
differ quite a bit in several attributes such as: the length of the path (wire), the 
physical properties of the material along different paths, the differences in clock 
buffers on the chip as a consequence of the process variations and general effects 
of non-uniformities of the chip and of the process. The negative effect of those 
variations on the synchronous design is that different points on the chip will re-
ceive the clock signal at different moments in time. This is known as “the clock 
skew” and will be defined in more precise terms later in this book. 

 
There are several methods for the on-chip clock signal distribution that attempt 

to minimize the clock skew and attempt to contain the power dissipated by the 
clock system. The clock can be distributed in several ways of which it is worth to 
consider the two typical cases: (a) an RC matched tree and (b) a grid shown in Fig. 
14. 

 

 
 
 



 
 

Fig. 18. Clock distribution methods: (a) an RC matched tree and (b) a grid 

An RC matched tree (a) is a method of assuring (to the best of our abilities) that 
all the paths in the clock distribution tree have the same delay which includes the 
same resistance-capacitance as well as the same number of equal size buffers on 
the clock signal path to the storage element. There are several different topologies 
used to implement and RC matched tree. The common objective is to do the best 
possible in balancing various clock signal paths across the variations points on the 
VLSI chip. An example of four different topologies (as taken from Bailey [Anan-
thas book] is shown in Fig. 15. 
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Fig. 19. Different topologies of RC delay matched clock distribution: (a) a binary tree (b) 
and H tree (c) and X tree (d) an arbitrary matched RC matched tree [Bailey] 

If we had superior Computer Aided Design (CAD) tools, a perfect and uniform 
process and ability to route wires and balance loads with a high degree of flexibil-
ity, a matched RC delay clock distribution (a) would be preferable to grid (b). 
However, neither of that is true. Therefore grid is used when clock distribution on 
the chip has to be very precisely controlled. This is the case in high performance 
systems. One such example is DEC Alpha processor, which was a speed champion 
for several generations of microprocessors starting with their first 200MHz design 
introduced in 1992 and ending with 600MHz design in 1998 [references to alpha]. 
The picture of the clock distribution grid together with the clock skew is shown in 
Fig. 16. However, the power consumed by the clock is also the highest in cases us-
ing grid arrangement. This is not difficult to understand given that in a grid ar-
rangement a high-capacitance plate has been driven by buffers connected at vari-
ous points. 

 



 
Fig. 20. Clock distribution grid used in DEC Alpha 600MHz processor [Jo SSC, Nov 98] 

Timing parameters 

It is appropriate at this point to consider the clock distribution system and de-
fine the clock parameters that will be used thought this text. For the purpose of the 
definition we should start with the Fig. 17 showing timing parameters for a single-
phase clock.  

The clock signal is characterized by its period T which is inversely proportional 
to the clock frequency f. The time during which the clock is active (assuming logic 
1 value) is defined as clock width W. The ratio of W to T-W is also defined as 
clock duty cycle. Usually clock signal has a symmetric shape, which implies 50-50 
duty cycle. This is also the best we can expect, especially when distributing a high 
frequency clock. Another important point is the ability to precisely control the 
duty cycle. This point is of special importance when each phase of the clock is 
used for the logic evaluation, or when we trigger the clock storage elements on 
each edge of the clock  (as we will see later in the book). Some recently reported 
work demonstrates the ability to control the duty cycle to within +-.5% [Al-
pha600-Jossc]. 

There are two other important timing parameters that we need to define: Clock 
Skew and Clock Jitter . 
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Fig. 21. Clock Parameters: Period, Width, Clock Skew and Clock Jitter 

Clock Skew  

Clock skew is defined as a spatial variation of the clock signal as distributed 
thought the system. The clock skew is measured from some reference point in the 
system: the clock entry point to the board or VLSI chip, or the central point from 
where the clock distribution starts. Due to the various RC characteristics of the 
clock paths to the various points in the system, as well as different loading of the 
clock signal at different points the clock signal arrives at different time to different 
points. This difference measured from the reference point to the particular timing 
element is defined as the clock skew. Further we can distinguish global clock 
skew  and local clock skew . Our definition of the clock skew describes global 
clock skew. Clocks skew occurring between two adjacent clocked storage ele-
ments that are connected and with no logic in-between can represent a problem of 
data race-through. Therefore characterizing a maximum clock skew between two 
adjacent timing elements is important. A maximum clock skew between two adja-
cent timing elements is defined as local clock skew. Both of them are equally im-
portant in high -performance system design.  

Clock Jitter 

Clock jitter is defined as temporal variation of the clock signal with regard to 
the reference transition (reference edge) of the clock signal as illustrated in Fig. 
17. Clock jitter represents edge-to-edge variation of the clock signal in time. As 
such clock jitter can also be classified as: long-term jitter and edge-to-edge clock 



jitter, which defines clock signal variation between two consecutive clock edges. 
In the course of high-speed logic design we are more concerned about edge-to-
edge clock jitter because it is it is this phenomena that affects the time available to 
the logic. Long term jitter usually affects the processes associated with communi-
cation and synchronization between various blocks within a system that need to 
operate in synchrony with each other. 
 
 

Theory of Storage Elements  

The function of storage elements: flip-flops and latches, is to capture the infor-
mation at a particular moment in time and preserve it as long as it is needed by the 
digital system. Having said so, it is not possible to define a storage element with-
out defining its relationship to some mechanism in a digital system, which is used 
to determine time. This definition is general and should include various ways of 
implementing a digital system, including asynchronous systems. More particularly 
the element that determines time in a synchronous system is the clock. 

Latch based Storage Elements 

A simplest storage element consists of an inverter followed by another inverter 
providing a positive feedback. The information bit at the input is thus locked do to 
the feedback loop and it can be only changed “by force” – i.e. by forcing the out-
put of the feedback inverter to take another logic value. This configuration is very 
frequently used and is also known as “keeper” – a circuit that keeps (preserves) 
the information on a particular node.  

If we were to avoid the power dissipation associated with overpowering (forc-
ing) the keeper to change its value we must introduce nodes that will help us in 
changing the logic value stored in the feedback loop. For that purpose we are free 
to use logic NAND or NOR gates, as shown in Fig. 18. Particularly interesting is a 
simple modification of the diagram, which highlights the Sum-of-Products nature 
of this logic topology shown in Fig. 18 (c). This topology will lead us later to the 
“Earl’s Latch” which was used extensively in IBM mainframe machines [Ealr-
Halin -Flyn]. 
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Fig. 22.  Latch structure: (a.) keeper (b.) S-R latch (c.) SOP latch (d.) derivation 

 
It is easy to derive a Boolean equation representing a behavior of present ed S-R 

of latch. It is important to note that the next output Qn+1 is a function of Qn, S and 
R signals. Later in this book we will exploit those simple dependencies in order to 
design improved clocked storage elements. Presented S-R latch can change the 
output Q at any point in time. In order to make it compatible with the synchronous 
design we will restrict the time when Q can be affected by introducing the clock 
signal which gates S and R inputs. If the data input D is connected to S, and the 
property of S-R latch, which makes S and R mutually exclusive is applied, the re-
sulting D latch is shown in Fig. 19 (a). The associated timing diagram of a D-
Latch is shown in Fig. 19 (b). The latch is “transparent” during the period of time 
in which clock is “active” – i.e. assuming logic 1 value. 
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Fig. 23. (a) Clocked D-Latch (b) timing diagram of clocked D-Latch 

The realization that a latch can be built in a Sum-of-Product topology (Fig. 18. 
(c) ) tells us that is possible to incorporate logic into the latch, given that the Sum-
of-Products is one of the basic realization of the logic function. This leads us to 
the “Earl’s Latch” which was invented in the course of development of a well-
known IBM S360/91 machine [reference to IBM 360]. Basic Ealr’s Latch configura-
tion is shown in Fig. 20 (a), while a latch implementing Carry function is shown in 
Fig. 20 (b). 
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Fig. 24. Basic “Earl’s Latch” (a) Implementing “Carry” function (b) 

 
In order to avoid the transparency feature introduced by the latch, an arrange-

ment is made in which two latches are clocked back to back with two non-
overlapping phases of the clock. In such arrangement the first latch serves as a 
“Master” by receiving the values from the Data input and passing them to the 
“Slave” latch, which simply follows the “Master”. This is known as a Master-
Slave (M -S) Latch arrangement or L1 – L2 latch (in IBM). This is not to be con-
fused with the “Flip-Flop”, though it seems that many practitioners today do erro-
neously call this arrangement a Flip-Flop (F-F). We will insist on the terminology 
that distinguishes Flip-Flop from M-S Latch and we will explain the fundamental 
differences between the F-F and M-S Latch later in this book. 
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Fig. 25.  Master-Slave Latch arrangement with: (a) non-overlapping clocks (b) single ex-
ternal clock (c) timing diagram. 

In a Master-Slave arrangement the “Slave” latch can have two or more masters 
acting as an internal multiplexer with storage capabilities. The first “Master” is 
used for capturing of data input while the second Master be used for other pur-
poses and can be clocked with a separate clock. One such arrangement, which util-
izes two Masters is a well known IBM Level-Sensitive-Scan-Design (LSSD).  

 
In LSSD design (shown in Fig. 40 and 41) during the normal operation the sys-

tem is clocked with clocks C and B and the storage elements are acting as standard 
M -S latches. However, all storage elements in the system are interconnected in a 
long shift register using the alternate Master. The input and the output of such 
shift-register are brought out to the external pins. In the test mode the system is 
clocked with A and B thus, acting as a long shift register so that the state of the 
machine can be scanned out of the system and/or a new state scanned in. This 
greatly enhances the controllability and observability of the internal nodes of the 
system. LSSD became a mandated standard practice of all IBM designs and it has 
migrated into the industry as a “Boundary Scan” IEEE Standard 1149. 
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Fig. 26. IBM LSSD compatible storage element 

True-Single-Phase-Clock (TSPC) Latch  

TSPC Latch (Fig. 21), developed by Afghahi and Svensson [Afghahi, Svens-
son] is a fast and simple structure that uses a single-phase clock. This latch was 
constructed by merging two parts consisting of CMOS Domino and CMOS 
NORA logic. During the active clock (Clk=1), CMOS Domino evaluates the input 
in a monotonic fashion (only a transition from logic 0 to 1 is possible), while 
NORA logic is pre-charging. Alternatively during inactive clock (Clk=0) Domino 
is being pre-charged (thus non-transparent) while NORA is evaluating its input. 
The combination of NORA and Domino logic blocks results in a Master-Slave 
Latch that requires only a single clock (TSPC). 
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Fig. 27. True Single Phase Clock (TSPC) Latch introduced by Afghahi and Svenson [Afgh-
Svenson] 

 



The operation of TSPC latch is illustrated in Fig. 22. While Clk=0, the fist in-
version stage is transparent and the second half of TSPC is pre-charged. Thus, at 
the end of the half-cycle during which Clk=0, the input D is present at the input of 
the Domino block as its complement D . When the clock switches to logic 1 
(Clk=1), Domino logic evaluates and the output Q either stays at logic 0 or makes 

transition from 0 to 1 depending on the sampled input value D . This transition 
cannot be reversed until the next clock cycle. In effect the fist inverter connected 
to the input acts as a “Master Latch”, while the second (Domino) stage acts as a 
“Slave Latch”. The transfer from Master Latch to Slave Latch occurs while the 
clock changes its value from logic 0 to logic 1. Thus, TSPC behaves as a “raising 
edge” triggered Flip-Flop. It is also frequently called a Flip -Flop, though by the 
nature of TSPC operation this classification is incorrect. 
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Fig. 28. TSPC Latch operation 

Due to its simplicity and speed TSPC was very popular way of implementing 
clocked storage element. However, TSPC structure suffered a drawback exhibited 
in sensitivity to glitches created by the clock. This glitch is exhibited on the output 
holding a logic value of “1”, while the input is transitioning from D=0 to D=0.  

Pulse Register Single Latch 

Recognizing the overhead imposed by Master-Slave latch design and the haz-
ards introduced by a single-latch design, an idea of a single latch design clocked 



by locally generated short pulses evolved. The idea is to make a clock pulse very 
short and thus reduce the time window during which the latch is transparent. There 
still exist a hazard of “short paths” that may be captured during the same clock. 
Given that the clock pulse is short this hazard is greatly reduced and it is possible 
to “padd” (add inverters) those paths so that they would not represent a problem.  
However, such a short clock cannot be distributed globally because the clock dis-
tribution network would absorb it. There is also a danger because due to the proc-
ess variations the duration of that clock pulse will vary from place to place and 
from chip to chip. Therefore the pulse clock is generated locally and it usually 
drives a register consisting of several such single-latches physically located very 
close to each other. It is obvious that this method would loose its advantages if 
every single latch would require separate clock generator as seen from Fig. 23 (a) 
and (b).  
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Fig. 29. Pulse Latch: (a) local clock generator, (b) single latch 

The produced by local clock generator must be wide enough to enable the latch 
to latch its data. In the same time it must be sufficiently short to minimize the pos-
sibility of “critical race”. Those conflicting requirements make use of such single-
latch design hazardous reducing the robustness and reliability of such design. 
Nevertheless, such design has been used in some processors due to the critical 
need to reduce cycle overhead imposed by the clocked storage elements. Another 
advantage benefit of this design is low power consumption due to the common 
clock signal generator and simple structure of such a single latch.  

Flip-Flop 

The Flip-Flop and the Latch operate on different principles. While a Latch is 
“level-sensitive” which means it is reacting on the level (logical value) of the 
clock signal, Flip-Flop is “edge sensitive” which means that the mechanism of 
capturing the data value on its input is related to the changes of the clock. Thus, 
the two are designed to a different set of requirements and thus consist of inher-
ently different circuit topology. Level sensitivity implies that the latch is capturing 
the data value during the entire period of time when clock is active (logic one), 



thus the latch is transparent. The capturing process in the Flip-Flop occurs only 
during the transition of the clock (from zero–to-one or from one-to-zero), thus the 
Flip-Flop is not transparent. In fact even the Flip-Flop can have a very small pe-
riod of transparency associated with the narrow window during which the clock 
changes, as it will be discussed later. In general we treat Flip-Flop as a non-
transparent clocked storage element. Given that the triggering mechanism of a 
Flip-Flop is the transition of the clock signal, there are several ways of deriving it 
from the clock. For better understanding it pays to look at an early version of the 
Flip-Flop as used in early computers and digital systems shown in Fig.21. The 
pulse, which causes the change, is derived from the clock by using a simple differ-
entiator consisting of a capacitor C and resistor R. One can also understand a dan-
ger introduced by the Flip-Flop. If the clock transition is slow such a derived pulse 
may not be capable of triggering the Flip-Flop. On the other hand, even a small 
glitch on the clock line may cause false triggering.  
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Fig. 30. Early version of a Flip-Flop (a) Texas Instrument SN7474 (b) 

A general structure of the Flip -Flop is shown in Fig. 22. It is worth noting the 
difference between a Flip-Flop structure and that of the M-S Latch arrangement 
shown in Fig. 19. A Flip -Flop consists of two stages: (a) Pulse Generator - PG (b) 
Capturing Latch - CL. The pulse generator PG generates a negative pulse on either 
S-not or R-not lines which are normally held at logic “one” level. This pulse is a 
function of Data and Clock signals and is of sufficient duration to be captured in 
the capturing latch CL. The duration of that pulse can be as long as half of the 
clock period or it can be as short as one inverter delay. On the contrary M-S Latch 
generally consists of two identical clocked latches and its non-transparency feature 
is achieved by phasing of the clocks C1 and C2 clocking master latch L1 and slave 
latch L2. 
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Fig. 31. General Flip-Flop structure 

 
Particularly interesting is SN7474 Flip-Flop that was introduced by Texas In-

strument as shown in Fig.26 (b). In order to behave as a Flip-Flop (sensitivity to 
the change of the raising edge of the clock), an intricate race is introduced in the 
PG block that prevents any change on S-not and R-not lines after the clock has 
transitioned from logic “zero” to “one”. Analysis of the PG block of SN7474 can 
be done with help of Fig.28 (a) Delay mismatch that can occur due to the process 
variations can result in malfunctioning of this Flip-Flop as shown in Fig. 28 (b). 
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Fig. 32. Pulse Generator block of SN7474 (a) malfunctioning due to a gate delay mismatch 
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The relationship of S-not and R-not signals with respect to Data (D) and Clock 
(Clk) signal can be expressed as: 



 

)( SDRClkSn +=                 and               )( RDSClkRn +=  (1) 

 
The expressions for the next value of the set signal Sn (as well as reset signal 

Rn) provide a quick and simple insight into the functioning of the PG block of this 
Flip-Flop. Simply stated in words the equation for Sn tells us the following:  

 
The next state of this Flip-Flop will be set to “one” only at the time the clock 

becomes “one” (raising edge of the clock), the data at the input is “one”, the flip 
flop is in the “steady state” (both S and R are “zero”). The moment Flip-Flop is 
set (S=1, R=0) no further change in data input can affect the Flip-Flop state: data 
input will be “locked” to set by (D+S)=1, and reset Rn would be disabled (by 
S=1). 

 
This assures the “edge sensitivity” – i.e. after the transition of the clock and set-

ting of the S or R signal to its desired state, the Flip-Flop is “locked” and no 
changes can occur until clock transition to “zero” (making both S=R=0), thus ena-
bling the Flip-Flop to receive the new data. 

 
It is interesting to note that it took engineers several attempts to come to the 

right circuits topology of this Flip-Flop. The Flip-Flop used in the third generation 
of Digital Equipment Corp. 600MHz Alpha processor used a version of the Flip -
Flop introduced by Madden and Bowhill, which was based on the static memory 
cell design [Madden and Bowhill patent]. This particular Flip-Flop is known as 
Sense Amplifier Flip-Flop (SAFF). Development of the Pulse Generator block of 
this Flip-Flop is illustrated in Fig.29. 
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Fig. 33.  Pulse Generator stage of the Sense Amplifier Flip-Flop: Madden and Bowhill 
[patent 4,910,713] (a) Improvement for floating nodes, Doberpuhl [Doberpuhl Stron-
gARM](b) improvement by proper design Nikolic and Oklobdzija [ESSCIRC-99] (c) 

 



The behavior of SN7474 Flip-Flop and Alpha’s SAFF is identical. When set-
ting the Flip-Flop both of them hold S-not (or R-not) line at logic “zero” for the 
duration of the clock active (logic “one”) value and reset them to logic “one” once 
the clock returns to logic “zero” (inactive state). 

 
One of the objectives of this book is to clear up the confusion caused by intro-

duction of various types of clocked storage elements that were introduced under 
various names and classifications. We will examine another way used in practice 
to create the Flip-Flop. In SN7474 disabling of the input is done after a short delay 
necessary to set S (or R) to the next value, thus achieving the “edge property”. 
That short delay is essential and cannot be avoided. It is reflected in the Setup and 
Hold time parameters of the Flip-Flop. 

 
 

Time Window based Flip-Flops  

 
Digital circuits are based on discrete events. Not only are the logic signals a set 

of discrete voltage levels, but also the time is based on either the events of the 
clock (rising or falling edge) or finite delay based on the propagation through one 
or more logic elements used. Therefore, determining when to shut the Flip-Flop is 
also based on discrete time events with reference to the clock, such as one or more 
inverter or gate delay units. The common technique used to generate the time ref-
erence signals is to generate a short pulse using the property of re-convergent fan-
outs with non-equal parities of inversion. This method is illustrated in Fig. 25. The 
trailing edge of this short pulse is used as a time reference for shutting the Flip -
Flop off. By using this short pulse and depending on the particular implementation 
of the Flip-Flop a possible short transparency window of the Flip-Flop may be in-
troduced. This short transparency has been a stumbling block and a source of mis-
understandings in classifying the timing element introduced. One such a Flip-Flop 
introduced as a Hybrid Latch Flip-Flop (HLFF) is a Flip-Flop, which we will use 
as an example in this book. The confusion caused by the short transparency caused 
its inventor to treat it as a latch, but since its behavior was not that of the latch a 
dual name HLFF was the result of it [Partovi HLFF]. HLFF is shown in Fig. 26. 
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Fig. 34.  Method of creating the time reference points for opening and shutting the Flip-
Flop 

 

Fig. 35.  Hybrid-Latch Flip-Flop (HLFF) introduced by Partovi [Partovi HLFF ISSCC] 
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Rigorous analysis will show incompleteness of this design, which resulted in 
imperfections demonstrated by this Flip-Flop. Logic representation of this Flip -
Flop shows two NAND gates connected in series (Fig. 27). The first NAND gate 
creates the pulse if D=1. Data is serving as a pulse enabler or pulse inhibitor, de-
pending of the value of D.  

Fig. 36. Logic representation of Partovi’s Hybrid-Latch Flip-Flop (HLFF) 

 
The problem with this structure comes from its incompleteness in the second 

stage. In order to avoid an excessive number of p-MOS transistors the second 
NAND gate is not complete and its output node is floating when the output node 
X from the first NAND is at logic “one” and the clock pulse has ended. In essence 
this node (X) represents the S-not signal from the pulse generator. The absence of 
the R-not signal, due to the single ended implementation of this Flip -Flop hinders 
that ability to realize the Flip-Flop function completely, as it the case of complete 
SAFF [ESSCIRC, Nikolic, Oklobdzija]. This floating output node is susceptible to 
glitches and even slightest mismatch of clock signals. When data input D=1, the 
output will first capture X=1 followed by X=0 causing a glitch on its output. This 
is an inherent problem of HLFF structure. 

 
More systematic approach in deriving a single-ended Flip-Flop is shown in Fig. 

28. 
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Fig. 37.  Systematically derived single-ended Flip-Flop (Nedovic, Oklobdzija) [Nedovic 
Oklobdzija ICCD2000] 

Flip-Flop shown in Fig. 28. has three time reference points: (a) raising edge of 
the Clk signal, (b) falling edge of the Clk signal after passing through three invert-
ers: Inv1-3, (c) raising edge of the Clk signal after passing through two inverters: 
Inv1-2. T he derivation of this circuit models raising edge triggered Flip-Flop be-
havior using three time reference points. Those equations describing the behaviour 
of this Flip-Flop are presented: 

 
The node X is represented as: 

)*(*)( XClkbbbDCLKbbClkX ++=  (2) 

The nMOS transistor section is a full realization of this equation. The pMOS 
section can be somewhat abbreviated for performance reasons into: 

 

)(*)( XClkbbbCLKbbClkX ++=  (3) 

The second stage(capturing latch) is implemented as:  

)(* QCLKbbXQ +=  (4) 

 
The clock signal Clk, after two inversions is designated as Clkbb while after 

three inversions as Clkbbb. 
 
This Flip-Flop does not have hazards and is outperforming HLFF as well as 

SDFF Flip-Flops [KlassSDFF]. 
 



Flip-Flop and Latch parameters 

 
Flip-Flop and Latch do behave differently, however, it is possible to establish 

some common parameters for both. We will define them on a Flip-Flop and ex-
tend this definition to a Latch. 

 

Setup Time 

First, we should define an “active edge”  of the clock as an event in time caus-
ing the activity of the storage element. For the purpose of the further discussion 
we may temporarily assume that the leading edge (transition from logic “zero” to 
logic “one”) of the clock is the “active edge”. 

 
Setup time is defined as period of time before the active edge of the clock dur-

ing which the data need to be stable in order to assure a reliable storage of infor-
mation into the clocked storage element. 

Hold Time 

Hold Time is defined as a period of time after the active edge of the clock has 
occurred during which the data is not allowed to change in order to assure reliable 
storage of information into the clocked storage element. 

 
Both Setup-Time and Hold-Time define a Sampling Window, which is the total 

time during which data must remain stable in order to assure reliable storage of in-
formation. Further, we define the time during which clock is active (assuming 
logic “one” value) as the Clock Width. For illustration purposes, Setup Time, Hold 
Time, Sampling Window and clock Width for a Flip-Flop are shown in Fig. 29. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Data Q 

Clock 
U 

H 

Q 

TCW 

tQC 



Fig. 38.  Definition of: Setup Time, Hold Time, Sampling Window and Clock Width for a 
Flip-Flop. 

The minimal clock width TCW necessary for reliable capture of data into the 
clocked storage element is not simply equal to the Sampling Window , as it may 
appear, because the clock signal and the data signal may not necessarily have the 
same paths as well as the same loads inside the clocked storage element. 

 
The situation with the latch is different as illustrated in Fig. 30. The setup time 

for the latch starts from the trailing edge of the clock signal because closing of the 
latch is the action that would capture the last data that was present in the latch. In 
addition there are two delay times defined tCQ (as in the Flip-Flop) and tDQ because 
of the two possible scenarios: (a) data being present and waiting for the clock to 
open the latch (b) data arriving while latch is open. 

 

Setup and Hold Time Properties 

 
Having defined Setup and Hold time the question about failing mechanism of 

the clocked storage element remains. When will the process of storing the infor-
mation fail due to the Setup or Hold time violation? This is not an abrupt process 
as the definition of Setup and Hold time implies. If we establish an experiment in 
which we will delay the data arrival closer to the clock we will observe that at first 
Clock-to-Q delay (t CQ) of the storage element will start to increase before the cap-
turing mechanism fails. Similar happens on the other end when Hold time is 
gradually violated. This behavior is shown in Fig. 31. Thus, a valid question is 
raised: how do we define Setup and Hold time? Is it the moment tCQ starts to raise, 
the moment tCQ reaches a certain value, or the moment the clocked storage ele-
ment starts to fail ? Those questions require some careful consideration. Obviously 
we do not want to allow the data to come to close to the failing region from the 
fear that we may have an unreliable design. However, keeping the data too far 
from the failing region takes away our precious cycle time, thus impacting the per-
formance negatively.  
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Fig. 39. Latch: Setup and Hold Time: (a) early data D1 arrival (b) late data D 2 arrival 

 
It would be appropriate to remark that the failure mode of the Flip-Flop does 

not necessarily follow the failure mode of the Latch as a result of the Setup or 
Hold time violations. Depending on the Flip-Flop implementation, violation of the 
Setup or Hold time may lead to oscillations in the Pulse Generator stage of the 
Flip-Flop. As a result, once the oscillation occurred it is unpredictable what the 
output value Q to which the Capturing Latch will be set will be. These oscillations 
in the Flip-Flop usually occur abruptly as opposed to the more gradual delay in-
crease encountered with the latch. Therefore one needs to be much more careful 
with the Flip-Flop than with the latch based design. 

 
This is obviously a dilemma. Some designs resort to establishing somewhat ar-

bitrary number of 5-20% such that the Setup and Hold times are defined as the 
points in time when the Clock-to-Q (tCQ) delay raises for that amount. We do not 
find this reasoning to be valid. A redrawn picture, Fig. 32, where Data-to-Q (tdq) 
delay is plotted answers this question. From this graph we see that in spite of 
Clock-to-Q delay rising, we are still gaining because the time taken from the cycle 
is reduced. In other words the increase is storage element delay is still smaller than 
the amount of time data is delayed, thus allowing more time in the cycle for the 
useful logic operation. However, we are starting to encounter new phenomena 
known under different names such as: “time borrowing”, “cycle stealing” and 



“slack passing”. We will use the term “time borrowing” in the further text. In or-
der to understand the full effects of delayed data arrival we have to consider a 
pipelined design where the data captured in the first clock cycle is used as input 
data in the next clock cycle as shown in Fig. 33. 
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 Fig. 40.  Setup and Hold time behavior as a function of Clock-to-Output delay 

Fig. 41.   Setup and Hold time behavior as a function of Data-to-Output delay 
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Fig. 42.  “Time Borrowing” in a pipelined design 

As it can be observed from Fig. 33., the “sampling window” moves around the 
time axes. As the data arrives closer to the clock the size of the “sampling win-
dow” shrinks (up to the optimal point). However, even though, the sampling win-
dow is smaller, the data in the next cycle will still arrive later compared to the case 
where the data in the previous cycle was ready well ahead of the setup-time. The 
amount of time for which the TRC1 was augmented did not come for free. It was 
simply taken away (“stolen” or “borrowed”) from the next cycle TRC2. As a result 
of late data arrival in the Cycle 1 there is less time available in the Cycle 2. Thus a 
boundary between pipeline stages is somewhat flexible. This feature not only 
helps accommodate a certain amount of imbalance between the critical paths in 
various pipeline stages, but it helps in absorbing the clock skew and jitter. Thus, 
“time borrowing” is one of the most important characteristics of high -speed digital 
systems. 

 

Pipelining and timing analysis 

Analysis of a System with a Single Flip-Flop 

For the proper discussion we should analyze the timing situation in a pipelined 
system. First, we should start with a simplest case of a Flip-Flop and a single 
clock being used in the design. This situation is illustrated in Fig. 34. Much of this 
discussion is taken from the paper by Unger and Tan [Unger & Tan] with some 
slight changes in notation. There are two events that we need to prevent:  



(a) Data arriving too late to be captured reliably in the next cycle. There are 
two possible scenarios here: either the data arrived far too late and is com-
pletely is missed in the next cycle, or it just sufficiently late to be violating 
the setup time requirement of the storage element, thus not assuring reli-
able capture. 

(b) Data arrives too early (during the same cycle), thus violating the hold time 
requirement for the Flip -Flip. 
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Fig. 43.  Timing in a digital system using a single clock and Flip -Flops 

In either of the cases we can not assure that the data will be capture in the next 
cycle, therefore we are not able to guarantee a reliable operation of the system. In 
order to perform a simple analysis of this system, let us assume that the clock 
skew and jitter combined can cause a maximal deviation of the leading edge of the 
clock for TL amount of time from the nominal time of arrival (and TT for the trail-
ing edge). If we set the time reference to t=0 for the nominal leading edge of the 
clock for the Cycle 1 than we have a following relations: 

 

CRCQMLDLN tDTt ++=   (5) 

The latest possible arrival of the data in the next cycle occurs under the follow-
ing circumstances: (a) data was captured at the latest possible moment due to the 
clock skew and jitter, (b) the Flip-Flip that captured the data was the slowest pos-
sible (keep in mind that Flip-Flop delays will vary due to the process variations), 
(c) this data traveled through the longest path in the logic (critical path). 

UTPt LDLN −−=  (6) 



The clock leading edge in the next cycle arrived at the earliest possible moment 
P-TL , However, in order to capture the data reliably the data should arrive at least 
for the setup time U before the leading edge of the clock. This leads to the follow-
ing equality: 

CRCQMLL tDTUTP ++≥−−  (7) 

From this equality a constraint for the clock period P (speed of the clock) is de-
rived: 

CRCQML tDUTP +++≥ 2  (8) 

Alternatively for a given clock speed the longest critical path in the logic has to 
be shorter than: 

CQMLCR DUTPt ++−≤ 2  (9) 

 
This is one of the fundamental equations. Basically it shows that the time avail-

able for information processing is equal to the time remaining in the clock period 
after the clock skew is subtracted for both edges and the time data spend traveling 
through the storage element.  

 
It is commonly misunderstood that the Flip-Flop provides edge-to-edge timing 

and is thus easier to use because it does not need to be checked for hold-time vio-
lation. This is not true, and a simple analysis that follows demonstrates that even 
with the Flip-Flop design the fast paths can represent a hazard and invalidate the 
system operation. 

 
If the clock controlling the Flip-Flop releasing the data is skewed so that it ar-

rives late, and the clock controlling the Flip-Flop that receives this data arrives 
late, a hazard situation exists. This same hazard situation is present if the data 
travels through a fast path in the logic. A fast path is the path that contains very 
few logic blocks, or none at all. Referring to Fig. 34. this hazard, which is also re-
ferred to as critical race can be described with a following set of equations: 

 

LmCQmLDEArr DDTt ++−=  (10) 

 

HTt LDEArrN +−=  (11) 

 
Equation (10) represents the time of the early arriving signal tDEArr, which 

should not be earlier than the time described by (11), otherwise there will be a 
hold-time violation of the data receiving Flip-Flop. This condition is represented 
by the inequality (12): 

 



HTDDT LLmCQmL +−>++−  (12) 

 
In this equations DCQm represents the minimal Clock-to-Q (output) delay of the 

Flip-Flop and DLm represents minimal delay through the logic (as opposed to the 
use of index M where DCQM and DLM represent maximal delays). 

 
Equation (12) gives us a constraint on the fast-paths: i.e. no signal in the logic 

should be taking the time shorter than DLB otherwise there will be hold-time viola-
tion in the circuit. 

 

CQmLLBLm DHTDD −+=> 2  (13) 

 
Further, the clock has to be active for some minimal duration (in order to assure 

reliable capture of data): 
 

W mTL CTTW ++≥  (14) 

 
 Equations (9),(13) and (14) provide timing requirements for reliable operation 

of a system using Flip-Flops. 
 

Analysis of Single-Latch Based System 

Single latch based system is more complex to analyze than Flip-Flop based sys-
tem. However, its analysis is still much simpler than a general analysis of a two 
latch (Master-Slave) based system, which is shown in [Unger-Tan]. Use of a single 
latch represent a hazard due to the transparency of the latch, which introduces a 
possibility of races in the system. Therefore, the conditions for single-latch based 
system must account for critical race conditions. As the previous analysis showed, 
presence of the storage element delay decreases the “useful time” in the pipeline 
cycle. Therefore, in spite of the hazards introduced by such design, the additional 
performance gain may well be worth the risk.  

Some well-known systems such as CRAY-1 super-computer do use single 
latch. This decision was based on performance reason. Second ge neration Digital 
Corp. “Alpha” 21164-processor uses single-latch based design as well. A differ-
ence between “Alpha” and “CRAY-1” is in the way single latch has been used in 
the pipeline. Two ways of structuring the pipeline with the single latch is shown in 
Fig. 35. In Fig. 35. (a) a straight forward way of using a single latch is shown. 
Here all the latches in the system are “transparent” while the clock is active (logic 
1) and all the latches are “opaque” (non-transparent) when the clock is inactive 
(logic 0). 
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Fig. 44.  Two ways of using a single-latch in a single-latch based system  

We will base the analysis of a single-latch based design on the well known pa-
per by Unger and Tan [Unger-Tan]. The case (a) is easier to analyze while the case 
(b) becomes more complex. 

 
In the case of a latch signal need to arrive for setup time U before the trailing 

edge of the clock (which closes the latch). However, this edge could arrive earlier 
because of the clock skew. So, the latest arrival of the data that assures reliable 
capture after the period P has to be: 



PUTWt TDLArr +−−≤  (15) 

Data that is to be captured at the end of the clock period could have been a re-
sult of two events (whichever later): 

(a) data was ready, clock arrived at the latest possible moment TL and the 
worse case delay of the latch was incurred which is DCQM. 

(b) clock was active and data arrived at the last possible moment, which is a 
setup time U  and clock skew time TT before the trailing edge of the clock. 

In both cases (a) and (b) the path through the logic was the longest path DLM. 
 
Thus the data to be captured in the next cycle, under the worse scenario (either 
(a) or (b)) has to arrive in time to be reliably captured in the next cycle: 

{ } PUTWDDUTWDT LMDQMCQML +−−≥++−−+ ,max
 

(16) 

This gives us a constraint for the clock speed in terms of the duration of the pe-
riod P such as: 

 { } LMDQMCQMTL DDWDUTTP +−+++≥ ,max  (17) 

This inequality breaks down into two inequalities (18) and (19): 

WUTTDDP TLCQMLM −+++++≥  (18) 

DQMLM DDP +≥  (19) 

Equation (19) shows the minimal bound for Pm, which is the time to traverse 
the loop consisting of the maximal delay of the data passing through latch and 
through the longest path in the logic. In other words:  

 
“Starting from the leading edge of a clock pulse, there must be time, under 

worse case, before the trailing edge of the clock, for a signal to pass through the 
latch and the logic block in time to meet the setup time constraint” [Unger-Tan]. 

 
The value of P = Pm determines the highest frequency of the clock for that sys-

tem. However, this does not come without price. Given that the loop through the 
logic and the latch is open, we have to assure that any of the “fast paths” that may 
exist in the logic does not arrive sooner than the next period of the clock. This 
leads to the following analysis for fast paths. 

 
The fastest signal, traveling through the fastest path in the logic, should not ar-

rive before the latest possible arrival of the same clock: 

HTWHtt TCLTDEArrN ++=+≥  (20) 

There are two possible scenarios for the early arrival of the fast signal: (a) it 
was latched early and it passed through a fast path in the logic, or (b) it arrived 



early while the latch was open and passed through the fast latch and fast path in 
the logic. This is expressed in equation (21): 

 

{ } LmDQmDEArrCQmCELDEArrN DDtDtt +++= ,min  (21) 

 
The earliest arrival of the clock tCEL happen if the leading edge of the clock is 

skewed to arrive early –TL. Thus, the conditions for preventing race in the system 
is expressed as: 

{ } HTWDDtDT TLmDQmDEArrCQmL ++≥+++− ,min  (22) 

 
It is obvious that the earliest possible arrival of the clock plus clock-to-output 

delay of the latch has to be earlier in time than early arrival of the data (while the 
latch is open) plus data-to-output delay of the latch. Thus: 

HTWDDT TLmCQmL ++≥++−  (23) 

which gives us a lower bound on the permissible signal delay in the logic: 

CQmLTLmBLm DHTTWDD −+++≥>  (24) 

 
Thus the conditions for reliable operation of a system using a single latch are 

described by equations (18),(19) and (24) which are repeated here for clarity: 
 

WUTTDDP TLCQMLM −+++++≥  (18) 

DQMLM DDP +≥  (19) 

CQmLTLmBLm DHTTWDD −+++≥>  (24) 

 
One can notice that the increase of the clock width W is beneficial for speed 

(18), but it increases the minimal bound for the fast paths (24). Maximum useful 
value for W is obtained when the period P is minimal (19). Substituting P from 
(19) into (18) gives us this value of W: 

 

DQMCQMTL
opt DDUTTW −+++=  (24) 

 
If we substitute the value of the optimal clock width Wopt into (25) than we will 

obtain the values for the maximal speed (19) and minimal signal delay in the logic 
which has to be maintained in order to satisfy the conditions for optimal single-
latch system clocking: 

DQMLM DDP +≥  (19) 



DQMCQmCQMLTLmB DDDUHTTD −−++++= )(2  (26) 

 
It may be worthwhile giving a thought to those equations. What they tell us is 

that under ideal conditions, if there are no clock skews and no process variations, 
the fastest path through the logic has to be greater than the sampling window of 
the latch (H+U) minus the time the signal spend traveling through the latch. If the 
travel time through the latch DDQM, is equal to the sampling window, than we do 
not have to worry about fast paths. Of course this is the ideal situation and in prac-
tice we do have to take a good care of both: fast and slow paths in the logic. 

 
In summary in a single latch system, it is possible to make the clock period P as 

small as the sum of the delays in the signal path: latch and critical path delay in 
the logic block. This can be achieved by adjusting the clock width W and assuring 
that all the fast paths in the logic are larger in their duration than some minimal 
time DLmB. 

Analysis of a System using Two-Phase Clock and Two Latches in 
Master-Slave Arrangement 

A particular version of the use of two latches in the Master-Slave (M-S) ar-
rangement is the most commonly used technique in digital system design. It is also 
a robust and reliable technique compatible with the Design for Testability (DFT) 
methodology. We will start with describing the most general arrangement consist-
ing of two latches clocked by two separate and independent clocks C1 and C2 as 
shown in Fig. 36. 
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Fig. 45. System using Two -Phase Clock and Two Latches in Master-Slave Arrangement 

The analysis of a system using two-phase clock is much more complex com-
pared to the system using a single clock, because we are introducing possible skew 



on the second clock. Therefore the set of parameters includes clock skew on the 
leading and trailing edge of the first clock C1: T1L and T1T and on the second clock 
C2: T2L and T2T. In addition, the overlap between C1 and C2: V is to be taken into 
account as well as the corresponding width of the clock pulses: W1 and W2. 

 
This analysis tends to be tedious and complex. Therefore a detailed reading of 

the paper by Unger and Tan [Unger-Tan] is suggested to the interested reader. 
Without going into details of that analysis, we will only present here qualitative 
analysis and final derivations.  

 
From the latest signal arrival analysis several conditions can be derived. First, 

we need to assure orderly transfer into L2 latch (Slave) from the L1 latch (Master ) 
even if the signal arrived late (in the last possible moment) into the (Master) L1 
latch. This analysis yields the following two conditions: 

 

LTDQM TTDUUVW 121122 −++−+≥  (27) 

 

TTCQM TTDUVWW 211221 ++++≥+  (28) 

 
Those conditions assure timely arrival of the signal into the L2 latch, thus an or-

derly L1-L2 transfer (from Master  to Slave). 
 
The analysis of the latest arrival of the signal into L1 latch in the next cycle 

(critical path analysis) yields to the following set of equations: 
 

LMDQMDQM DDDP ++≥ 21  (29) 

 
The equation (29) gives us the highest frequency at which the system can oper-

ate. In other words, the minimal period of the clock P has to be of sufficient dura-
tion to allow for the signal to traverse the loop consisting of: L1 latch, L2 latch and 
the longest path in the logic DLM.  

 

TLLMDQMCQM TTDUDDPW 111211 ++++++−≥  (30) 

 
The condition specified in equation (30) assures timely arrival of the signal that 

starts on the leading edge of C1, traverses the path through L2, the longest path in 
the logic and arrives before the trailing edge of C1, in time to be captured. 

 
If the signal, starting from the leading edge of C2 (prior to the end of C1) trav-

ersing L2 and the longest path in the logic is to be captured in time in L1, then the 
condition (31) needs to be satisfied. 



LTLMCQM TTDUDVP 2112 +++++−≥  (31) 

 
The equation (31) shows that the amount of overlap V between the clocks C1 

and C2 has some positive effect on speed. The overlap V allows the system to run 
at greater speed. Conversely, if we increase V we can tolerate longer “critical 
path” DLM. Thus, the increase of V is beneficial for he system.  However, the in-
crease of the clock overlap has its negative effects and obviously its limit.  

 
One of the negative consequences is that overlapping clocks introduces a possi-

bility of race conditions, thus requiring a fast path analysis. The analysis of fast 
paths (or critical races) makes the timing analysis much more complex and in 
general computer aided design tools do not perform this analysis very well. It is 
for that reason that many would sacrifice some performance for reliability and 
ease of design. One very commonly used clocking methodology is theuse of Mas-
ter-Slave (L1-L2) latches with locally generated C2 clock. Such arrangement as-
sures reliability since C1 and C2 clocks are not overlapped, thus eliminating the 
need for the analysis of critical races. This arrangement is  shown in Fig. 37. Un-
fortunately, this arrangement is also a cause of widely spread misuse of the term 
“Flip-Flop” for the structure, which is nothing other, but a Master-Slave (L1-L2) 
latch. 
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Fig. 46. Master-Slave (L1-L2 latch) with non-overlapping clocks C1 and C2 obtained by lo-
cally generating clock C2. This is also mistakenly referred to as Flip-Flop. 

High-performance systems are designed with the maximal performance being 
objective. Therefore, overlapping of the clocks C1 and C2 is commonly employed, 
thus leading to the “critical race” analysis (again, reader is referred to the Unger 
and Tang’s paper). The analysis leads to the constrain of the minimal signal delay 
in the logic DLmB in order to prevent the critical race:  

 



CQmLTLmBLm DTTHVDD 2211 −+++=>  (32) 

 
What equation (32) tells us is that any amount of time we have added to the up-

per bound of the critical path, thus allowing more time in the logic, will have to be 
added to the minimal bound for the short paths, thus increasing the constraint on 
the short path. This may force us to add some padding to the short paths (insert 
inverters in order to increase the delay) in order to meet the constraint (32). 

 
We may be interested to know what is the maximal amount of overlap V that 

we can utilize. This can be obtain solving the timing equations (29,31) [Unger-
Tan] leading to equation (33): 

  

DQMDQMCQMLT DDUDTTV 211221 −−+++=  (31) 

 
In summary, when using a two-phase clock with Master-Slave (L1-L2) latches a 

conservative design would eliminate the need for the analysis of fast paths (critical 
race condition). This is achieved by using non-overlapping clocks C1 and C2. 
However, this is done at the expense of the performance. When maximal perform-
ance is the objective, it is possible to adjust the clock overlap V by phasing the 
clocks C1 and C2 so that the system runs at the maximal possible frequency. The 
maximal clock frequency is achieved when Pmin is equal to the sum of the delays 
incurred when traversing the path consisting of the maximal delay in the logic and 
delays in the latches L1 and L2. 

 

Example Alpha-2 clocking 

Let us consider an example consisting of the optimal clock parameters for the sin-
gle latch clocking as used in the second-generation “alpha” processor. For more 
detail explanation one should read [A lpha-2 paper]. For this analysis and we will 
use notations from [S. Unger and C. J. Tan]. 

Let is assume the following parameters of the system: 
Clock skew: TL = TT = 20ps, for both edges of the clock. Latch L  1 parameters 

are: clock to Q delay DCQM = 50ps, DCQm= 30ps, D to Q delay DDQM = 60ps, setup 
time U = 20ps, hold time H = 30ps. Latch L  2 parameters are: DCQM = 60ps, DCQm= 
40ps, DDQM = 70ps, U = 30ps, H = 40ps. The structure of L1 and L2 latches used in 
the second generation of “Alpha” processor are shown in Fig.  . 

 
The critical paths in the logic sections 1 and 2 are: DL1M=200pS and 

DL2M=170ps. 



 

Fig. 47. Timing arrangement used in the second generation of “Alpha” processor [Alpha-2] 

 

 
Fig. 48.  Latches used in the second generation of “Alpha” processor [Alpha-2] 

Solution: 
 
For the given clock setup: V=0 and clearly P=W1+W2.   
 
With the nominal time, t=0 set at the leading edge of the clock we obtain: 
 

111 UTUTVt TTLArrD −−=−−≤  (32) 

22 UTWt TLArrD −−≤  (33) 

 
In addition we have: 
 

{ } MLCQMLLCDQMLArrDLArrD DDtDtt 11,11,1,2 ,max +++=  (34) 

where:  

L1

logic Lg1
L2

logic Lg2

clk

L1 opaque
L2 transparent

L1 transparent
L2 opaque

TT

W1W2

P

TT TL TL

 



LCLL TWVt +−= 11  (35) 

Substitution of equations (32) and (33) into (34) yields: 

MLTLDQM DTTDUUVW 11122 +−++−+≥  (36) 

MLLCQM DTDUVWWP 11221 2 ++++≥+=  (37) 

Due to the symmetry of the clocking scheme, moving the reference point from 
the leading edge of the clock to the trailing edge of the clock will give us the same 
equations with indexes interchanged: 

MLTLDQM DTTDUUVW 22211 +−++−+≥  (38) 

MLLCQM DTDUVWWP 22121 2 ++++≥+=  (39) 

Substituting the values into equations: (36-39) we obtain: 
 

pSW 2902 ≥   

pSP 320≥   

pSW 2301 ≥   

pSP 290≥   

Given that P=W1+W2 we obtain for P: 
 

Pmin=520pS 
 
Thus the maximal frequency at which this system can run is fmax=1.92GHz. 

 

Level-Sensitive Scan Design (LSSD) 

Finally, it is important to address testability issues as they are closely related to 
the latch design and choice of a clock storage element to be used in the system. 
LSSD is a design methodology developed at IBM Corp. and used systematically 
in all IBM designs. The origins of LSSD can be traced to the IBM System /360 
models and NEC 2200/ model 700, though LSSD was fully implemented for the 
first time on IBM System /38 [Ref].  

 
LSSD is one solution to the problem of test and test generation for digital sys-

tems. The basic idea of LSSD is to convert a sequential network into a combina-
tional network by logically cutting the feedback loops. This logical dissection is 
performed by converting all storage elements in the Huffman Sequential Network 



Model (Fig.3.) into shift register latches and connecting them into one or more 
shift registers as shown in Fig.40. At this point it is possible to put the logic net-
work into any desired state by shifting-in the proper values into the Shift Register 
Latches (SRL). It is also possible to scan out any response. Thus, for testing pur-
poses, the network appears like a combinational network, which facilitates test 
generation greatly. 

 

Clocked Storage
Elements

Clock

Outputs (Y)

Y=Y(X, Sn)

Inputs (X)
Combinational

Logic

Scan-In

Scan-Out

Scan-Out

 
Fig. 49. General LSSD Configuration 

 
There are two aspects of LSSD methodology as they impact timing and clock. 

The first attribute is a requirement for the system to be Level Sensitive, and the 
second one is requirement for Scan Design.  

 
Level Sensitivity is defined in the requirements for the latch design. The latches 

used are assumed to be reacting to logic voltage levels and not to be affected by 
transition time. This is consistent with our definition of a latch, in this book, as 
opposed to a Flip-Flop. Further, clocks are recommended to be non-overlapping 
during system operation and are never overlapping during testing. Hence the net-
work is immune to fast paths. 

 
The requirement for Scan Design is spelled in the requirement that the latches 

used consist of Shift Register Latches (SRL), which are interconnected into one or 
more shift register chains. Thus, the key capability of Scan Design is the capabil-
ity to completely control and observe all latches used in the system.  



 
These two features are essential in making a sequential network appear like a 

combinational network. LSSD makes it possible to scan-in, as well as scan-out, 
values into and from all the latches in the system.  

 
The advantages of LSSD are summarized as: 
 
1. System performance is independent of time dependent characteristics of 

the signals, such as like rise and fall time. 
2. As far as test generation is concerned, all the logic networks are treated as 

combinational, thus greatly simplifying testing and test generation proc-
ess. 

3. Ability to scan eases debugging of designs. 
4. Ability to scan simplifies machine “bring-up”. 
5. Design verification is simplified. 
6. In the case where complete systems are designed using LSSD, the same 

manufacturing tests can be applied to diagnosis of faults on the customer’s 
site. 
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Fig. 50. LSSD Double Latch Design  

There are two basic ways to design logic in LSSD. One is by using a single 
latch, other by using double latch design (as described in this chapter). Double 
Latch Design is also known as Master-Slave or Latch-Trigger design. In Double 



Latch Design, shown in Fig. 41, outputs are taken from the L2 latches. Since the 
L1 and L2 latches must have separate clocks, this design is inherently level sensi-
tive. Double Latch Design requires no more than two system Clocks C1 and C2 
and two shift clocks A and B. C2 clock for the L2 latch behaves like a Shift B 
clock during testing and a system clock C2 during normal operation. It is not nec-
essary to use two separat e clocks C2 and B since the function can be shared during 
the normal operation and testing. 

 
LSSD is a concept that can be applied to a complete system design from the 

module or a card to a chip.  
 
Shift-Register-Latch is defined as a combination of two latches: Data Input 

Latch, L1 and a second latch, L2, which is used in normal, or shift register opera-
tion. Latch L1 my be fed by one or more system clocks, data inputs, set inputs, re-
set inputs, scan data inputs and shift-A clock inputs. Latch L2 may be fed only by 
latch L1 and shift-B clock inputs. 

 
System data outputs may be taken from Latch L1, from Latch L2 or from both L1 

and L2. At least one output from L2 must be used to provide a shift register data 
path. 
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Fig. 51. LSSD SRL with multiplexer used in IBM S/390 processor 

A CMOS implementation of LSSD SRL with multiplexer at the input, used in 
IBM S/390 microprocessor is shown in Fig. 42. 
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